This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in

the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Toward a Science of Abstraction Design in Software

Kirk Landin (SNL) ktlandi@sandia.gov

Abstractions are the core building block of software. Good
abstractions will allow software to quickly grow and evolve
to meet the ever-changing needs of the research commu-
nity. Bad abstractions will cause software to collapse
under its own weight, as it becomes brittle, inflexible, and
riddled with bugs. The overwhelming majority of litera-
ture on software quality focuses on improving the software
engineering process and not the actual design of the soft-
ware. Process is important in software engineering, but is
only part of the picture. Poor engineering process can suc-
cessfully be retooled at any point in a software lifecycle,
superficial design issues such as non-uniform indentation
can be fixed with simple text-processing tools, however
software with a poor abstraction design is much harder
to fix and may have to be re-built from the ground up to
overcome its problems and limitations. Because of this,
the structural design of the software and its abstractions
is one of the Most Important facets of its construction,
yet most of the software engineering community never
mentions it as an issue. This needs to change!

What is an abstraction, Really?

What is an abstraction, really? Ask five different com-
putational scientists and you will likely get five different
answers, because abstraction has never been taught in
a principled manner. An abstraction is a logical theory
that accurately describes the structure of a computation
to some level of precision. At its core, an abstraction is a
Commuting Diagram, as shown here.

f
r— Y

e

af
ar ———— ay

At the top of the figure is the Concrete Domain, with
data values z,y and operation f. The bottom of the dia-
gram contains the corresponding Abstract Domain, with
data values, ax, ay, and operation a.f. The Abstraction
Operation, o, maps every concrete value/operation to
some abstract one. It essentially “projects” away most
of the unneeded details about the concrete domain, leav-
ing a “distilled” interface that contains only the details
necessary for the required abstract reasoning.

1

The abstraction operation, «, is Sound if this diagram
commutes for all possible concrete values, x. This means
that All Possible Behavior of the concrete implemen-
tation conforms to its abstract model. Soundness is an
incredibly useful property when designing systems, espe-
cially ones that have many layers of abstraction.

The two foundational mathematical formalisms for speci-
fying abstractions are Functions and (Co)Algebraic The-
ories. Functions (pure functions, in the mathematical
sense) let us describe self-contained operations, and Alge-
braic Theories (along with their dual CoAlgebraic Theo-
ries) let us describe inter-dependent operations. When
developing (Co)Algebraic Theories, one needs to spec-
ify behavioral invariants, which cannot be done in any
commonly-used programming language. Because of this,
developers should leverage modeling tools that enable
them to specify/model/check invariants. Alloy is a very
mature tool, developed at MIT, that allows very efficient
specification and verification of abstractions and invari-
ants. It is especially suited for structural modeling of
software (Jackson 2012). TLA+ is a suite of tools, also
very mature, for modeling abstractions, and it is espe-
cially suited for modeling of state machines and state
transition systems (Lamport 2002).

Abstraction Design as a Scientific
Process

The general process of scientific inquiry is that one formu-
lates a hypothesis and then runs experiments to test that
hypothesis. If the experiments disprove the hypothesis,
the hypothesis is modified to incorporate the additional
knowledge gleaned from the experiments. This process is
repeated until the hypothesis is sufficiently precise and
general to adequately model the phenomenon of interest.
This process is the same in Software Abstraction design.
An initial abstraction is posed to model a component,
“experiments” are run by developing both concrete im-
plementations and client code for the abstraction. The
hypothesis is then tested by asking the two questions,
“Do the concrete implementations model the abstrac-
tion?” and “Does the abstraction provide the necessary
information to the clients?” This process continues as new
concrete implementations and clients of the abstraction

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2021-14541C



are created. At any point in this process, one of the
new components may disprove the hypothesis/break the
abstraction. In this case a new, more correct, hypoth-
esis/abstraction will be developed. At some point, the
hypothesis/abstraction will become sufficiently useful and
the hypothesis testing loop will stop.

In addition to experimental data, abstraction design-
ers leverage their theoretical understanding of software
semantics to make informed decisions about what hy-
potheses/abstractions they should propose. They use this
knowledge to craft elegant abstractions that have desir-
able properties (compositionality, soundness, simplicity,
generality, etc.) Just as we expect a Physicist to ade-
quately understand the underlying theory and propose
hypotheses that are adequately informed by this under-
standing, we should expect our Computational Scientists
to do the same thing. However, very few Computational
Scientists have any knowledge about Programming Lan-
guage Theory, Type Theory, Formal Semantics, etc. Be-
cause of this lack of knowledge, many design decisions
are ad-hoc, can be very sub-optimal, and may be highly
damaging to the overall software system.

Research Challenges

Leveraging the Full Power of Functional Abstrac-
tions: Functional Programming has been a buzzword for
at least a decade now, and for good reason too, as func-
tional abstractions are some of the simplest, most com-
poseable, and easiest to verify abstractions in software.
Our current software stacks woefully under-use functional
abstractions and suffer a lot because of it. How should
we re-architect scientific computations and libraries to
maximize the use of functional abstraction? How do we
decompose our computations in a way that is amenable to
functional abstractions, and what should the functional
abstractions look like for these computations? Which
of our computations’ correctness properties work well to
encode in a language’s type-system, are verifiable by stan-
dard type-inference algorithms, and make for a pleasant
user experience? How do we effectively educate scientific
software developers on the structure and use of these
abstractions?

Designing Good Non-Functional Abstractions: In
most code-bases there will be a non-trivial amount of func-
tionality whose structure does not fit within the confines
of functional abstractions. For these portions of common
scientific computations, what appropriate (Co)Algebraic
Theories describe the behavior at the correct level of
precision, are elegant, easy to reason about, and are com-
poseable with other abstractions? What sort of tooling
and workflow will help our developers be efficient and
productive in developing and testing non-functional ab-
stractions?

Automatic Verification via Property-Based Test-
ing: For correctness properties other than those which
can be encoded into the type-system, we need an addi-
tional step to verify that concrete components actually
model their abstractions. One of the most effective tools
for doing this is Randomized Property-Based Testing, in
which invariants are reified as unit tests that randomly
generate large sets of inputs, testing that the given invari-
ant holds for each input. If none of the test cases disprove
the invariant, then there is good (although imperfect) as-
surance that the concrete implementation actually models
its abstraction. How do we define our invariants so that
they can generate effective property-based tests? How
do we automate this test generation process as much as
possible? How do we randomly generate test data for
our different components in a way that ensures proper
domain coverage by these randomized tests?

Concrete Steps to Move Forward

We need to start treating abstraction design as a real
science, and not as some lesser, throwaway, activity as
it has been treated in the past. We need to start using
the scientific method to build abstractions. Everyone in
development needs to understand the basic mathematical
formalisms of abstraction and understand how syntactic
mechanisms in mainstream languages, such as classes,
inheritance, and generics fit into these formalisms. We
need a culture that encourages developers to be precise
about their abstractions when needed, actually specify
invariants, and use modeling tools such as Alloy or TLA+.
We need the Programming Languages community to start
teaching the Scientific Computing community about the
mathematical foundations of abstraction design. One of
the most effective tools for teaching semantic reasoning
to programmers is for them to study a programming
language whose structure is closely tied to the semantic
foundations of software. Haskell is the best language
for this, because it forces programmers to wrestle with
the semantic structure of their code much more than
other languages. This causes a programmer to develop
an intuitive understanding of semantic structure that can
be applied to software systems written in any language.
A year of working in Haskell yields huge benefits for
a programmer’s ability to design things in Python and
C++.

References

Jackson, Daniel. 2012. Software Abstractions: Logic,
Language, and Analysis. MIT press.

Lamport, Leslie. 2002. Specifying Systems. Vol. 388.
Addison-Wesley Boston.



	What is an abstraction, Really?
	Abstraction Design as a Scientific Process
	Research Challenges
	Concrete Steps to Move Forward
	References

