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This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
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Energy system analysis capabilities are applied in isolation

Process-centric Modeling Grid-centric Modeling

Detailed steady state or dynamic process models,
with the grid modeled as an infinite capacity bus

Detailed power flow models,
with individual generators modeled as either
dispatchable point sources or stochastic "negative loads"

Diluent Nitrogen

SBOETED MDEA Acid Gas Removal

Steam Turbine

Boiler
Feedwater

Lockhopper
Slag &
Watar

https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/igcc-config
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Multiscale Market-Based Optimization of IES

Multiscale Simulation to Superstructure Optimization
Quantify Grid/IES Interactions

Maximize Net Present Value

Data to refine market
representation (e.g.,

Real-Time Market Loop Day-Ahead Market Loop . O
(1 cycle = 1 hour) (1 cycle = 1 day) prices, surrogates) 8 .
(iii) Settle $ (a) Forecast AS 8_ Model time-coupling constraints (e.g.,
= PR Y ' d energy holdups
=] /\ L ramping) an
=
Track ~ = . . b) Bid = _ 1
(")‘_ﬁ: P ()‘ L \_/ = | Representative or | Market
SER e seR T Historical Data Surrogates
i, o i
(i) Dispatch—— (c) Clear & ™"z Candidate IES E i
e BT el ey . . . 7] Ignore time-coupling
&2 | & [FUVU7) designs (i.e., IDAES I constraints
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Abstract Integrated Energy System

Integrated Energy System ‘ Power & Energy Market

Design Decisions: d [ﬁj

=

Product
Campressora
Comprezsor  15MW

Operating Decisions: u = ©_| & =

Net Power Output: & i LS _
= mu-:Q,_. - - = Price i

Steady-State Model (Constraints): g(d,u,8) =0

This abstraction is easy to extend to...
» multiple products (electricity, heat, H,, chemicals)
» multiple market timescales (day ahead, real time, ancillary services, capacity)
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How would a new generator change market outcomes?

Production Cost Modeling:

Simulation Design Revenue & Dispatch Results

RTS-GMLC Test System
Market Inputs 7 | No Load Cost [$/hr]

- Infrequent Dispatch
1| PMax [MW] 8 | Start Time Hot [Hr] . mss Frequent Dispatch
2 | PMin [MW] 9 | Start Time Warm [Hr] - e _— N S 4000
3 | Ramp Rate [MW/hr] 10 | Start Time Cold [Hr] . '.' * . * 1 g
4 | Min Up Time [Hr] 11 | Start Cost Hot [$] o’o o o° - s . 30001
5 | Min Down Time [Hr] 12 | Start Cost Warm [$] . ]

6 | Marginal Cost [$/MWh] | 13 | Start Cost Cold [$
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Platform to Advance Tightly
Coupled Hybrid Energy Systems



Global Sensitivity Analysis

Market Parameters

X1 | Pax [IMW]

X2 | P, [MW]

X3 | Ramp Rate [MW/hr]
X4 Min Up Time [Hr]

X5 | Min Down Time [Hr]
X6 | Marginal Cost [$/MWh]
X7 | No Load Cost [$/hr]
X8 | Start Time Hot [Hr]
X9 | Start Time Warm [Hr]
X10 | Start Time Cold [Hr]
X11 | Start Cost Hot [$]
X12 | Start Cost Warm [$]
X13 | Start Cost Cold [$]
Y1 | Revenue [MM$]

Spearman Correlations
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» Sensitivity analysis tends to confirm intuition

> P

max

and marginal cost describe most variation in output
» However, all inputs improve overall surrogate fit




Surrogates Accurately Predict Market Outcomes
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ALAMO

a black-box modeling tool

Unfiltered Data, R2 =0.945
Filtered Data, R2 = 0.992
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Steady-State Price Taker (Self-Schedule)

Weight / Revente .Cost | d Design decisions
Frequency (Operating + Capital) 5 | Power output decision for scenario
FL\ | | \ | l \ u, | Operating decisions for scenario
Elr,lzecl,)s( z we|R(d, ug, 65, ) — C(d, ug, 6)] ms | Scenario price (data)
SES R() | Revenue: function of decisions and prices
g(d: Us, 55) = 0, Vs €S C() | Cost: function of decisions

Nominal RTS-GMLC Prices

-- Average LMP

50 100 150 200
LMP $/MWh




Steady-State with Market Surrogates (Bid)

Cost
Revenue

(Operating + Capital)

— :

du

SES
g(d,ug, 8;) =0, Vs €S
h(d,x) =0

R(x) = fren(x)

we(x) = fi(x), Vs €S

|
max R(x) — z ws(x)[C(d, ug, 65) ]

\

Process Model
“Bid Rules”

Revenue Surrogate

Dispatch Surrogates

R?=0.9957

ue Revenue [MM$]

60

d | Design decisions

&, | Power output data for scenario

u, | Operating decisions for scenario

x | Market Inputs (bid decisions)

Revenue: function of market inputs

Cost: function of decisions

ws | Scenario weight: function of market inputs
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Heat Rate {BTU/kWh)

Example: Optimal Design of Rankine Cycle for RTS-GMLC

Energy Market
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Steady-State Price Taker Results

200 1 25007 P 175 MW
§ 150 - . 2000 7 Marginal Cost | 24 $/MWh
o

S < 1500 - Revenue 29.6 MM$/yr
5 100 A S
o & 1000 - Opex 30.8 MM$/yr

50 A -
- 500 - Capex 404 MM$

0 e oo 0 , , , , 20 year return | -428.8 MM$
0 2000 4000 6000 8000 0 50 100 150 200
Time (h) LMP ($/MWh)
T T— . 3000
1757 e S N e # Variables | 419387
P50 PO A I . o SR, @)

- 150 | messTRESERg e A | 5000 Solution Time | 1846 sec (build)
S 125- c 49 sec (solve)
E -0
= 100 - o
S & 1000

75 -

50 h T T T T T O - T T

0 2000 4000 6000 8000 40 60 80 100
Time (h) Capacity factor (%)

» Build small plant, operate at minimum power unless LMP exceeds operating cost
> Investment would require better prices (not surprising for RTS-GMLC system)
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Surrogate Results

Tensor “ . “\ /‘

K B

P .. 177.5 MW
Marginal Cost | 24 $/MWh E
Revenue 13.5 MM$/yr | S
Opex 12 MM$/yr 5
Capex 408 MM$ _2
20 year return | -382 MM$ %

I

# Varlables 738 o\o o\o o\e | o\o

Q Q Q Q
jb Cd /6 Ib 4

Scaled Power Output (% of maximum)

Solution Time | 13 sec (build)
336 sec (solve)

» Surrogate also builds small plant, but effectively captures shutdown operating modes
» Investment would still require better prices (but capturing shutdown helps)
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Comparison of Results

Verification of Surrogate Solution

Hours in Operating Zone

Price Taker | Surrogate | Verification
Pax [MW] 175 177.5 177.5
Marginal Cost | 24 24 24
[$/MWh]
Revenue 29.6 13.5 14.9
[$MM/yr]
Opex 30.8 12 14.5 (Rankine)
[$MM/yr] 16.2 (Prescient)
Capex 404 408 408
[SMM]
20 year return | -428.8 -382 -401
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» Surrogate can capture startup/shutdown in steady state model, more realistic opex
» Surrogate solution is reasonably verified with Prescient simulation
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Conclusions and Future Work
Integrated Energy System

Energy Market

Dispatch Schedule 6, .,

Design Decisions: d
Operating Decisions: u; ¢, -_—
Net Power Output: 6, .,
Multi-Period Model: e
h(d,ths 8.0t 41, 8541 ) = 0 Price Forecast m,

.

AN

» Surrogates can incorporate
exogenous market uncertainty into Fully Dynamic Long-Term Goal
conceptual design problems o

o Representative Multi-Period

> Steady-State problems can Multi-period Days  Dispatch Surrogates
capture startup/shutdown effects e

using surrogate methodology Zone Dispatch

Steady-state Price Scenarios
Surrogates

» Future work is developing multi-
period formulations for IES design Price Taker Market Interactions
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Coupled Hybrid Energy Systems
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Additional Slides
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Offset Results

20 Year Net Revenue [MM$]
U - N W
o o o o o
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This talk

Summary of Optimization Formulations
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Steady-state model replicated over multiple timesteps :

3 :  Simple temporal constraints (e.g., ramp limits), simple mass/energy holdups

&

o Historical prices Surrogates

E representative days revenue & frequency (weights)

= (timeseries) for representative dispatch days
U .

o : No temporal constraints (e.g., ramp rates) or state variables (e.g., energy holdup)

g E Does not value dynamic flexible, energy storage

IR T D T P U PR

= Historical prices Surrogates

% price scenarios revenue & dispatch frequency

(histogram) (histogram)

Price Taker

Market Interactions
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Multi-Period Price Taker (Self-Schedule)

Scenarios are timeseries, e.g., representative days

Weight / Cost
Frequency Revenue (Operatlng + Capltal)
|
glt?gz Z‘ WS[R(d Us ¢, Sti It t) — C(d Us ¢ st)]
Process SE€S LET
Model g( ) Ug ¢ St)—O VseSsS,teT

Temporal h(d’ uS,t' 5S,t' us,t+1 ) 5S,t+1 ) =0 ) Vs € S; teT

Constraints
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Multi-Period with Market Surrogates (Bid)

Cost
Revenue (Operating + Capital)
max R (X) Z‘ Z Ws(x)[C (d, s, & t)]
SES teT
Process Model g(d, Us ¢, 55,15) = (), VS ES
“Bid Rules” h(d,x) =0

Temporal Constraints h(d, us,t: 55,“ us,t+1 , 6S,t+1 ) = () )
Revenue Surrogate R(x) = frev (x)

Multi-Period Ws(x) = f:q(X), Vs €S
‘Dlspatch Surrogate

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

oo o Note: 6 are representative days for market dispatch and are parameters (scenario data) '



