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/7 Summary

Motivation

Solid-state batteries are believed to enhance safety over conventional Li-ion
« Interfacial resistance remains a key challenge

Liquid electrolyte is often added to reduce interfacial resistance
«  This addition raises concerns regarding safety impact

Thermal modeling was utilized to explore the safety impact of liquid electrolyte

Key Findings

Liquid electrolyte inclusion increases heat release; however, the heat release maé/ be insignificant when
considering manufacturability and performance using a volume fractions below 8%

Solid-state separator failure may lead to significant heat release even in all-solid-state batteries

Temperature rise during external heating failure may keep temperatures below those at which we typically
see cascading propagation

Short circuit failure can lead to higher peak temperatures in all-solid-state batteries since the same
amount of heat is generated over a smaller mass volume




4 Thermal Model ASSB = all-solid-state battery

/4 SSB = solid-state battery (with liquid electrolyte)
LIB = conventional Li-ion battery
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Scenarios
External heating R1,R2, and R3 No SE/separator failure, SE is non-permeable

B Short circuit R4 Other forms of heat release are zero
C Mechanical failure R1 and R5 Only applied to ASSB

Reactions
Rxn#
R1 Cathode decomposition 2M0,-2MO0 + 0,
R2 Cathode-electrolyte 2C,Hg03 +90,-8C0, + 8H,0
R3 Anode-electrolyte ALiICg + 2C4Hg03—-4C + 3CoH, + 2H5 + 2Li,CO5
R4 Cell discharge Li + MO,-LiMO,
R5 Anode-oxygen 4Li + 0,-2Li,0

Shurtz, R.C. (2020). A Thermodynamic Reassessment of Lithium-lon Battery Cathode Calorimetry.
Shurtz, R.C., and Hewson, J.C. (2020). Review—Materials Science Predictions of Thermal Runaway in Layered Metal-Oxide Cathodes: A Review of Thermodynamics
Shurtz, R. (2021). Lithium-ion Battery Thermodynamic Web Calculator. https://www.sandia.gov/ess-ssl/thermodynamic-web-calculator/.
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Heat Release as a Function of Liquid Volume Fraction
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/" Heat Release Dependence on Cell Format

External heating and short circuit failure
heat releases are similar for LIB and
dramatically different for SSB

SSB heat release due to short circuit
surpasses LIB when the SE is 20 pm thick

Separator failure is more consequential
than the addition of liquid electrolyte

Specific heat release will become an
important issue as energy densities
improve
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Potential Temperature Rise
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) o Torres-Castro, L., Kurzawski, A., Hewson, J., and Lamb, J. (2020). Passive Mitigation of Cascading
LIB = conventional Li-ion battery Propagation in Multi-Cell Lithium lon Batteries.




P Conclusions

ASSBs are safer than LIBs during external heating failure

«  However, this is not necessarily true during short circuit failure or if the SE does not act as a
barrier to gas and liquid

« Solid electrolyte existing as a barrier to gas and/or liquid transfer is critical to thermal
runaway prevention in several abuse modes

* As energy density is improved, specific heat release becomes more consequential

« The potential temperature rise of an ASSB is expected to be higher than a LIB due to heat
generation over a smaller mass and volume

« Short circuit failure in high energy density ASSBs is of critical concern regarding cascading
propagation, due to high potential temperature rise

« A compromise may be possible between cost, manufacturability, performance, and safety
by varying the amount of liquid electrolyte in a SSB
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Amount of liquid electrolyte per unit area, 121
for reference '
« SSB contains 0.6 L cm~ (@0.1 VF of LE)
« LIB contains 3.62 yL cm=~ (@0.3 VF of LE)

Heat 10
Release )

(J mAh™)

6 _ ASSB - C SSB - A
44 ASSB - A Scenarios
: A - External heating
2 - B - Short circuit
. C - SE failure
0.0 0.1 0.2 0.3 0.4

Volume Fraction of LE in Electrodes

R6 Anode-carbon dioxide 2Li + 2C0,-Li,CO5 + CO
R7 Anode-water 2Li + 2H,0-2LiOH + H;
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