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Abstract— Dimension reduction techniques have frequently
been used to summarize information from high dimensional
hyperspectral data, usually done in effort to classify or visualize
the materials contained in the hyperspectral image. The main
challenge in applying these techniques to Hyperspectral
Computed Tomography (HCT) data is that if the materials in the
field of view are of similar composition then it can be difficult for
a visualization of the hyperspectral image to differentiate
between the materials. We propose novel alternative methods of
preprocessing and summarizing HCT data in a single colorized
image and novel measures to assess desired qualities in the
resultant colored image, such as the contrast between different
materials and the consistency of color within the same object.
Proposed processes in this work include a new majority-voting
method for multi-level thresholding, binary erosion, median
filters, PAM clustering for grouping pixels into objects (of
homogeneous materials) and mean/median assignment along the
spectral dimension for representing the underlying signature,
UMAP or GLMs to assign colors, and quantitative coloring
assessment with developed measures. Strengths and weaknesses
of various combinations of methods are discussed. These results
have the potential to create more robust material identification
methods from HCT data that has wide use in industrial, medical,
and security-based applications for detection and quantification,
including visualization methods to assist with rapid human
interpretability of these complex hyperspectral signatures.

I. INTRODUCTION

TH[S paper explores several preprocessing and dimension
reduction methods with the goal of representing all
channels in a hyperspectral computed tomography (HCT)
dataset with one colorized image, portraying objects with
maximum smoothness within the objects (each is a
homogeneous material) and contrast between objects (to
distinguish varying concentrations) to assist with human
interpretability and potentially inform material classification.
Past research has visualized hyperspectral data using
preprocessing and dimension reduction techniques. For
example, Fonville et al. [1] used principal component analysis
(PCA), self-organizing maps, and t-distributed stochastic
neighbor embedding (t-SNE) to reconstruct mass spectrometry
imaging data into a colorized visualization. Similarly, in Rajan
et al. [2], PCA and a multi-class support vector machine were
used to classify regions within images, and a colorized image
was produced as a by-product. Gasser et al. [3] used vertex
component analysis to visualize and compare methods for
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collecting spectroscopy data from plastics. Shi et al. [4] used
phasor transformations to both denoise and color hyperspectral
fluorescence images. Smoothing splines were used in [5] for
noise removal and peak detection in hyperspectral imaging.
Numerous studies have developed and explored clustering
methods for material classification with hyperspectral data
[e.g., 6-8].

Unlike previous work that dealt with hyperspectral data of
materials with distinct spectral signatures, our work focuses on
the challenge of visualizing materials that have extremely
similar material composition or are composed of varying
concentrations of the same material. Additionally, this
research focuses on applying methods in the context of
hyperspectral computed tomography data.

II. METHODS

A. Data

The HCT dataset used to develop the methods was
generated by PHITS [9], a general purpose Monte Carlo
particle transport simulation code. The dataset contains nine
cylindrical objects placed in a grid pattern that are imaged in
simulation with a patterned anode that contains tungsten,
molybdenum, and silver to create a distinct hyperspectral x-
ray spectrum from a 225kVp electron beam and detected by an
ideal hyperspectral x-ray detector that channelizes the detected
photons into 128 energy channels spread out across 300keV
[10, 11].

Each cylindrical object is composed of a different mixture
of hydrogen peroxide (H>O,) and water (H2O). The
concentration of hydrogen peroxide in the objects ranges from
10% to 90%, with an increment increase of 10% concentration
between objects. The layout of the cylindrical objects with
their respective H>O, concentrations are shown in Figure 1.
Ten different sample simulations were generated to allow
initial tests of method generalizability, specifically the
coloring consistency between different scans of the same
objects. In addition, a separate simulation was run with a high
photon count (one billion) to provide a reference dataset with
less variability in channel intensities.
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Fig. 1. Reconstructed image of cylindrical objects labeled with respective
concentrations of H,O, to H,O (e.g., middle object is 10% H,O, and 90%
H,0).

B. Preprocessing Techniques

Our approach uses a series of preprocessing methods that
isolate objects and spectrally and spatially de-noises the data
on a per-object basis. First, negative intensity values in the
hyperspectral data were replaced with zeros, as the negative
values were an artifact of the reconstruction method used to
generate the synthetic data. The next stage of the pipeline was
to generate an image mask that isolates the objects from the
background. A preliminary mask was first created with a
"majority vote" thresholding algorithm that performs multi-
level thresholding with the Multi-Otsu algorithm on each
channel of the image and then combines the per-channel
masks into a single mask. For a pixel in the final mask to be of
a certain class, the majority (= 50%) of the corresponding
pixels in that same location in the per-channel masks must be
of that class. Investigations were done to see if this 50% cutoff
could be optimized to obtain consistency in the number of
pixels in each object between different simulated scans, but
this cutoff performed as well as any other. This thresholding
method avoids the need for manual selection of a single
specific channel to use for multi-level thresholding. This
preliminary mask is further refined by applying binary erosion
to remove any remaining artifacts and object borders.

Once the objects were isolated by the image mask, we
explored several methods to achieve consistency of colors
within homogeneous materials. Spatial smoothing was done
by convolving a 2D box filter, a 2D Gaussian filter, or 2D
median filter over the hyperspectral data for each channel.
Smoothing was also done along the spectral dimension by
fitting a cubic smoothing spline across the 128 channels.
Initial research into coloring techniques using these methods
found that a few low energy channels were introducing large
amounts of noise and driving a coloring artifact around the
edge of each object, which was localized to several channels
based on large average differences between edge and middle
pixels for each object (channels 2, 3, 6, and 7, which
correspond to 2.3-7.0 keV and 11.7-16.4 keV energy bands).
Since these channels did not provide useful information (the
reconstructed images consisted mostly of noise) and had a
negative impact on final coloring, they were dropped from the
data. This set of dropped channels may not directly generalize
to new data containing scans of different types of materials.

Another method to improve color consistency within an
object was to use the partitioning around medoids (PAM)

algorithm to group the pixels of each object together. The
pixels were clustered based on the intensity per channel
augmented with the location of the pixel in the image to
encourage clustering based on spatial locality. A smoothing
spline was then fit to the aggregated pixels of each group.
Alternatively, the median or mean intensity value per channel
and object could be used. Both the smoothing spline and the
median/mean assignment methods produced an estimate of the
spectral signature for each object, either of which was then
used by the coloring methods discussed later to assign a color
(i.e., RGB value) to each cluster of pixels. These methods
improve smoothness and color consistency within each object
since all pixels of a cluster were assigned the same spectral
signature and, thus, color.

C. Coloring Methods

1) Dimension Reduction

Based on their use in previous research for similar tasks,
numerous methods were tested for representing the high-
dimensional hyperspectral signatures in low-dimensional
space, such as principal component analysis, nonlinear
principal component analysis, self-organizing map, and vertex
component analysis. However, the methods presented in this
paper's results include t-SNE [12] and Uniform Manifold
Approximation and Projection (UMAP) [13]; both are
nonlinear manifold learning methods that have been widely
applied to visualize high-dimensional data. These two
methods were selected for presentation because they had an
obvious visual advantage over the others for accomplishing
our goals for coloring as well as better performance on our
colorization assessment metrics.

To colorize the objects, the 128-channel hyperspectral data
were transformed into a three-dimensional space using t-SNE
or UMAP, and each dimension was normalized to a scale of
[0, 1] for use as a RGB color value. Unless otherwise noted,
each plot was produced using ggplot2 [14].

2) Linear Models

Linear models were explored as an alternative to dimension
reduction methods of colorizing hyperspectral data, including
logistic regression and polynomial regression. Using logistic
regression, rather than directly mapping hyperspectral data to
three color channels, the linear model and logit link function
were used to represent the concentration of the solution on a
pixel-wise basis. Each 128-channel pixel was mapped to a
value between 0 and 1 with the link function, which
corresponded well with the concentration solution at that
pixel. Additionally, channels in the lower and upper frequency
ranges that show greater sampling variation were excluded to
improve generalizability. The data can then be visualized by
mapping the value from the link function to a color gradient.
In the examples shown in Fig. 14, matplotlib [15] colormap
“inferno” was wused to visualize the concentration. A
perceptually uniform colormap was chosen to make the
ordering more visually interpretable [16].

For the linear model, polynomial terms were utilized to
obtain better fits of the nonlinear hyperspectral signatures. The



results presented in this paper are those using the quadratic
model (where x is the channel and y is the measured
absorption, either for a pixel or an object if using
median/mean assignment):

y = Bo + Brx + Box? (M

Using polynomial regression with a quadratic term, the
estimated model parameters (S, B, B,) were each utilized as
a separate input into the RGB bands for coloring. The idea
behind this method was to move toward assigning colors
based on values representing the shape of the hyperspectral
signatures. Since the signatures had a small intensity range (0 -
0.3), the model parameters were small relative to the [0, 1]
range used for the RGB bands, which led to low contrast
between the objects, so [0, 1] normalization of the model
parameters was also attempted to introduce greater contrast.

D. Colorization Assessment Metrics

There are several specific attributes we wish to measure in
the colorized image: the variation/inconsistency within each
object, the perceptual contrast between the objects, and the
average box filter color variation throughout the object (how
much variation is in local areas of an object). We created
several metrics to estimate each of these specific attributes.
All three metrics are based on the notion that humans perceive
the RGB color model as an additive model. With this
assumption, we can write the variable, Y’, which represents the
human perception of the red (R), green (G), and blue (B)
channels, as:

Y ' =CR+C,G+CyB 2

The first three dimensions of the dimension reduction
method are used to represent the R, G, and B channels and are
in the range of 0 to 1. The function that creates the RGB value
for each pixel from these dimensions rescales the values to be
in the range of 0 to 255, thus each C coefficient in Equation
(2) is 255. We can now apply the formula for variance on Y’ to
arrive at:

Var(Y')= Var(R)+Var(G)+Var(B)+2Cov(R,G)+2Cov(R, B)*2Cov(G,B)  (3)

However, because we aim to utilize Var(Y’) as a metric, we
can scale the value and thus neglect the multiplication by C’
on the right hand side of Equation (3). To denote the variance
across the RGB channels within object i, we can calculate
Var(Y’); , where the vectors R, G, and B are the red, green, and
blue channels for the pixels within that particular object. Now
that the variance within each object can be represented, a
metric that estimates the variance between objects can be
formulated as:

Between_Var = Var[Var(Y'),] , where i = 1...0opjects “)

Note that the formulation of Between Var does not have
an upper bound (but are bounded below by 0) like a true
metric should. However, it does have a linear relationship with
the attributes in the colorized image. Specifically, the smaller
Between Var is, the more similar the variance between
objects should be.

While Between Var is based on a statistical variance
approach, we would also like to develop a metric that captures
differences in the coloring of the objects, which lead to the
most significant perceptual difference between the objects.
One straightforward method to measure the difference
between two RGB colors is calculating the Euclidean distance
like so:

Distance = \/(Rz —Ry)?+ (G, — Gy)? + (B, — By)? ®)

However, calculating this distance for every pair of pixels
between two objects, for every pair of objects, would be
burdensome. To combat this, we can take the average of the
red, green, and blue channels in each object. Equation (6)
estimates the color difference between a pair of objects.
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where (i,j) = (nobjectsCZ)

The estimated color difference can be calculated between
each pair of objects in the colorized image, and the average of
these can be taken to represent the average color difference in
an image.

Avg(est disti}j)

. 7
= ;where (i, /) = (MopjectsC2) ™

Avg_ColorDiff =

The larger Avg ColorDiff is, the more perceptual color
difference between the objects is present in the resulting
colorized image. Unlike the previous two metrics, this does
have an upper bound (V3 ~ 1.73). We have normalized this so
that (7) is on a scale from 0 to 1.

While both Between Var and Avg ColorDiff capture
differences between whole objects, oftentimes there is more
noise within the objects themselves that we wish to describe
with a metric. To develop a metric that can describe this, we
need to consider smaller regions within the object and how the
color is changing from pixel to pixel within the smaller region.
For example, Fig. 2 shows two example objects and
respectively two 3x3 regions from the objects, where the first
example object has more local color variance (LCV) than the
second object.
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Fig. 2. Example of two objects and a 3x3 region from each object. The
object on the left has more LCV in the center than the right object.

Using the same formulation as above for the color variance,
Equation (3), we can utilize a sliding box filter to calculate the
variance for every 3x3 region in the object. Then, by
averaging all these values, we arrive at a metric, Equation (8),
that can estimate the amount of LCV within all the objects in
the image. Similar to the first metric, there is no upper or
lower bound for this metric. However, the smaller this metrics



is, the smaller amount of LCV there should be within the
objects.

Avg_BoxFilterVariance = Avg (Avg(Yi’) j) s ®)
where i € 3x3 window in the object, j =1 .. ypjeces

Each of the three developed metrics capture an attribute of
interest in the colorized image: Between Var captures
inconsistency (I), Avg ColorDiff captures contrast (C), and
Avg BoxFilterVariance captures (LCV). Each metric has the
relationship that the larger it is, the more of that respective
attribute is present in the colorized image.

III. RESULTS

The median hyperspectral signature for each object that we
attempted to colorize can be seen in Fig. 3 below. The
absorption profiles are extremely similar since the chemical
compositions of the mixture materials are so alike.

Pixel Intensity
L

0.031

0.00+

125

Channel

Fig. 3. Median object intensity values over the 128 energy channels.

A. Preprocessing

Before any preprocessing steps, coloring examples on the
raw data were produced as a baseline (Fig. 4).

Fig. 4. Example coloring (UMAP) on raw data from sample 1.

First, majority-voting multi-level thresholding was applied.
This new method proved to be very successful in removing

most of the pixels not associated with objects in the scan (Fig.
35).
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Fig. 5. Example coloring (UMAP, sample 1 data) after majority-voting
thresholding.

Binary erosion was applied to remove the remaining artifact
encircling the objects due to reconstruction (Fig. 6).
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Fig. 6. Example coloring (UMAP, sample 1 data) after thresholding and
erosion.

Now that coloring was focused only on pixels within
objects, contrast between the objects began to emerge.
However, the edges of objects (seen in blue in Fig. 6), were
still driving some inconsistency in the coloring of the
homogeneous objects. Applying spatial smoothing with a box
or Gaussian filter helped smooth the image and increase
contrast between objects but also increased the size of the
edge artifact (Fig. 7).
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Fig. 7. Example coloring (UMAP, sample | data) after thresholding and
erosion, smoothed with Gaussian (s = 1) filter.

Using the reference data set, we were able to localize the
edge pixels into a distinct group by clustering pixels by their



intensities over the channels using PAM. We used the result to
compare the differences between the edges and centers of each
object and discover that there were large average differences
for channels 2, 3, 6, and 7. Filtering these channels out of the
data was sufficient for the billion photon data to remove the
edge artifact and produce good contrast between objects (Fig.
8).

Fig. 8. Example coloring (UMAP, billion photon data) after thresholding,
erosion, and channel filtering.

Although this channel filtering method for sample data
removed edge artifacts, it was not as effective for providing
high levels of contrast between the objects (Fig. 9).
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Fig. 9. Example coloring (UMAP, sample 1 data) after thresholding,
erosion, and channel filtering.

To better understand why the increased contrast did not
carry over to the sample data and how the reference data result
could be replicated for the sample data, the differences for
each sample pixel and reference pixel over each channel were
calculated. We observed that, for most channels (except
around the extremes) the differences were normally distributed
around zero, suggesting that assigning sample pixels in an
object to the mean or median of the object at that channel
would provide sample data object contrast similar to the
reference data after channel filtering. Augmenting the channel
intensities with pixel location data successfully separated
objects into distinct clusters using PAM. The median
assignment worked as expected (Fig. 10). Mean assignment by
object/channel and smoothing splines fit over channels for
objects both produced similar results to median assignment.

Fig. 10. Example coloring (UMAP, sample 1 data) after thresholding,
erosion, channel filtering, and median assignment.

Since median assignment worked effectively for denoising
sample data to bring pixels in line with their reference data
equivalents, median filters, using [17], were added to testing
as an alternative route to median assignment not requiring
object detection. Comparisons of multiple radii for the filter
suggested a radius size of six would produce the best final
coloring scheme, and the method worked fairly well (Fig. 11).

@ o
] L4 o
o O ®

Fig. 11. Example coloring (UMAP, sample 1 data) after thresholding,
erosion, median filtering, and channel filtering.

Table I presents metric results, including, contrast (C), local
color variance (LCV), and inconsistency (/), for various
preprocessing methods tested in this section.

TABLE L EXAMPLE METRIC RESULTS FOR PREPROCESSING STEPS
Preprocessing Steps Image Metrics

C=0.1598

Thresholding, Erosion (Fig. 6) LCV=0.0409

1=10.0009

. . . . C=0.2000

;Fg;esslz?;;dlmg:, li;oswn, Spatial smoothing (Fig. 7) LCV = 00233

ussian, § 1=10.0050

. . . . C=0.4908

E?lgzsﬁ;l;llllr;f;ifrosmn, Median assignment, (Fig. 10) LCV = 0.0000

g 1=0.0000

. . . C=0.2957

Thresholdmg,_Erosmn, Median filter, (Fig. 11) LCV=00118

Channel filtering I=00025

The metric results validate the visual observations made
about each image. Specifically, Gaussian smoothing helps
improve contrast between objects and reduce local color
variance within objects, but median filters are much more
effective at accomplishing these goals. Nevertheless,
preprocessing with median assignment was the clear winner,
though it necessitates object segmentation and could be more



difficult to accomplish with heterogeneous objects or
homogeneous objects more closely grouped together in space.

B. Coloring with UMAP and t-SNE

UMAP and t-SNE performed better than other attempted
methods for producing smooth and contrasting colorization of
objects in images. However, UMAP results have been
presented for the examples thus far because it showed
additional improvement over t-SNE in the contrast metric. To
demonstrate, Fig. 12 below shows a t-SNE visualization
produced using the same preprocessing as the UMAP
visualization in Fig. 10. In this case, the contrast metric for t-
SNE was 0.4276, while the contrast metric for UMAP was
0.4908.

Fig. 12. Example coloring (t-SNE, sample 1 data) after thresholding,
erosion, channel filtering, and median assignment.

Testing was completed to see how well UMAP generalized
between all ten samples. Using the same random initialization,
a manifold for each sample was estimated with UMAP. We
discovered that, while the same colors were produced in each
sample image, in some samples the object some colors were
assigned to changed (Fig. 13). The same issue occurred when
the generalization test was run for t-SNE.

Fig. 13. Example UMAP coloring discrepancy between sample one (left)
and sample two (right).

Further analysis into the cause of this discrepancy
uncovered it was due to slightly differing numbers of pixels in
objects between the different samples, which was slight
(usually at most a 4-5 pixel difference for an object) and could
not be resolved with adjusting the majority-voting
thresholding preprocessing method. This result suggests a
larger issue with generalizability of these methods, especially
with coloring different images of objects consisting of the

same material but having different sizes. However, a
workaround was found, where the manifold was learned on
data from only one sample and the other samples were
dimension reduced by fitting pixels to the existing manifold,
which provided consistent coloring between samples.

C. Coloring with Linear Models

While the dimension reduction methods for coloring
produced visualizations with contrast, smoothness, and
adequate replicability, there are some limitations. First, the
coloring is highly dependent on the types of materials in the
image and sensitive to size of objects in the image. Second,
the interpretability of the object could be improved, such as by
assigning not only different colors assigned to each object but,
since they are increasing concentrations of a mixture, having
the colors be a more meaningful gradient. As such, GLMs
were attempted to address these issues.

First, after dropping energy channels under 15 and over 80
due to larger sample variability in objects means between the
ten simulations, logistic regression models were trained on
either the mean spectrum for each object or on a pixel-by-
pixel basis. The output space of the logistic regression models
was mapped to sample concentrations and visualized using a
gradient color map. This method worked effectively for both
the object mean assignment and pixel data (Fig. 14).
Additionally, both methods were applied on each of the ten
samples and produced extremely similar colorized images, so
they proved to generalize well.
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Fig. 1. Example logistic regression coloring on pixels (left) and on mean
assignments (right). Both examples use sample 1 data.

Next, we wused median assignment and estimated
polynomial regression models for the intensity over channels.
In this case, we used more of the lower energy channels (only
dropping channels 8 and below) to get better fidelity in the
model parameters’ representation of the hyperspectral
signature. We first used the raw parameters for the RGB
dimensions, which did not produce much contrast (Fig. 15)
because the model parameters were small compared to the [0,
1] ranges used for each color band (model intercepts ranged
0.05-0.065, with linear terms around -0.001, and quadratic
terms around 0.0000).



Fig. 2. Example polynomial regression coloring with raw parameters
after median assignment (sample 1 data).

To drive contrast between objects using this coloring
method, the parameters were each [0, 1] normalized. To some
degree, the normalization does remove the advantage of this
model being a representation of the real hyperspectral
signature; however, if reasonable bounds for model
parameters can be determined, then the benefit for
visualization contrast from increasing the size of parameters
can be retained while avoiding a relative coloring scheme
completely dependent upon the types of materials in an image.
Additionally, using model parameters for coloring provides
flexibility in the coloring scheme (allowing contrast to be
increased and color gradients to be tailored to some degree,
dependent upon which parameters are normalized and which
color bands parameters are assigned to). The example in Fig.
16 normalizes all parameters and uses the linear term,
quadratic term, and intercept term for the red, green, and blue
color bands, respectively.

Fig. 3. Example polynomial regression coloring with normalized
parameters after median assignment (sample 1 data).

The polynomial regression method for coloring median-
assigned pixels works well and generalized to the additional
samples. However, initial assessments of model assumptions
suggest a potential violation of the linearity assumption that
could be solved by adding higher-order polynomial terms to
the model. This avenue needs further exploration, especially
how parameters could be meaningfully presented in a coloring
scheme. Also, while we expect the method to perform well
(disregarding the increased computational demand) when used
to color individual pixels (based on the logistic regression
results), further testing is needed in that regard.

Table II presents metric results for the GLM-colorized
images shown above. The logistic regression with mean
assignment and polynomial regression with normalized
parameters provided the most contrast between objects, with

results similar to the t-SNE visualization above. Logistic
regression on raw pixels, while noisier, still provided good
contrast between objects, with metric results similar to those
obtained from median filtering and UMAP. Unsurprisingly,
the polynomial regression with raw parameters had very low
contrast between objects.

TABLE II. EXAMPLE METRIC RESULTS FOR GLMS

Method Image Metrics

C=0.2641
LCV =0.0444
1=0.0004

Logistic regression on pixels (Fig. 14)

C=0.3769
LCV=10.0000
1=10.0000

Logistic regression on mean assignments (Fig. 14)

C=0.0040
LCV=0.0000
1=0.0000

Polynomial regression with raw parameters | (Fig. 15)

C=0.4083
LCV =0.0000
1=0.0000

Polynomial regression with normalized

parameters (Fig. 16)

IV. DISCUSSION/CONCLUSION

This paper presented several methods for preprocessing
images from simulated HCT data and representing their
hyperspectral signatures in low-dimensional space to colorize
the images. The main visualization goals focused on in the
study include smoothness within objects of homogeneous
materials and contrast between objects of different
concentrations of mixture materials, which were measured
with developed metrics that provided quantitative validation of
the qualitative assessment of each object. The study results
provide a good foundation for continued research into
colorization methods for HCT that could enable simple
usability and rapid human interpretability of this type of
imaging data. These results also have the potential to be
utilized as an input for material classification methods.

Several preprocessing steps were identified as indispensable
for preparing the HCT data for colorization. The novel
majority-voting thresholding technique in combination with
erosion was extremely effective in removing pixels not
associated with objects, focusing coloring on the objects of
interest. These two preprocessing steps removed noise in the
colorization due to photon scattering and other artifacts as well
as allowed contrast to begin to emerge between the objects.
Channel filtering was also uncovered as an effective method
for removing remaining object edge artifacts. Further research
is needed to develop an appropriate fully automated method
for determining the correct channels to remove for objects
with different materials than those in the simulated scans for
the current study. Additional preprocessing steps, which may
or may not be an essential piece of a preprocessing pipeline,
nevertheless meaningfully contributed to  improved
smoothness within and contrast between objects, including use
of a median filter for pixels (more than a box or Gaussian
filter) and median assignment for objects.

Two alternative methods for translating the pixel or object
hyperspectral signatures to a final colorized image were



explored, including dimension reduction techniques and
GLMs. Among the two best performing methods, UMAP and
t-SNE, UMAP provided a clear advantage in contrast between
objects. Both methods have generalizability concerns since
they are sensitive to object sizes and have results highly
dependent upon the objects and materials in an image.
However, an alternative method presented, where a pretrained
manifold is used to inform subsequent image coloring, showed
promise for improving these methods’ generalizability but
would likely require simulated scans with a vast array of
materials to appropriately train for productionized use of such
a solution. GLMs provided an alternative path for colorizing
images, with the advantage of a more direct connection to the
hyperspectral signature of a pixel or object. Logistic
regression modeled the concentration of H,O» in the mixtures
very effectively, even when applied pixel-by-pixel, though the
method has a potential limitation of being very specific to the
set of material mixtures it is trained on. Polynomial regression
parameters provided an effective and flexible framework for
colorization of objects, though a higher-order polynomial
model would provide a better fit to the hyperspectral
signatures and pixel-level models need to be tested in ongoing
work. Further analysis of higher-order polynomial regression
methods for proper use of model parameters to accomplish
HCT colorization in a robust and informative manner is
needed for this method to be fully viable for
productionization.

Future research will explore the method improvements and
tests already mentioned. Colorization metric development will
continue, especially for metrics to compare consistency
between different scans. Additionally, robustness of the
methods will be explored by testing on a variety of additional
data, including images with different types of materials
(including non-liquids), sizes/arrangements of objects, and
concentrations of mixtures. Understanding of characteristics of
HCT data will also increase through these tests as well as
additional planned testing of effects of varying photon counts
in a scan, which would begin to allow characterization of and
calibration for drift and degradation of detectors over time.
Finally, a real HCT system with the multi-metal patterned
anode of molybdenum, silver, and tungsten is under
construction, which will further enable HCT data
understanding and allow testing of the visualization methods
explored in this paper on lab data.
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