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 Abstract– Dimension reduction techniques have frequently 

been used to summarize information from high dimensional 

hyperspectral data, usually done in effort to classify or visualize 

the materials contained in the hyperspectral image. The main 

challenge in applying these techniques to Hyperspectral 

Computed Tomography (HCT) data is that if the materials in the 

field of view are of similar composition then it can be difficult for 

a visualization of the hyperspectral image to differentiate 

between the materials. We propose novel alternative methods of 

preprocessing and summarizing HCT data in a single colorized 

image and novel measures to assess desired qualities in the 

resultant colored image, such as the contrast between different 

materials and the consistency of color within the same object. 

Proposed processes in this work include a new majority-voting 

method for multi-level thresholding, binary erosion, median 

filters, PAM clustering for grouping pixels into objects (of 

homogeneous materials) and mean/median assignment along the 

spectral dimension for representing the underlying signature, 

UMAP or GLMs to assign colors, and quantitative coloring 

assessment with developed measures. Strengths and weaknesses 

of various combinations of methods are discussed. These results 

have the potential to create more robust material identification 

methods from HCT data that has wide use in industrial, medical, 

and security-based applications for detection and quantification, 

including visualization methods to assist with rapid human 

interpretability of these complex hyperspectral signatures. 

I. INTRODUCTION 

HIS paper explores several preprocessing and dimension 

reduction methods with the goal of representing all 

channels in a hyperspectral computed tomography (HCT) 

dataset with one colorized image, portraying objects with 

maximum smoothness within the objects (each is a 

homogeneous material) and contrast between objects (to 

distinguish varying concentrations) to assist with human 

interpretability and potentially inform material classification.  

Past research has visualized hyperspectral data using 

preprocessing and dimension reduction techniques. For 

example, Fonville et al. [1] used principal component analysis 

(PCA), self-organizing maps, and t-distributed stochastic 

neighbor embedding (t-SNE) to reconstruct mass spectrometry 

imaging data into a colorized visualization. Similarly, in Rajan 

et al. [2], PCA and a multi-class support vector machine were 

used to classify regions within images, and a colorized image 

was produced as a by-product. Gasser et al. [3] used vertex 

component analysis to visualize and compare methods for 
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collecting spectroscopy data from plastics. Shi et al. [4] used 

phasor transformations to both denoise and color hyperspectral 

fluorescence images. Smoothing splines were used in [5] for 

noise removal and peak detection in hyperspectral imaging. 

Numerous studies have developed and explored clustering 

methods for material classification with hyperspectral data 

[e.g., 6-8]. 

Unlike previous work that dealt with hyperspectral data of 

materials with distinct spectral signatures, our work focuses on 

the challenge of visualizing materials that have extremely 

similar material composition or are composed of varying 

concentrations of the same material. Additionally, this 

research focuses on applying methods in the context of 

hyperspectral computed tomography data. 

II. METHODS 

A. Data 

The HCT dataset used to develop the methods was 

generated by PHITS [9], a general purpose Monte Carlo 

particle transport simulation code. The dataset contains nine 

cylindrical objects placed in a grid pattern that are imaged in 

simulation with a patterned anode that contains tungsten, 

molybdenum, and silver to create a distinct hyperspectral x-

ray spectrum from a 225kVp electron beam and detected by an 

ideal hyperspectral x-ray detector that channelizes the detected 

photons into 128 energy channels spread out across 300keV 

[10, 11].  

Each cylindrical object is composed of a different mixture 

of hydrogen peroxide (H2O2) and water (H2O). The 

concentration of hydrogen peroxide in the objects ranges from 

10% to 90%, with an increment increase of 10% concentration 

between objects. The layout of the cylindrical objects with 

their respective H2O2 concentrations are shown in Figure 1. 

Ten different sample simulations were generated to allow 

initial tests of method generalizability, specifically the 

coloring consistency between different scans of the same 

objects. In addition, a separate simulation was run with a high 

photon count (one billion) to provide a reference dataset with 

less variability in channel intensities. 

T 
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Fig. 1.  Reconstructed image of cylindrical objects labeled with respective 

concentrations of H2O2 to H2O (e.g., middle object is 10% H2O2 and 90% 

H2O).  

B. Preprocessing Techniques 

Our approach uses a series of preprocessing methods that 

isolate objects and spectrally and spatially de-noises the data 

on a per-object basis. First, negative intensity values in the 

hyperspectral data were replaced with zeros, as the negative 

values were an artifact of the reconstruction method used to 

generate the synthetic data. The next stage of the pipeline was 

to generate an image mask that isolates the objects from the 

background. A preliminary mask was first created with a 

"majority vote" thresholding algorithm that performs multi-

level thresholding with the Multi-Otsu algorithm on each 

channel of the image and then combines the per-channel 

masks into a single mask. For a pixel in the final mask to be of 

a certain class, the majority (≥ 50%) of the corresponding 

pixels in that same location in the per-channel masks must be 

of that class. Investigations were done to see if this 50% cutoff 

could be optimized to obtain consistency in the number of 

pixels in each object between different simulated scans, but 

this cutoff performed as well as any other. This thresholding 

method avoids the need for manual selection of a single 

specific channel to use for multi-level thresholding. This 

preliminary mask is further refined by applying binary erosion 

to remove any remaining artifacts and object borders.  

Once the objects were isolated by the image mask, we 

explored several methods to achieve consistency of colors 

within homogeneous materials. Spatial smoothing was done 

by convolving a 2D box filter, a 2D Gaussian filter, or 2D 

median filter over the hyperspectral data for each channel. 

Smoothing was also done along the spectral dimension by 

fitting a cubic smoothing spline across the 128 channels. 

Initial research into coloring techniques using these methods 

found that a few low energy channels were introducing large 

amounts of noise and driving a coloring artifact around the 

edge of each object, which was localized to several channels 

based on large average differences between edge and middle 

pixels for each object (channels 2, 3, 6, and 7, which 

correspond to 2.3-7.0 keV and 11.7-16.4 keV energy bands). 

Since these channels did not provide useful information (the 

reconstructed images consisted mostly of noise) and had a 

negative impact on final coloring, they were dropped from the 

data. This set of dropped channels may not directly generalize 

to new data containing scans of different types of materials. 

Another method to improve color consistency within an 

object was to use the partitioning around medoids (PAM) 

algorithm to group the pixels of each object together. The 

pixels were clustered based on the intensity per channel 

augmented with the location of the pixel in the image to 

encourage clustering based on spatial locality. A smoothing 

spline was then fit to the aggregated pixels of each group. 

Alternatively, the median or mean intensity value per channel 

and object could be used. Both the smoothing spline and the 

median/mean assignment methods produced an estimate of the 

spectral signature for each object, either of which was then 

used by the coloring methods discussed later to assign a color 

(i.e., RGB value) to each cluster of pixels. These methods 

improve smoothness and color consistency within each object 

since all pixels of a cluster were assigned the same spectral 

signature and, thus, color. 

C. Coloring Methods 

1) Dimension Reduction 

Based on their use in previous research for similar tasks, 

numerous methods were tested for representing the high-

dimensional hyperspectral signatures in low-dimensional 

space, such as principal component analysis, nonlinear 

principal component analysis, self-organizing map, and vertex 

component analysis. However, the methods presented in this 

paper's results include t-SNE [12] and Uniform Manifold 

Approximation and Projection (UMAP) [13]; both are 

nonlinear manifold learning methods that have been widely 

applied to visualize high-dimensional data. These two 

methods were selected for presentation because they had an 

obvious visual advantage over the others for accomplishing 

our goals for coloring as well as better performance on our 

colorization assessment metrics.  

To colorize the objects, the 128-channel hyperspectral data 

were transformed into a three-dimensional space using t-SNE 

or UMAP, and each dimension was normalized to a scale of 

[0, 1] for use as a RGB color value. Unless otherwise noted, 

each plot was produced using ggplot2 [14]. 

2) Linear Models 

Linear models were explored as an alternative to dimension 

reduction methods of colorizing hyperspectral data, including 

logistic regression and polynomial regression. Using logistic 

regression, rather than directly mapping hyperspectral data to 

three color channels, the linear model and logit link function 

were used to represent the concentration of the solution on a 

pixel-wise basis. Each 128-channel pixel was mapped to a 

value between 0 and 1 with the link function, which 

corresponded well with the concentration solution at that 

pixel. Additionally, channels in the lower and upper frequency 

ranges that show greater sampling variation were excluded to 

improve generalizability. The data can then be visualized by 

mapping the value from the link function to a color gradient. 

In the examples shown in Fig. 14, matplotlib [15] colormap 

“inferno” was used to visualize the concentration. A 

perceptually uniform colormap was chosen to make the 

ordering more visually interpretable [16]. 

For the linear model, polynomial terms were utilized to 

obtain better fits of the nonlinear hyperspectral signatures. The 



 

  
 

results presented in this paper are those using the quadratic 

model (where x is the channel and y is the measured 

absorption, either for a pixel or an object if using 

median/mean assignment): 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 (1) 

Using polynomial regression with a quadratic term, the 

estimated model parameters (𝛽0, 𝛽1, 𝛽2) were each utilized as 

a separate input into the RGB bands for coloring. The idea 

behind this method was to move toward assigning colors 

based on values representing the shape of the hyperspectral 

signatures. Since the signatures had a small intensity range (0 - 

0.3), the model parameters were small relative to the [0, 1] 

range used for the RGB bands, which led to low contrast 

between the objects, so [0, 1] normalization of the model 

parameters was also attempted to introduce greater contrast. 

D. Colorization Assessment Metrics 

There are several specific attributes we wish to measure in 

the colorized image: the variation/inconsistency within each 

object, the perceptual contrast between the objects, and the 

average box filter color variation throughout the object (how 

much variation is in local areas of an object). We created 

several metrics to estimate each of these specific attributes. 

All three metrics are based on the notion that humans perceive 

the RGB color model as an additive model. With this 

assumption, we can write the variable, Y', which represents the 

human perception of the red (R), green (G), and blue (B) 

channels, as: 

Y′= Cr R + Cg G + Cb B (2) 

The first three dimensions of the dimension reduction 

method are used to represent the R, G, and B channels and are 

in the range of 0 to 1. The function that creates the RGB value 

for each pixel from these dimensions rescales the values to be 

in the range of 0 to 255, thus each C coefficient in Equation 

(2) is 255. We can now apply the formula for variance on Y' to 

arrive at: 

Var(Y′)= Var(R)+Var(G)+Var(B)+2Cov(R,G)+2Cov(R, B)+2Cov(G,B) (3) 

However, because we aim to utilize Var(Y′) as a metric, we 

can scale the value and thus neglect the multiplication by C2 

on the right hand side of Equation (3). To denote the variance 

across the RGB channels within object i, we can calculate 

Var(Y′)i , where the vectors R, G, and B  are the red, green, and 

blue channels for the pixels within that particular object. Now 

that the variance within each object can be represented, a 

metric that estimates the variance between objects can be 

formulated as: 

Between_Var = Var[Var(Y′ )i] , where i = 1…nobjects (4) 

  Note that the formulation of Between_Var does not have 

an upper bound (but are bounded below by 0) like a true 

metric should. However, it does have a linear relationship with 

the attributes in the colorized image. Specifically, the smaller 

Between_Var is, the more similar the variance between 

objects should be.  

While Between_Var is based on a statistical variance 

approach, we would also like to develop a metric that captures 

differences in the coloring of the objects, which lead to the 

most significant perceptual difference between the objects. 

One straightforward method to measure the difference 

between two RGB colors is calculating the Euclidean distance 

like so: 

Distance = √(𝑅2 − 𝑅1)2 + (𝐺2 − 𝐺1)2 + (𝐵2 − 𝐵1)2 (5) 

However, calculating this distance for every pair of pixels 

between two objects, for every pair of objects, would be 

burdensome. To combat this, we can take the average of the 

red, green, and blue channels in each object. Equation (6) 

estimates the color difference between a pair of objects. 

Est_disti,j = √(𝑅𝑖̅ − 𝑅𝑗̅)
2

+ (𝐺𝑖̅ − 𝐺𝑗̅)
2

+ (𝐵𝑖̅ − 𝐵𝑗̅)
2
 , 

𝑤ℎ𝑒𝑟𝑒 (𝑖, 𝑗) = (𝑛𝑜𝑏𝑗𝑒𝑐𝑡𝑠𝐶2)   

(6) 

The estimated color difference can be calculated between 

each pair of objects in the colorized image, and the average of 

these can be taken to represent the average color difference in 

an image. 

Avg_ColorDiff = 
𝐴𝑣𝑔(𝑒𝑠𝑡 𝑑𝑖𝑠𝑡𝑖,𝑗)

√3
, 𝑤ℎ𝑒𝑟𝑒 (𝑖, 𝑗) = (𝑛𝑜𝑏𝑗𝑒𝑐𝑡𝑠𝐶2) 

(7) 

The larger Avg_ColorDiff is, the more perceptual color 

difference between the objects is present in the resulting 

colorized image. Unlike the previous two metrics, this does 

have an upper bound (√3  1.73). We have normalized this so 

that (7) is on a scale from 0 to 1. 

While both Between_Var and Avg_ColorDiff capture 

differences between whole objects, oftentimes there is more 

noise within the objects themselves that we wish to describe 

with a metric. To develop a metric that can describe this, we 

need to consider smaller regions within the object and how the 

color is changing from pixel to pixel within the smaller region. 

For example, Fig. 2 shows two example objects and 

respectively two 3x3 regions from the objects, where the first 

example object has more local color variance (LCV) than the 

second object. 

 

 

Fig. 2.  Example of two objects and a 3x3 region from each object. The 

object on the left has more LCV in the center than the right object. 

Using the same formulation as above for the color variance, 

Equation (3), we can utilize a sliding box filter to calculate the 

variance for every 3x3 region in the object. Then, by 

averaging all these values, we arrive at a metric, Equation (8), 

that can estimate the amount of LCV within all the objects in 

the image. Similar to the first metric, there is no upper or 

lower bound for this metric. However, the smaller this metrics 



 

  
 

is, the smaller amount of  LCV there should be within the 

objects. 

Avg_BoxFilterVariance = 𝐴𝑣𝑔(𝐴𝑣𝑔(𝑌𝑖
′)𝑗) , 

𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ 3𝑥3 𝑤𝑖𝑛𝑑𝑜𝑤 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑏𝑗𝑒𝑐𝑡,  𝑗 = 1 … 𝑛𝑜𝑏𝑗𝑒𝑐𝑡𝑠 

(8) 

Each of the three developed metrics capture an attribute of 

interest in the colorized image: Between_Var captures 

inconsistency (I), Avg_ColorDiff captures contrast (C), and 

Avg_BoxFilterVariance captures (LCV). Each metric has the 

relationship that the larger it is, the more of that respective 

attribute is present in the colorized image. 

III. RESULTS 

The median hyperspectral signature for each object that we 

attempted to colorize can be seen in Fig. 3 below. The 

absorption profiles are extremely similar since the chemical 

compositions of the mixture materials are so alike. 

 

Fig. 3.  Median object intensity values over the 128 energy channels. 

A. Preprocessing 

Before any preprocessing steps, coloring examples on the 

raw data were produced as a baseline (Fig. 4).  

 

Fig. 4.  Example coloring (UMAP) on raw data from sample 1. 

First, majority-voting multi-level thresholding was applied. 

This new method proved to be very successful in removing 

most of the pixels not associated with objects in the scan (Fig. 

5). 

 

Fig. 5.  Example coloring (UMAP, sample 1 data) after majority-voting 

thresholding. 

Binary erosion was applied to remove the remaining artifact 

encircling the objects due to reconstruction (Fig. 6). 

 

Fig. 6.  Example coloring (UMAP, sample 1 data) after thresholding and 

erosion. 

Now that coloring was focused only on pixels within 

objects, contrast between the objects began to emerge. 

However, the edges of objects (seen in blue in Fig. 6), were 

still driving some inconsistency in the coloring of the 

homogeneous objects. Applying spatial smoothing with a box 

or Gaussian filter helped smooth the image and increase 

contrast between objects but also increased the size of the 

edge artifact (Fig. 7).  

 

Fig. 7.  Example coloring (UMAP, sample 1 data) after thresholding and 

erosion, smoothed with Gaussian (s = 1) filter. 

Using the reference data set, we were able to localize the 

edge pixels into a distinct group by clustering pixels by their 



 

  
 

intensities over the channels using PAM. We used the result to 

compare the differences between the edges and centers of each 

object and discover that there were large average differences 

for channels 2, 3, 6, and 7. Filtering these channels out of the 

data was sufficient for the billion photon data to remove the 

edge artifact and produce good contrast between objects (Fig. 

8). 

  

Fig. 8.  Example coloring (UMAP, billion photon data) after thresholding, 

erosion, and channel filtering. 

Although this channel filtering method for sample data 

removed edge artifacts, it was not as effective for providing 

high levels of contrast between the objects (Fig. 9). 

 

Fig. 9.  Example coloring (UMAP, sample 1 data) after thresholding, 

erosion, and channel filtering. 

To better understand why the increased contrast did not 

carry over to the sample data and how the reference data result 

could be replicated for the sample data, the differences for 

each sample pixel and reference pixel over each channel were 

calculated. We observed that, for most channels (except 

around the extremes) the differences were normally distributed 

around zero, suggesting that assigning sample pixels in an 

object to the mean or median of the object at that channel 

would provide sample data object contrast similar to the 

reference data after channel filtering. Augmenting the channel 

intensities with pixel location data successfully separated 

objects into distinct clusters using PAM. The median 

assignment worked as expected (Fig. 10). Mean assignment by 

object/channel and smoothing splines fit over channels for 

objects both produced similar results to median assignment. 

 

 

Fig. 10.  Example coloring (UMAP, sample 1 data) after thresholding, 

erosion, channel filtering, and median assignment. 

Since median assignment worked effectively for denoising 

sample data to bring pixels in line with their reference data 

equivalents, median filters, using [17], were added to testing 

as an alternative route to median assignment not requiring 

object detection. Comparisons of multiple radii for the filter 

suggested a radius size of six would produce the best final 

coloring scheme, and the method worked fairly well (Fig. 11). 

 

Fig. 11.  Example coloring (UMAP, sample 1 data) after thresholding, 

erosion, median filtering, and channel filtering. 

Table I presents metric results, including, contrast (C), local 

color variance (LCV), and inconsistency (I), for various 

preprocessing methods tested in this section. 

TABLE I.  EXAMPLE METRIC RESULTS FOR PREPROCESSING STEPS 

Preprocessing Steps Image Metrics 

Thresholding, Erosion 
 
(Fig. 6) 

C = 0.1598 

LCV = 0.0409 

I = 0.0009 

Thresholding, Erosion, Spatial smoothing 

(Gaussian, s = 1) 
(Fig. 7) 

C = 0.2000 
LCV = 0.0233 

I = 0.0050 

Thresholding, Erosion, Median assignment, 
Channel filtering 

(Fig. 10) 
C = 0.4908 

LCV = 0.0000 

I = 0.0000 

Thresholding, Erosion, Median filter, 
Channel filtering 

(Fig. 11) 
C = 0.2957 

LCV = 0.0118 

I = 0.0025  

 

The metric results validate the visual observations made 

about each image. Specifically, Gaussian smoothing helps 

improve contrast between objects and reduce local color 

variance within objects, but median filters are much more 

effective at accomplishing these goals. Nevertheless, 

preprocessing with median assignment was the clear winner, 

though it necessitates object segmentation and could be more 



 

  
 

difficult to accomplish with heterogeneous objects or 

homogeneous objects more closely grouped together in space. 

B. Coloring with UMAP and t-SNE 

UMAP and t-SNE performed better than other attempted 

methods for producing smooth and contrasting colorization of 

objects in images. However, UMAP results have been 

presented for the examples thus far because it showed 

additional improvement over t-SNE in the contrast metric. To 

demonstrate, Fig. 12 below shows a t-SNE visualization 

produced using the same preprocessing as the UMAP 

visualization in Fig. 10. In this case, the contrast metric for t-

SNE was 0.4276, while the contrast metric for UMAP was 

0.4908. 

  

Fig. 12.  Example coloring (t-SNE, sample 1 data) after thresholding, 

erosion, channel filtering, and median assignment. 

Testing was completed to see how well UMAP generalized 

between all ten samples. Using the same random initialization, 

a manifold for each sample was estimated with UMAP. We 

discovered that, while the same colors were produced in each 

sample image, in some samples the object some colors were 

assigned to changed (Fig. 13). The same issue occurred when 

the generalization test was run for t-SNE. 

 

 

Fig. 13.  Example UMAP coloring discrepancy between sample one (left) 

and sample two (right). 

Further analysis into the cause of this discrepancy 

uncovered it was due to slightly differing numbers of pixels in 

objects between the different samples, which was slight 

(usually at most a 4-5 pixel difference for an object) and could 

not be resolved with adjusting the majority-voting 

thresholding preprocessing method. This result suggests a 

larger issue with generalizability of these methods, especially 

with coloring different images of objects consisting of the 

same material but having different sizes. However, a 

workaround was found, where the manifold was learned on 

data from only one sample and the other samples were 

dimension reduced by fitting pixels to the existing manifold, 

which provided consistent coloring between samples. 

C. Coloring with Linear Models 

While the dimension reduction methods for coloring 

produced visualizations with contrast, smoothness, and 

adequate replicability, there are some limitations. First, the 

coloring is highly dependent on the types of materials in the 

image and sensitive to size of objects in the image. Second, 

the interpretability of the object could be improved, such as by 

assigning not only different colors assigned to each object but, 

since they are increasing concentrations of a mixture, having 

the colors be a more meaningful gradient. As such, GLMs 

were attempted to address these issues. 

First, after dropping energy channels under 15 and over 80 

due to larger sample variability in objects means between the 

ten simulations, logistic regression models were trained on 

either the mean spectrum for each object or on a pixel-by-

pixel basis. The output space of the logistic regression models 

was mapped to sample concentrations and visualized using a 

gradient color map. This method worked effectively for both 

the object mean assignment and pixel data (Fig. 14). 

Additionally, both methods were applied on each of the ten 

samples and produced extremely similar colorized images, so 

they proved to generalize well.  

 

Fig. 1.  Example logistic regression coloring on pixels (left) and on mean 

assignments (right). Both examples use sample 1 data. 

Next, we used median assignment and estimated 

polynomial regression models for the intensity over channels. 

In this case, we used more of the lower energy channels (only 

dropping channels 8 and below) to get better fidelity in the 

model parameters’ representation of the hyperspectral 

signature. We first used the raw parameters for the RGB 

dimensions, which did not produce much contrast (Fig. 15) 

because the model parameters were small compared to the [0, 

1] ranges used for each color band (model intercepts ranged 

0.05-0.065, with linear terms around -0.001, and quadratic 

terms around 0.0000). 



 

  
 

 

Fig. 2.  Example polynomial regression coloring with raw parameters 

after median assignment (sample 1 data). 

To drive contrast between objects using this coloring 

method, the parameters were each [0, 1] normalized. To some 

degree, the normalization does remove the advantage of this 

model being a representation of the real hyperspectral 

signature; however, if reasonable bounds for model 

parameters can be determined, then the benefit for 

visualization contrast from increasing the size of parameters 

can be retained while avoiding a relative coloring scheme 

completely dependent upon the types of materials in an image. 

Additionally, using model parameters for coloring provides 

flexibility in the coloring scheme (allowing contrast to be 

increased and color gradients to be tailored to some degree, 

dependent upon which parameters are normalized and which 

color bands parameters are assigned to). The example in Fig. 

16 normalizes all parameters and uses the linear term, 

quadratic term, and intercept term for the red, green, and blue 

color bands, respectively.  

 

Fig. 3.  Example polynomial regression coloring with normalized 

parameters after median assignment (sample 1 data). 

The polynomial regression method for coloring median-

assigned pixels works well and generalized to the additional 

samples. However, initial assessments of model assumptions 

suggest a potential violation of the linearity assumption that 

could be solved by adding higher-order polynomial terms to 

the model. This avenue needs further exploration, especially 

how parameters could be meaningfully presented in a coloring 

scheme. Also, while we expect the method to perform well 

(disregarding the increased computational demand) when used 

to color individual pixels (based on the logistic regression 

results), further testing is needed in that regard. 

Table II presents metric results for the GLM-colorized 

images shown above. The logistic regression with mean 

assignment and polynomial regression with normalized 

parameters provided the most contrast between objects, with 

results similar to the t-SNE visualization above. Logistic 

regression on raw pixels, while noisier, still provided good 

contrast between objects, with metric results similar to those 

obtained from median filtering and UMAP. Unsurprisingly, 

the polynomial regression with raw parameters had very low 

contrast between objects. 

TABLE II.  EXAMPLE METRIC RESULTS FOR GLMS 

Method Image Metrics 

Logistic regression on pixels 
 
(Fig. 14) 

C = 0.2641 
LCV = 0.0444 

I = 0.0004 

Logistic regression on mean assignments 
 
(Fig. 14) 

C = 0.3769 
LCV = 0.0000 

I = 0.0000 

Polynomial regression with raw parameters 
 
(Fig. 15) 

C = 0.0040 
LCV = 0.0000 

I = 0.0000 

Polynomial regression with normalized 

parameters 

 
(Fig. 16) 

C = 0.4083 
LCV = 0.0000 

I = 0.0000 

IV. DISCUSSION/CONCLUSION 

This paper presented several methods for preprocessing 

images from simulated HCT data and representing their 

hyperspectral signatures in low-dimensional space to colorize 

the images. The main visualization goals focused on in the 

study include smoothness within objects of homogeneous 

materials and contrast between objects of different 

concentrations of mixture materials, which were measured 

with developed metrics that provided quantitative validation of 

the qualitative assessment of each object. The study results 

provide a good foundation for continued research into 

colorization methods for HCT that could enable simple 

usability and rapid human interpretability of this type of 

imaging data. These results also have the potential to be 

utilized as an input for material classification methods. 

Several preprocessing steps were identified as indispensable 

for preparing the HCT data for colorization. The novel 

majority-voting thresholding technique in combination with 

erosion was extremely effective in removing pixels not 

associated with objects, focusing coloring on the objects of 

interest. These two preprocessing steps removed noise in the 

colorization due to photon scattering and other artifacts as well 

as allowed contrast to begin to emerge between the objects. 

Channel filtering was also uncovered as an effective method 

for removing remaining object edge artifacts. Further research 

is needed to develop an appropriate fully automated method 

for determining the correct channels to remove for objects 

with different materials than those in the simulated scans for 

the current study. Additional preprocessing steps, which may 

or may not be an essential piece of a preprocessing pipeline, 

nevertheless meaningfully contributed to improved 

smoothness within and contrast between objects, including use 

of a median filter for pixels (more than a box or Gaussian 

filter) and median assignment for objects. 

Two alternative methods for translating the pixel or object 

hyperspectral signatures to a final colorized image were 



 

  
 

explored, including dimension reduction techniques and 

GLMs. Among the two best performing methods, UMAP and 

t-SNE, UMAP provided a clear advantage in contrast between 

objects. Both methods have generalizability concerns since 

they are sensitive to object sizes and have results highly 

dependent upon the objects and materials in an image. 

However, an alternative method presented, where a pretrained 

manifold is used to inform subsequent image coloring, showed 

promise for improving these methods’ generalizability but 

would likely require simulated scans with a vast array of 

materials to appropriately train for productionized use of such 

a solution. GLMs provided an alternative path for colorizing 

images, with the advantage of a more direct connection to the 

hyperspectral signature of a pixel or object. Logistic 

regression modeled the concentration of H2O2 in the mixtures 

very effectively, even when applied pixel-by-pixel, though the 

method has a potential limitation of being very specific to the 

set of material mixtures it is trained on. Polynomial regression 

parameters provided an effective and flexible framework for 

colorization of objects, though a higher-order polynomial 

model would provide a better fit to the hyperspectral 

signatures and pixel-level models need to be tested in ongoing 

work. Further analysis of higher-order polynomial regression 

methods for proper use of model parameters to accomplish 

HCT colorization in a robust and informative manner is 

needed for this method to be fully viable for 

productionization.  

Future research will explore the method improvements and 

tests already mentioned. Colorization metric development will 

continue, especially for metrics to compare consistency 

between different scans. Additionally, robustness of the 

methods will be explored by testing on a variety of additional 

data, including images with different types of materials 

(including non-liquids), sizes/arrangements of objects, and 

concentrations of mixtures. Understanding of characteristics of 

HCT data will also increase through these tests as well as 

additional planned testing of effects of varying photon counts 

in a scan, which would begin to allow characterization of and 

calibration for drift and degradation of detectors over time. 

Finally, a real HCT system with the multi-metal patterned 

anode of molybdenum, silver, and tungsten is under 

construction, which will further enable HCT data 

understanding and allow testing of the visualization methods 

explored in this paper on lab data. 
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