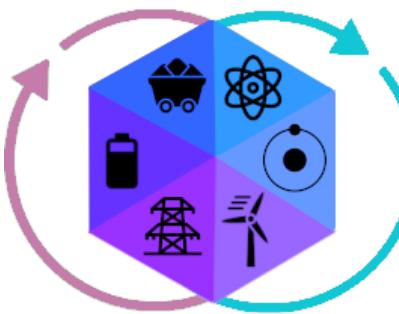


IDAES

Institute for the Design of Advanced Energy Systems



DISPATCHES

Design Integration and Synthesis
Platform to Advance Tightly
Coupled Hybrid Energy Systems

Toward Future Energy Generation Systems: Multi-Scale Optimization with Market Interactions

AIChE Annual Meeting, November 10th, 2021, Boston, MA

Jordan Jalving¹, Jaffer Ghouse², Ben Knueven³, Shawn Martin¹, Nicole Cortes⁴, Xian Gao⁴,
John Siirola¹, David Miller², Alexander Dowling⁴

¹ Center for Computing Research, Sandia National Laboratories, Albuquerque, NM

² Process Systems Engineering Research, National Energy Technology Laboratory, Pittsburgh, PA

³ National Renewable Energy Laboratory, Golden, CO

⁴ Dept. of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Carnegie Mellon

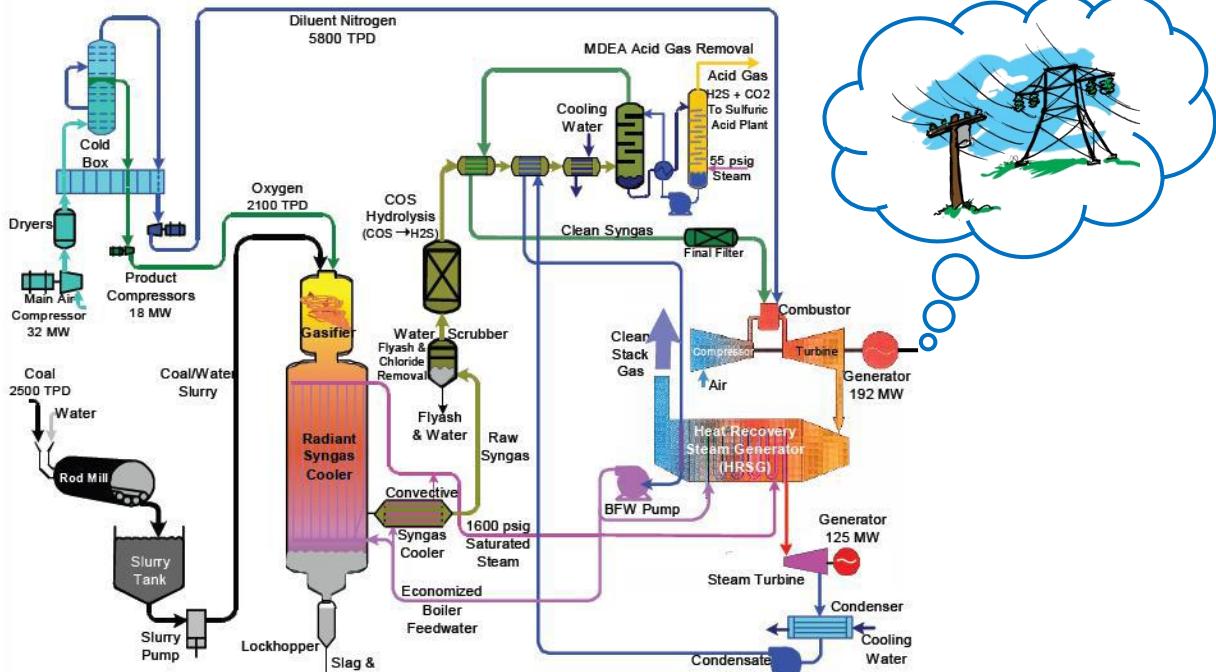
West Virginia University

U.S. DEPARTMENT OF
ENERGY

Energy system analysis capabilities are applied in isolation

Process-centric Modeling

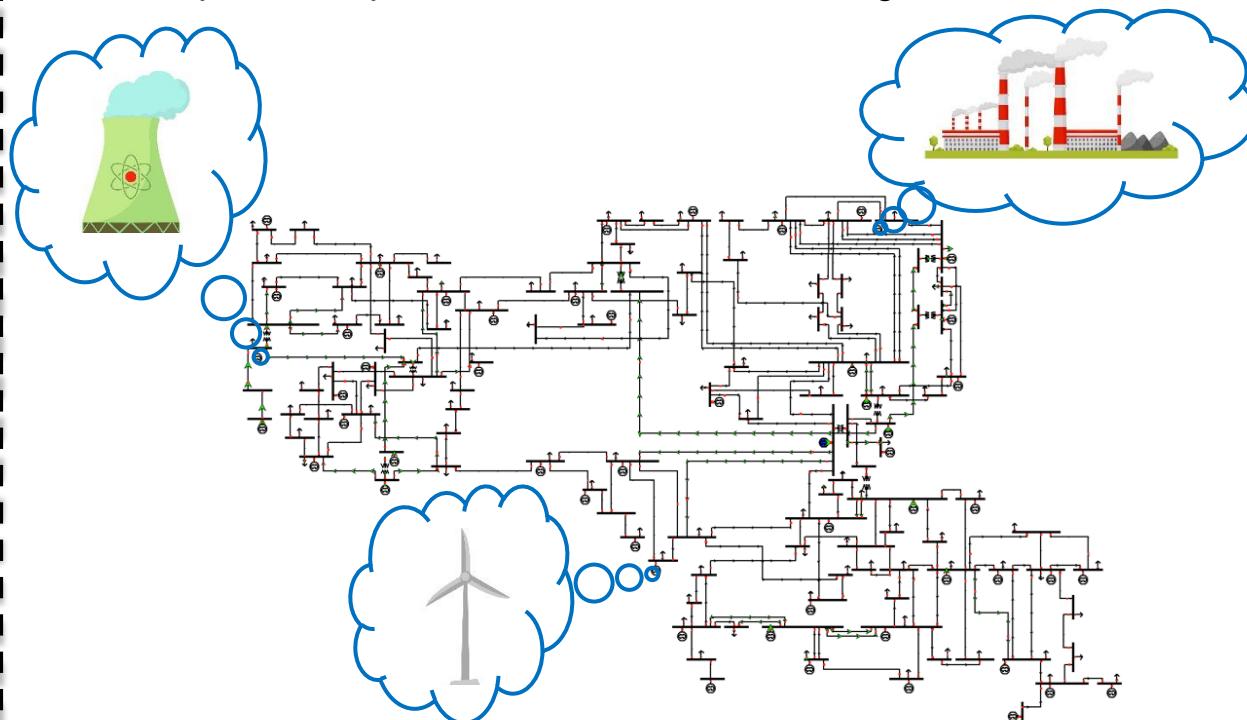
Detailed steady state or dynamic process models, with the grid modeled as an infinite capacity bus



<https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifiedpedia/igcc-config>

Grid-centric Modeling

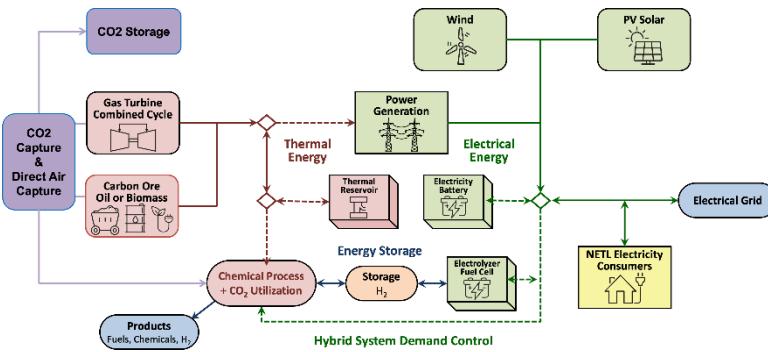
Detailed power flow models, with individual generators modeled as either dispatchable point sources or stochastic "negative loads"



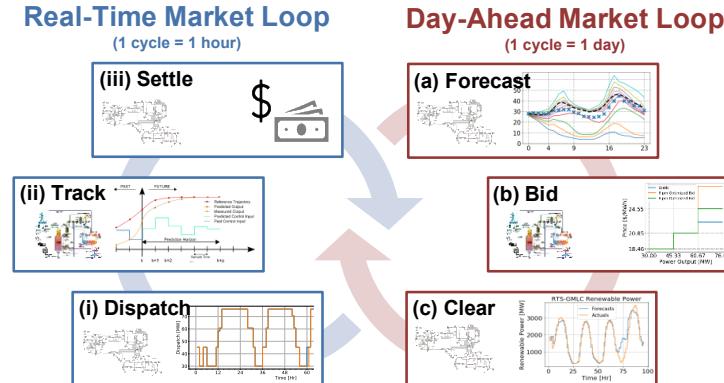
<https://icseg.iti.illinois.edu/files/2013/10/IEEE118.png>

Challenge of increasingly integrated & dynamic grid/generation

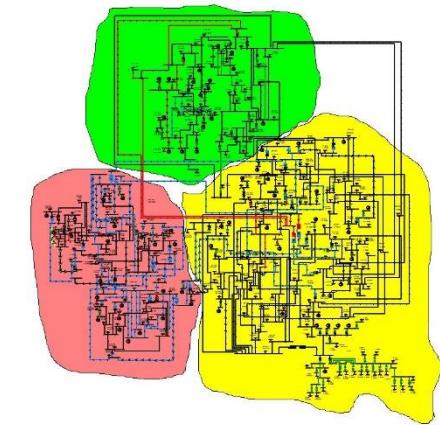
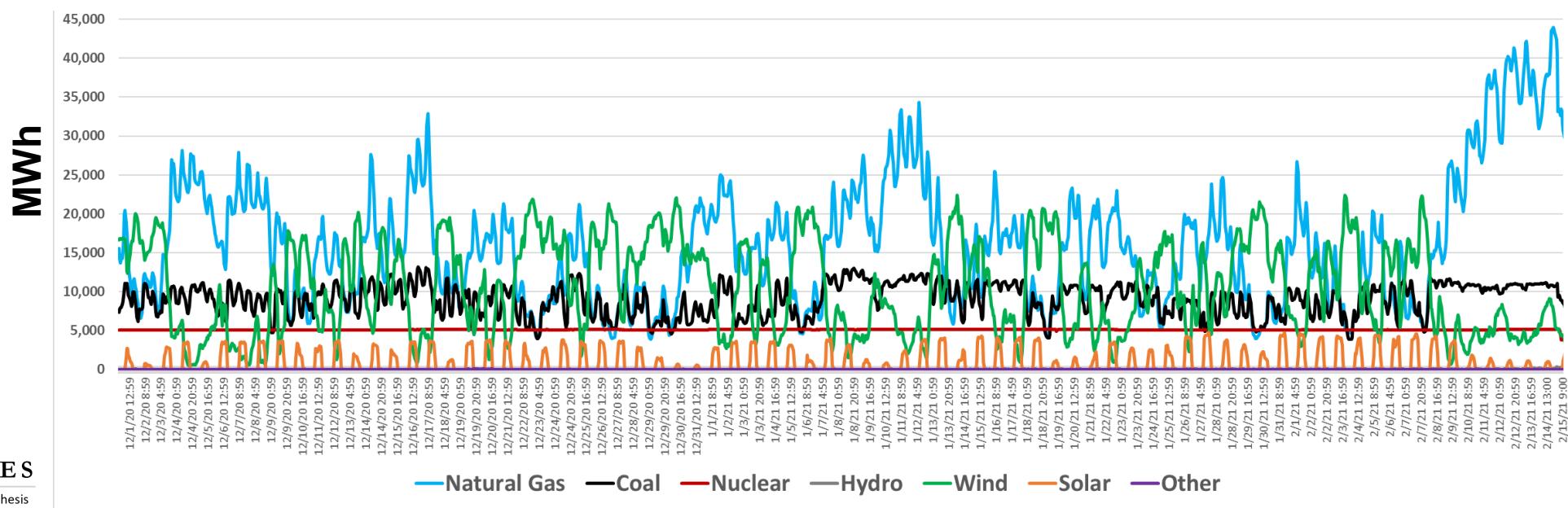
Generation & Process Modeling



Integrated Resource-Grid Model

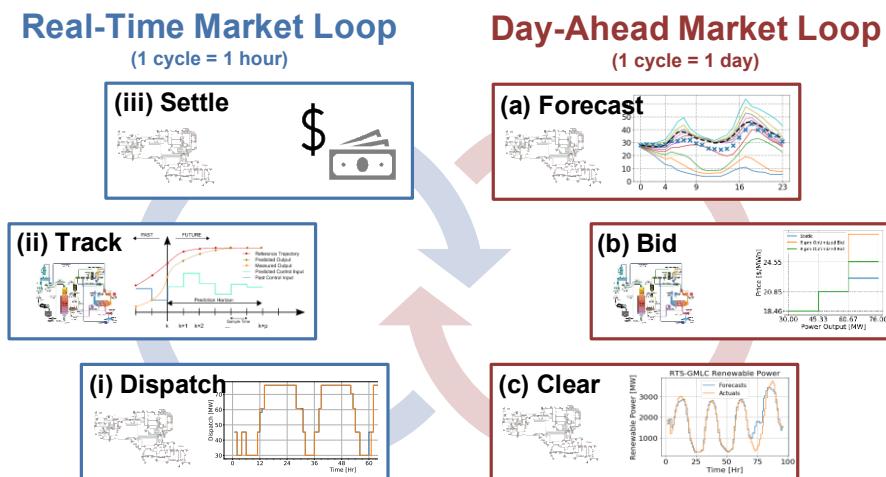


Grid Modeling



Multiscale Market-Based Optimization of IES

Multiscale Simulation to Quantify Grid/IES Interactions

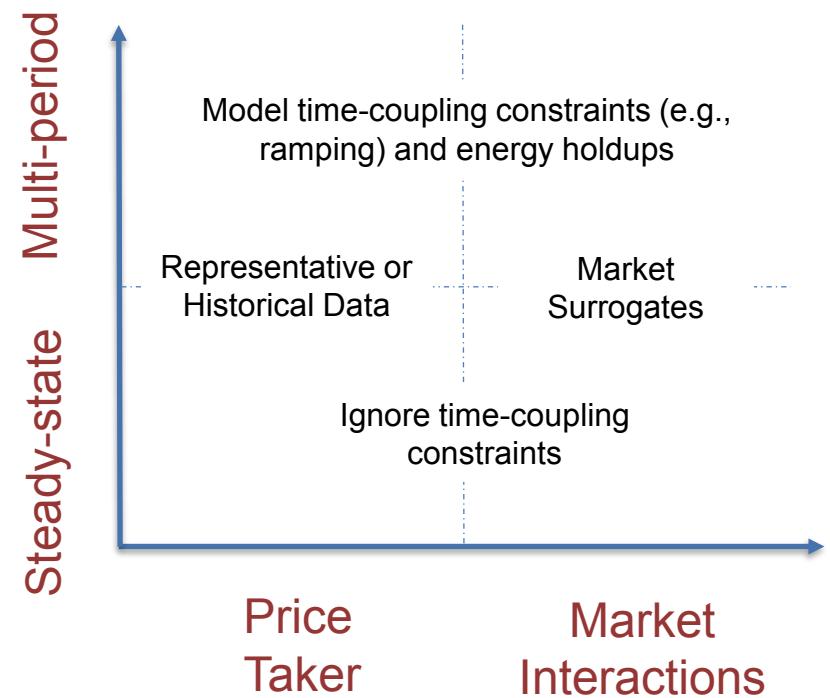


Data to refine market representation (e.g., prices, surrogates)

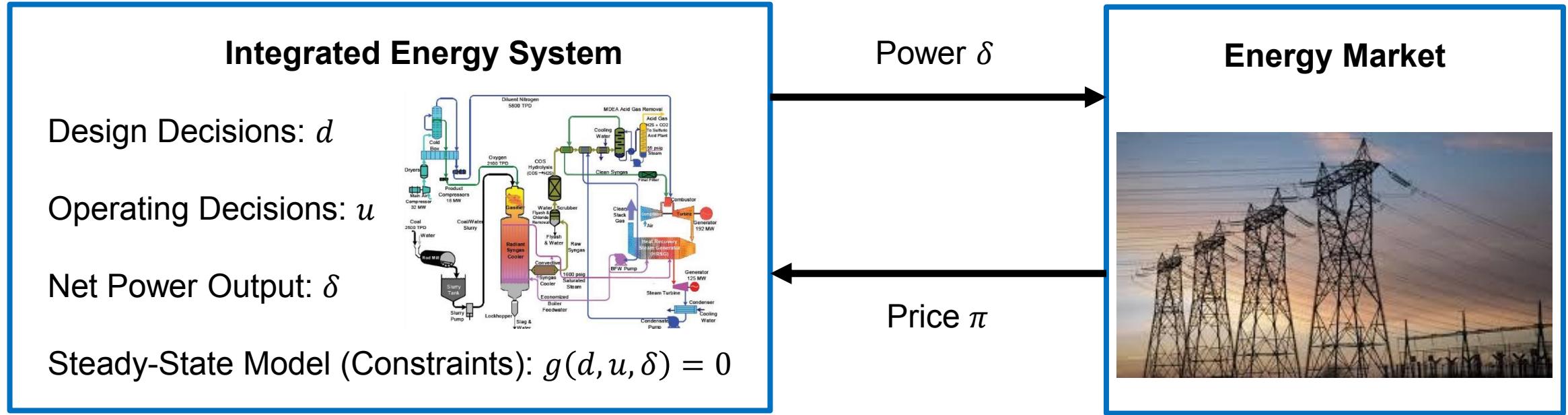
Candidate IES designs (i.e., IDAES models) to evaluate

Superstructure Optimization

Maximize Net Present Value



Abstract Integrated Energy System



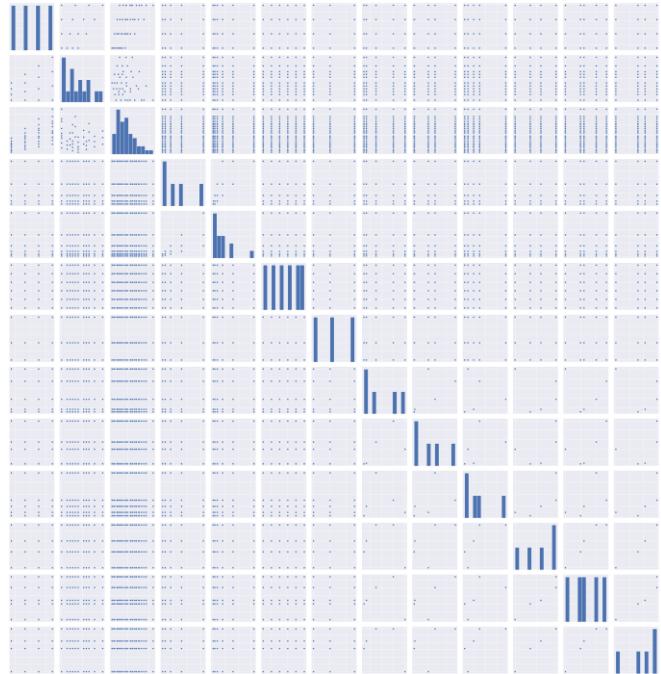
This abstraction is easy to extend to...

- multiple products (electricity, heat, H_2 , chemicals)
- multiple market timescales (day ahead, real time, ancillary services, capacity)

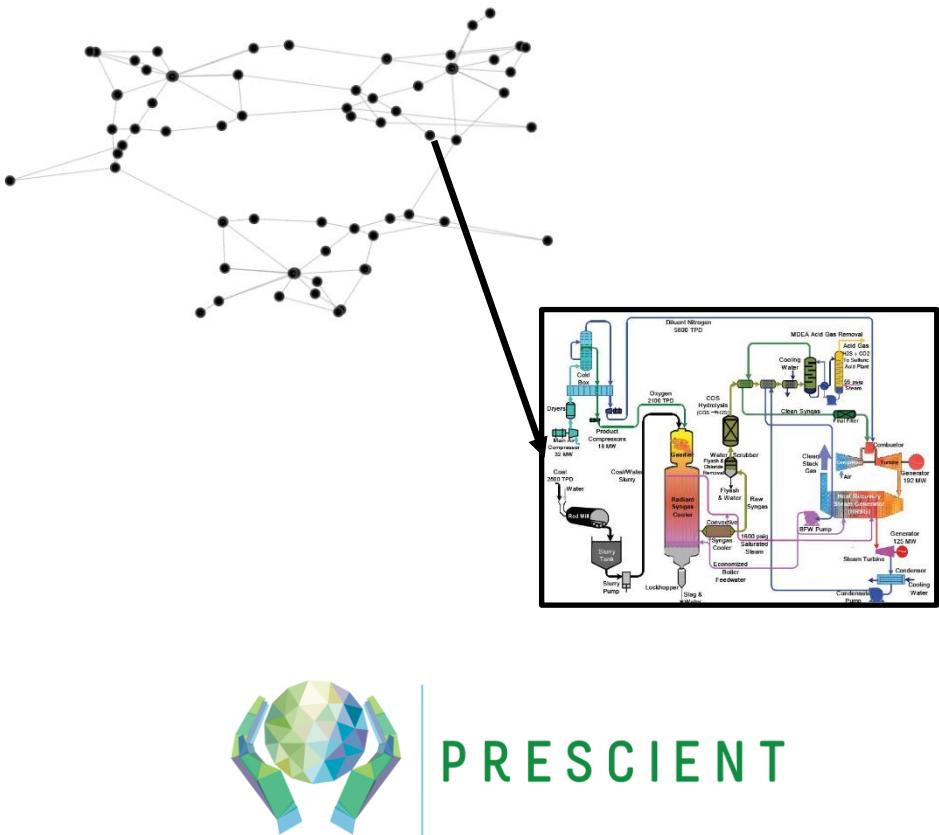
How would a new generator change market outcomes?

Simulation Design

Market Inputs		7	No Load Cost [\$/hr]
1	PMax [MW]	8	Start Time Hot [Hr]
2	PMin [MW]	9	Start Time Warm [Hr]
3	Ramp Rate [MW/hr]	10	Start Time Cold [Hr]
4	Min Up Time [Hr]	11	Start Cost Hot [\$]
5	Min Down Time [Hr]	12	Start Cost Warm [\$]
6	Marginal Cost [\$/MWh]	13	Start Cost Cold [\$]

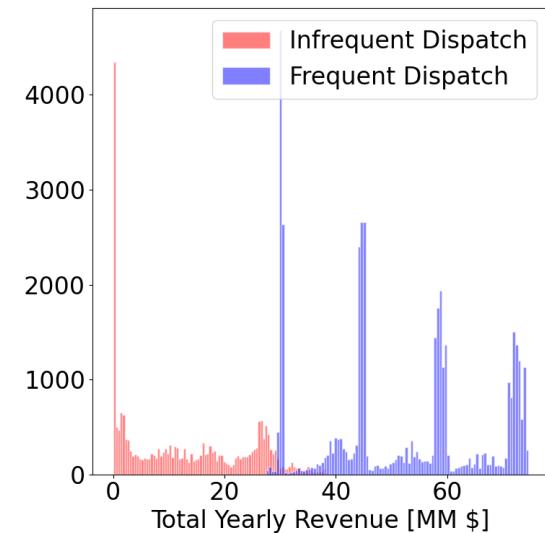
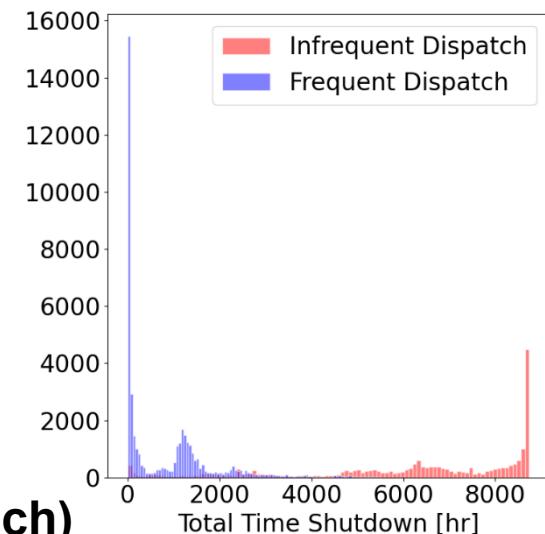


Production Cost Modeling: RTS-GMLC Test System



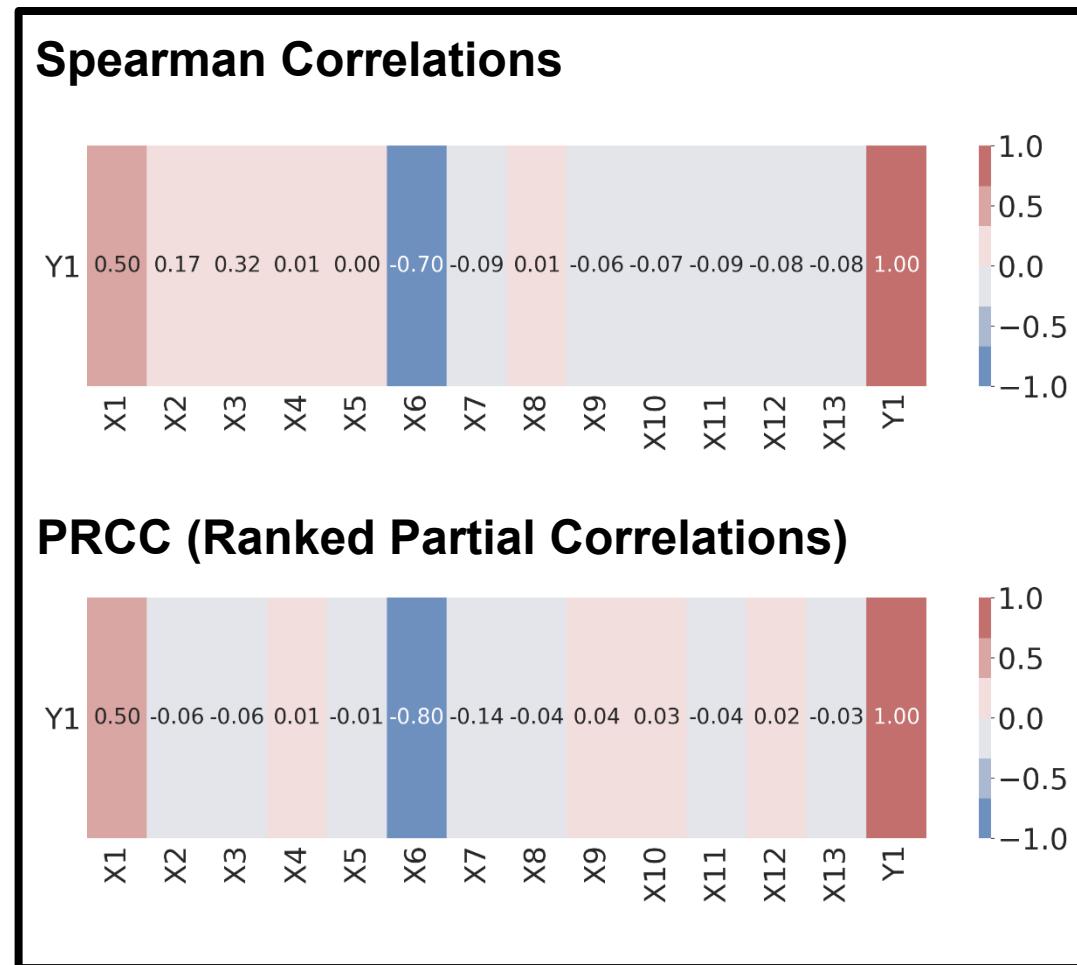
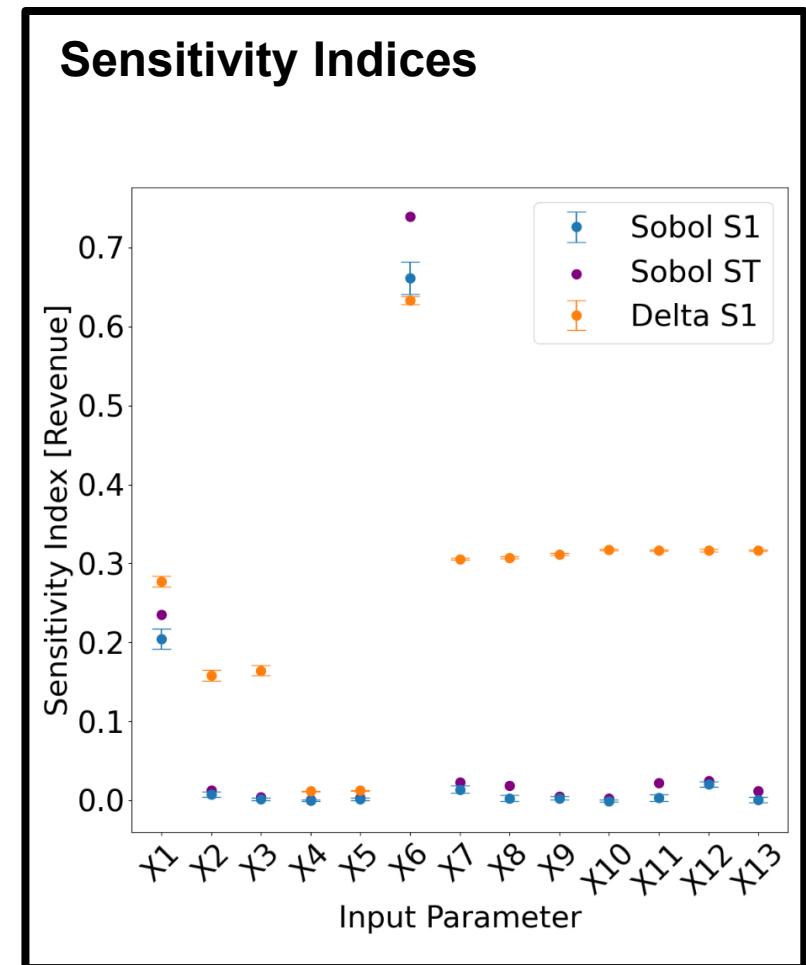
64,800 1-year Prescient simulations (@ 3 hr each)

Revenue & Dispatch Results



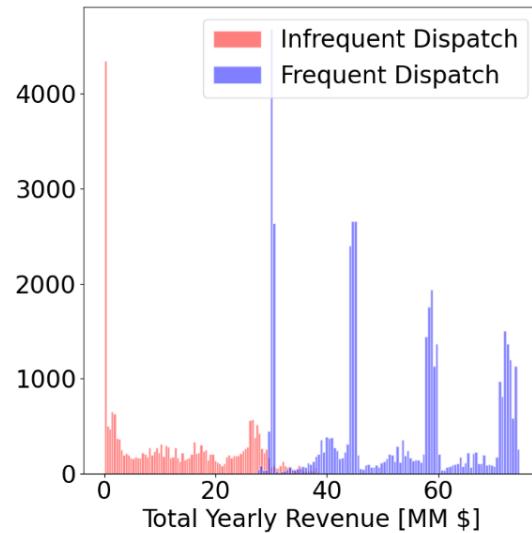
Global Sensitivity Analysis

	Market Parameters
X1	P_{\max} [MW]
X2	P_{\min} [MW]
X3	Ramp Rate [MW/hr]
X4	Min Up Time [Hr]
X5	Min Down Time [Hr]
X6	Marginal Cost [\$/MWh]
X7	No Load Cost [\$/hr]
X8	Start Time Hot [Hr]
X9	Start Time Warm [Hr]
X10	Start Time Cold [Hr]
X11	Start Cost Hot [\\$]
X12	Start Cost Warm [\\$]
X13	Start Cost Cold [\\$]
Y1	Revenue [MM\\$]



- Sensitivity analysis tends to confirm intuition
- P_{\max} and marginal cost describe most variation in output
- However, all inputs improve overall surrogate fit

Surrogates Accurately Predict Market Outcomes



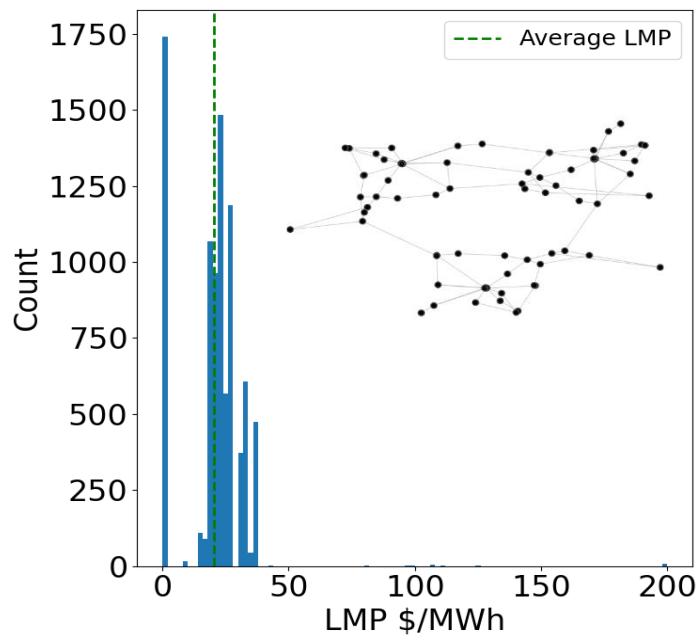
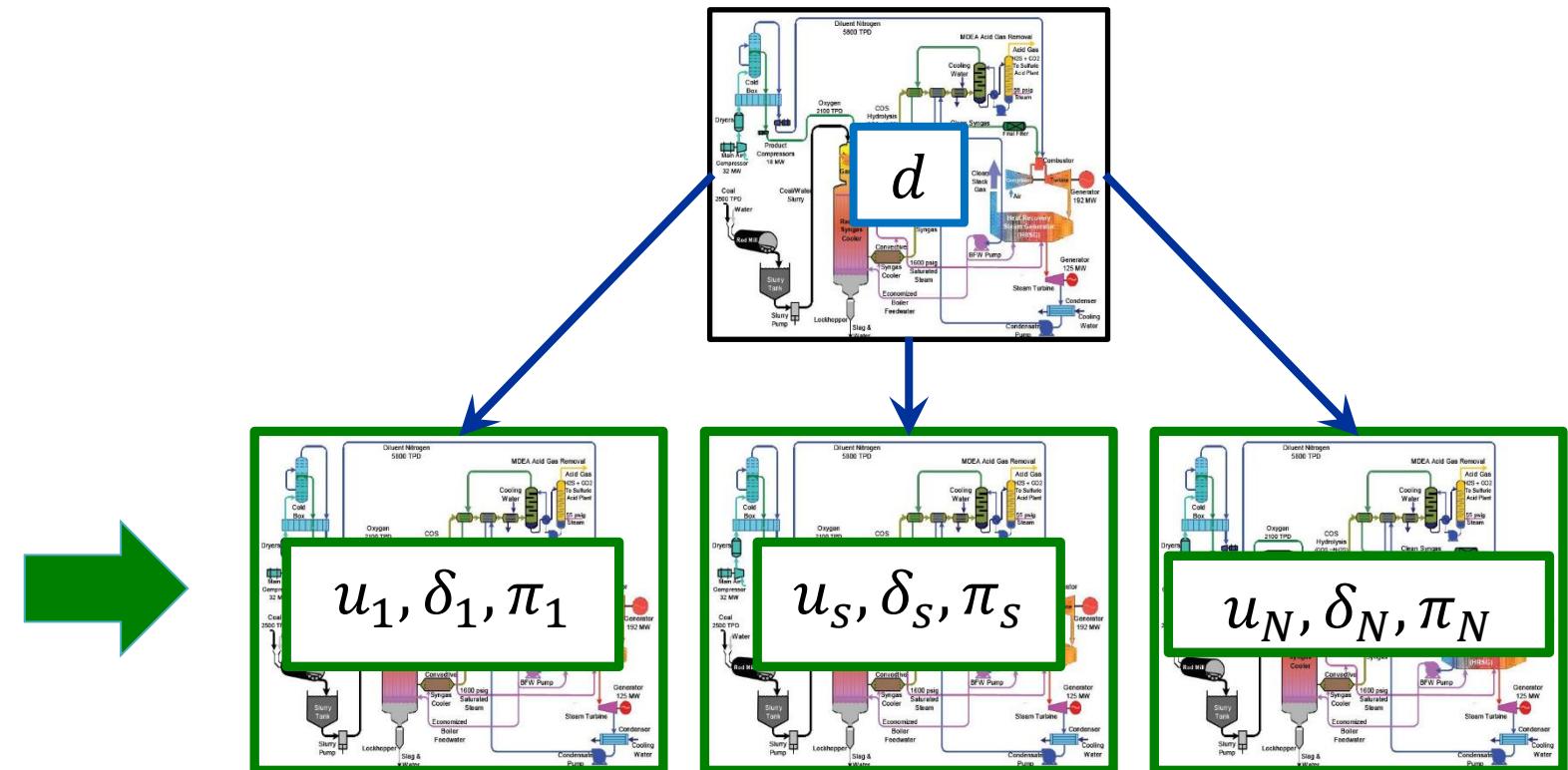
Steady-State Price Taker (Self-Schedule)

Weight / Frequency Revenue Cost (Operating + Capital)

$$\begin{aligned}
 & \max_{d, u, \delta} \sum_{s \in S} w_s [R(d, u_s, \delta_s, \pi_s) - C(d, u_s, \delta_s)] \\
 & g(d, u_s, \delta_s) = 0, \quad \forall s \in S
 \end{aligned}$$

d	Design decisions
δ_s	Power output decision for scenario
u_s	Operating decisions for scenario
π_s	Scenario price (data)
$R()$	Revenue: function of decisions and prices
$C()$	Cost: function of decisions

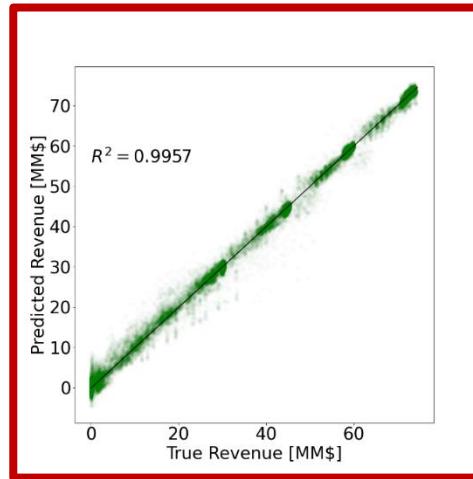
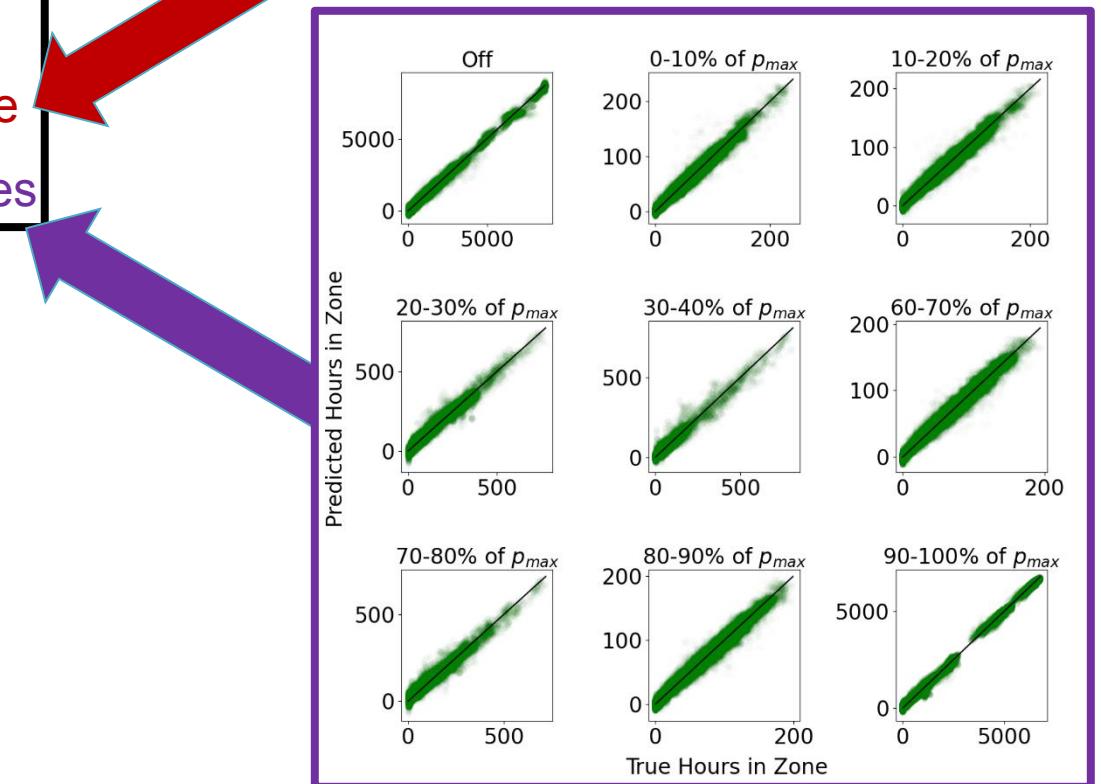
Nominal RTS-GMLC Prices



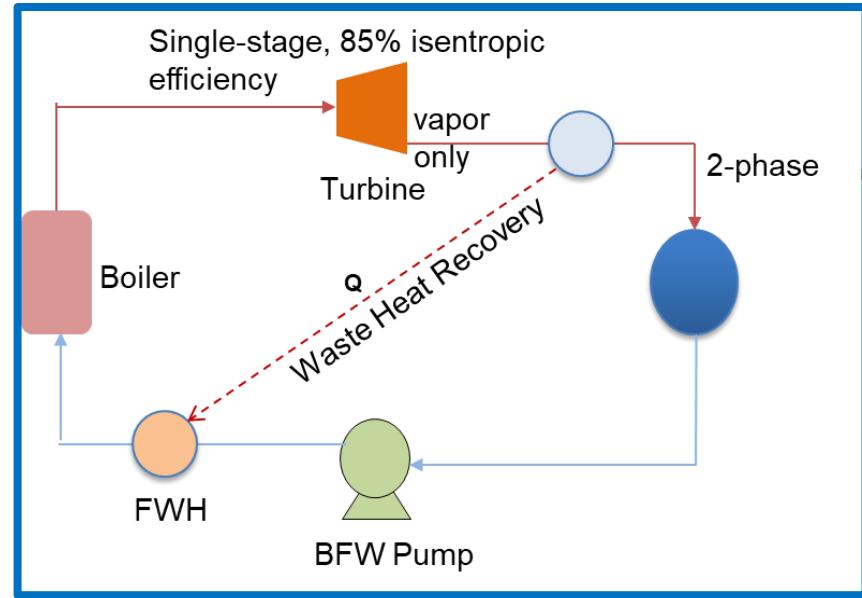
Steady-State with Market Surrogates (Bid)

$$\begin{aligned}
 & \max_{d, u, x} R(x) - \sum_{s \in S} w_s(x)[C(d, u_s, \delta_s)] \\
 & g(d, u_s, \delta_s) = 0, \quad \forall s \in S \quad \text{Process Model} \\
 & h(d, x) = 0 \quad \text{“Bid Rules”} \\
 & R(x) = f_{rev}(x) \quad \text{Revenue Surrogate} \\
 & w_s(x) = f_s(x), \quad \forall s \in S \quad \text{Dispatch Surrogate}
 \end{aligned}$$

d	Design decisions
δ_s	Power output data for scenario
u_s	Operating decisions for scenario
x	Market Inputs (bid decisions)
$R()$	Revenue: function of market inputs
$C()$	Cost: function of decisions
w_s	Scenario weight: function of market inputs



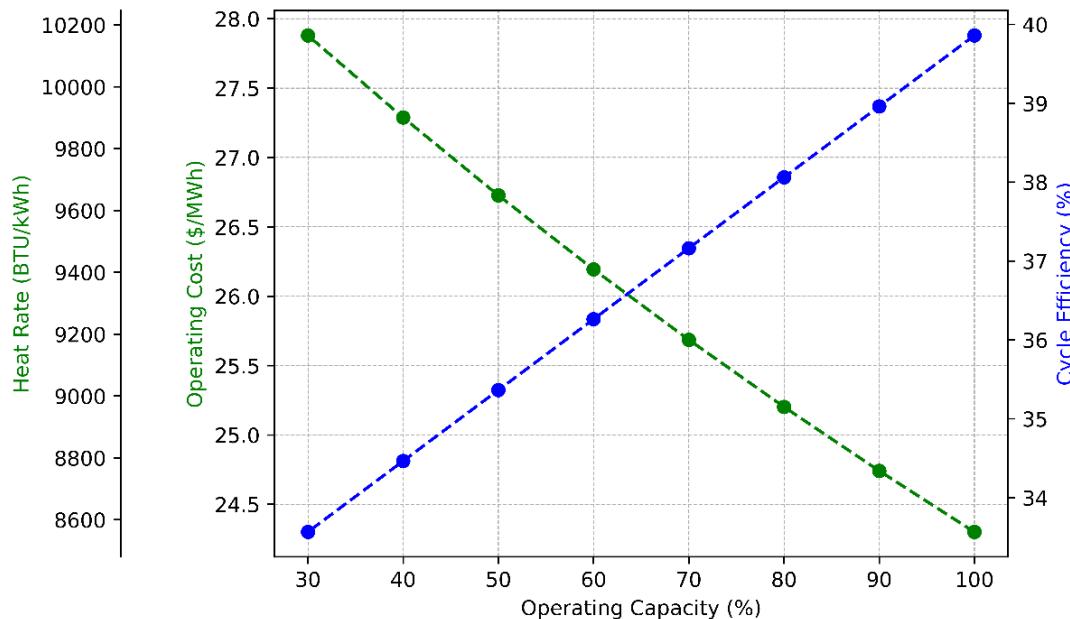
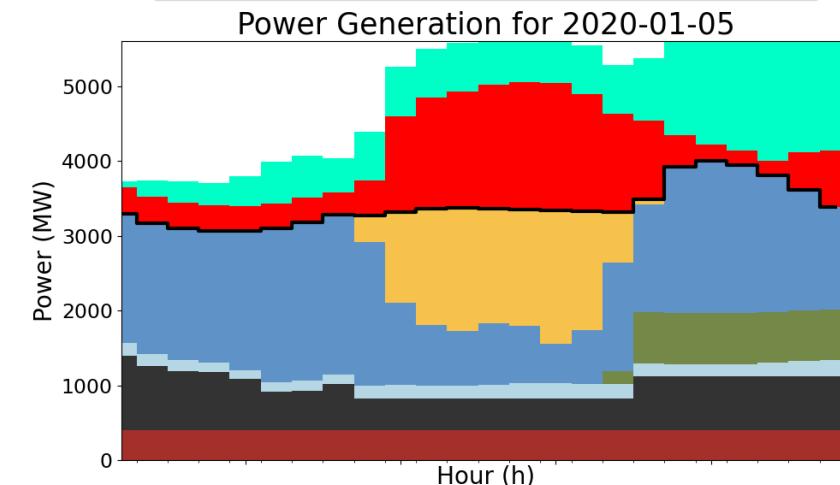
Example: Optimal Design of Rankine Cycle for RTS-GMLC



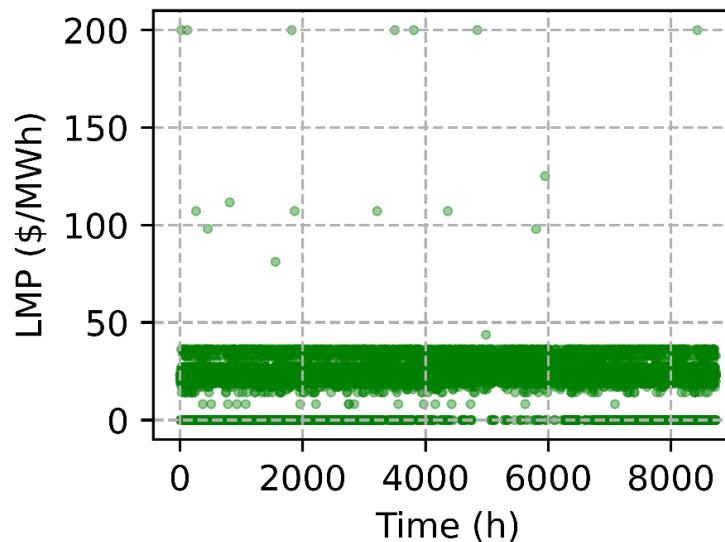
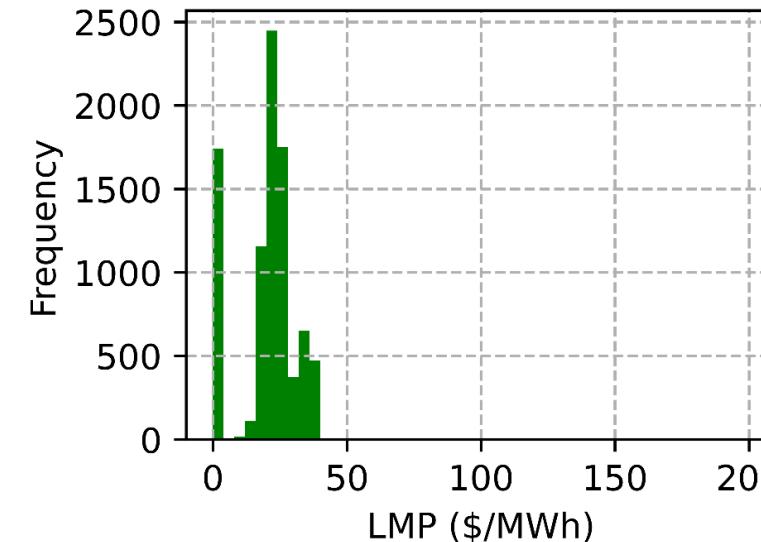
Power δ

Price π

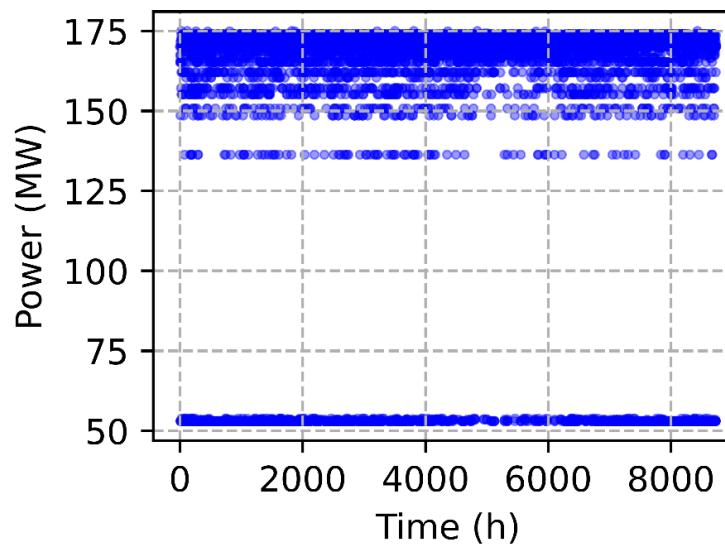
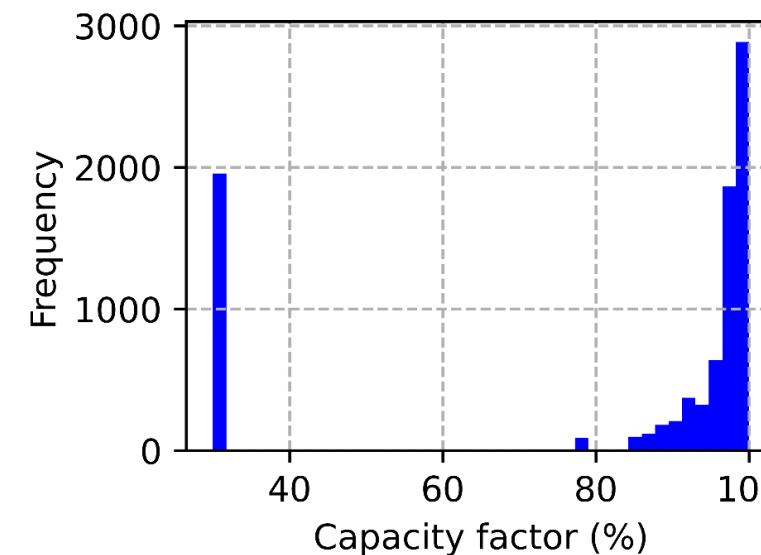
Energy Market



Steady-State Price Taker Results



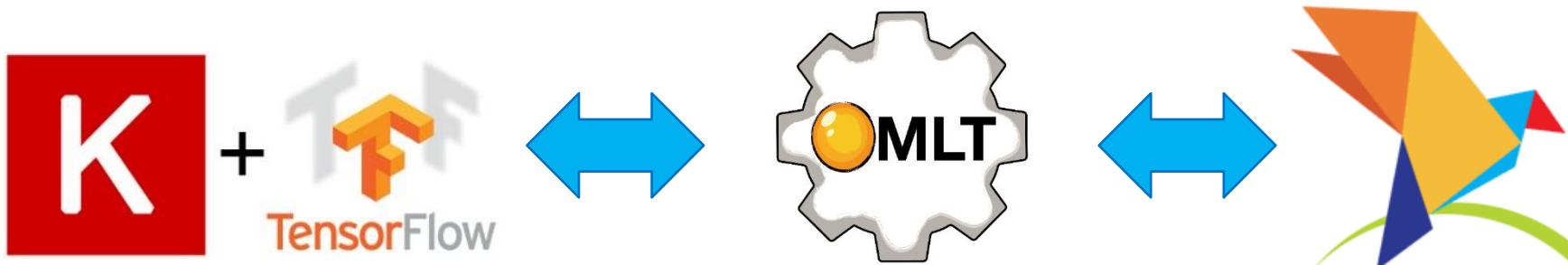
P_{\max}	175 MW
Marginal Cost	24 \$/MWh
Revenue	29.6 MM\$/yr
Opex	30.8 MM\$/yr
Capex	404 MM\$
20 year return	-428.8 MM\$



# Variables	419387
Solution Time	1846 sec (build) 49 sec (solve)

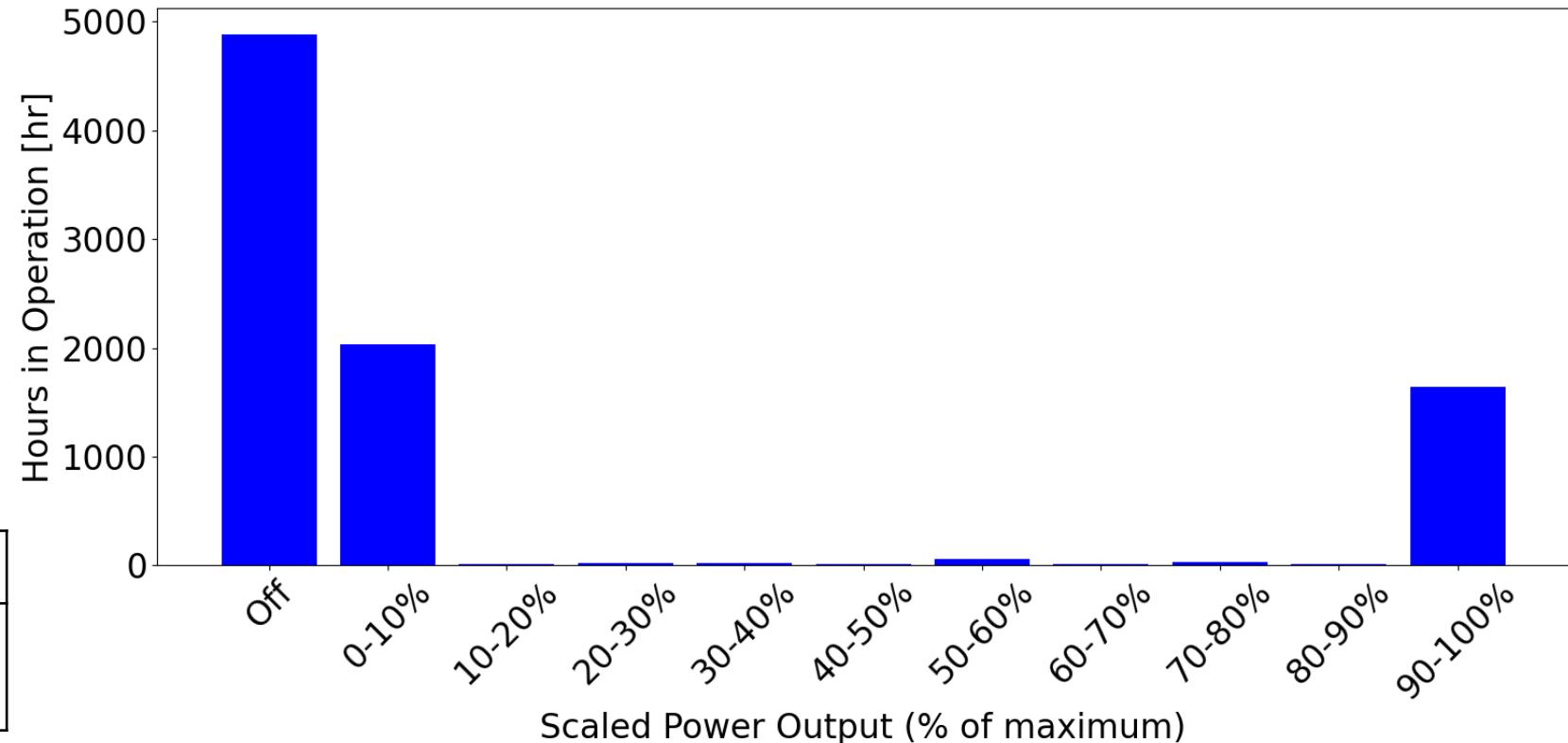
- Build small plant, operate at minimum power unless LMP exceeds operating cost
- Investment would require better prices (not surprising for RTS-GMLC system)

Surrogate Results



P_{\max}	177.5 MW
Marginal Cost	24 \$/MWh
Revenue	13.5 MM\$/yr
Opex	12 MM\$/yr
Capex	408 MM\$
20 year return	-382 MM\$

# Variables	738
Solution Time	13 sec (build) 336 sec (solve)

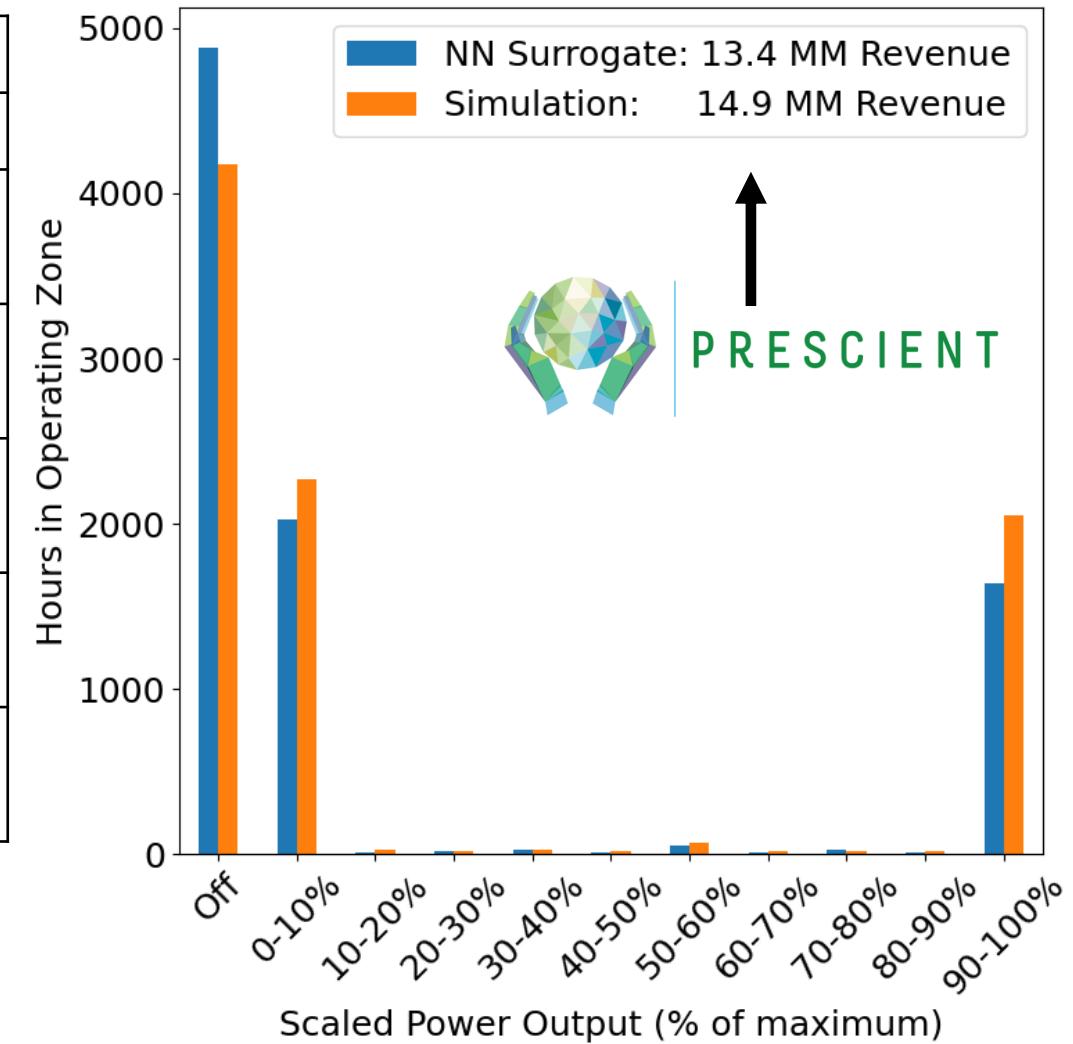


- Surrogate also builds small plant, but effectively captures shutdown operating modes
- Investment would still require better prices (but capturing shutdown helps)

Comparison of Results

	Price Taker	Surrogate	Verification
P_{\max} [MW]	175	177.5	177.5
Marginal Cost [\$/MWh]	24	24	24
Revenue [\$MM/yr]	29.6	13.5	14.9
Opex [\$MM/yr]	30.8	12	14.5 (Rankine) 16.2 (Prescient)
Capex [\$MM]	404	408	408
20 year return [\$MM]	-428.8	-382	-401

Verification of Surrogate Solution



- Surrogate can capture startup/shutdown in steady state model, more realistic opex
- Surrogate solution is reasonably verified with Prescient simulation

Conclusions and Future Work

Integrated Energy System

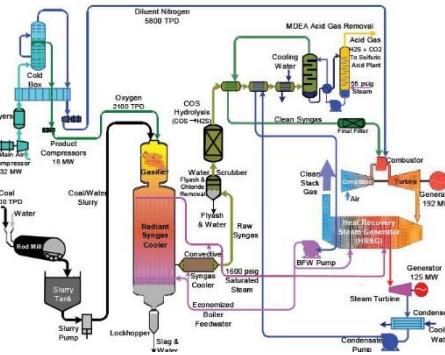
Design Decisions: d

Operating Decisions: $u_{t_1..t_N}$

Net Power Output: $\delta_{t_1..t_N}$

Multi-Period Model:

$$h(d, u_{s,t}, \delta_{s,t}, u_{s,t+1}, \delta_{s,t+1}) = 0$$



- Surrogates can incorporate exogenous market uncertainty into conceptual design problems
- Steady-State problems can capture startup/shutdown effects using surrogate methodology
- Future work is developing **multi-period** formulations for IES design

Fully Dynamic

Multi-period

Steady-state

Dispatch Schedule $\delta_{t_1..t_N}$

Price Forecast $\pi_{t_1..t_N}$

Energy Market

Long-Term Goal

Representative Days

Price Scenarios

Price Taker

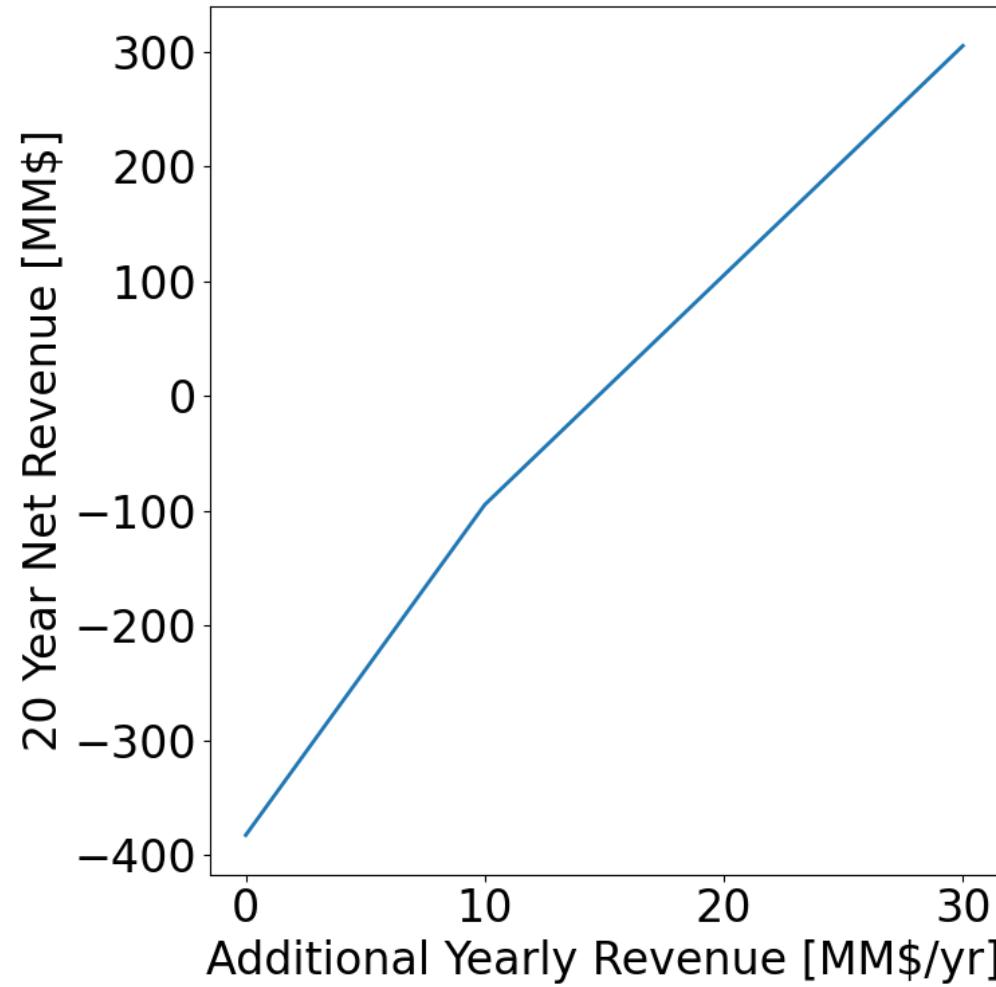
Multi-Period Dispatch Surrogates

Zone Dispatch Surrogates

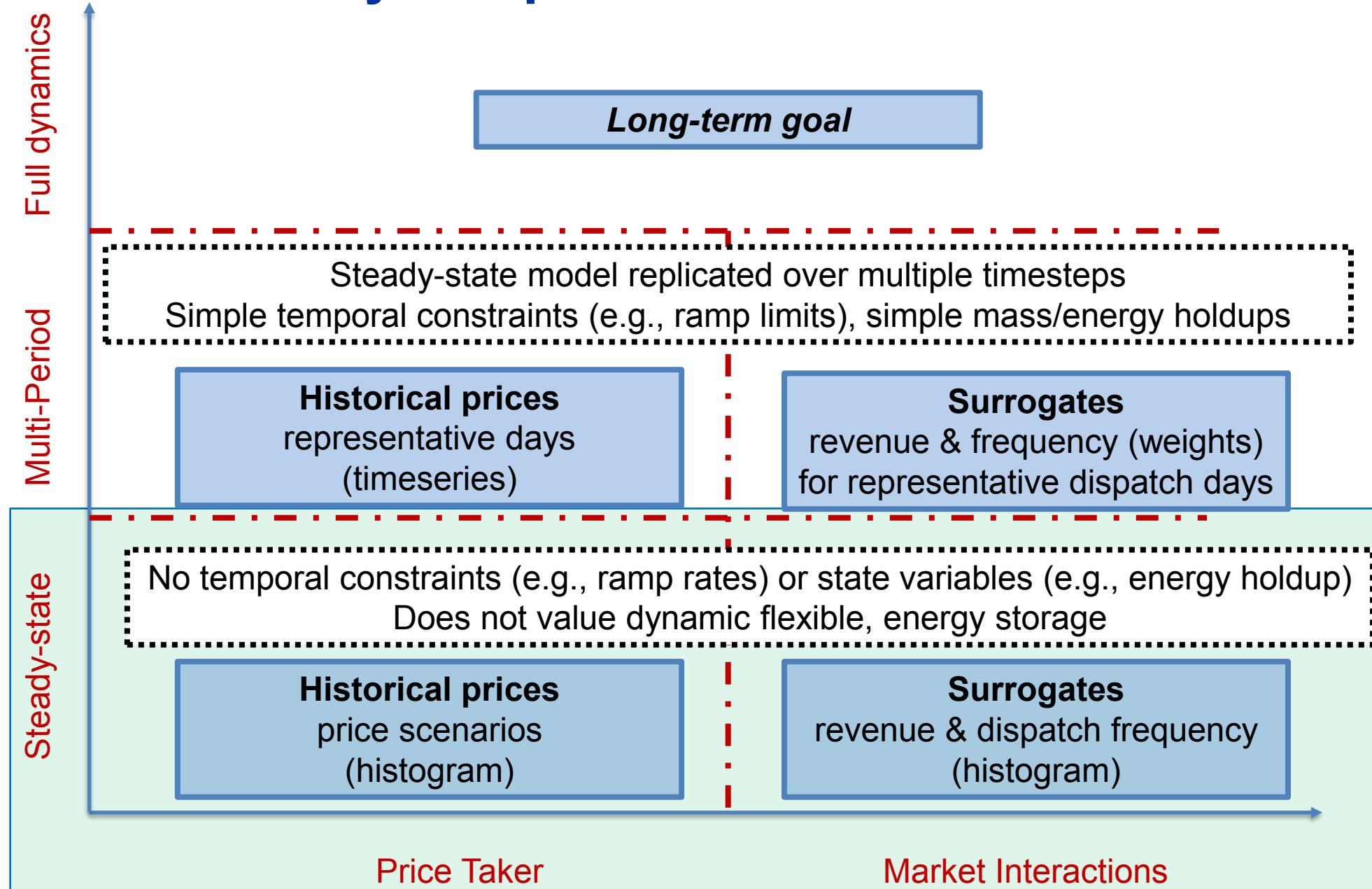
Market Interactions

Additional Slides

Offset Results



Summary of Optimization Formulations



Multi-Period Price Taker (Self-Schedule)

Scenarios are timeseries, e.g., representative days

	Weight / Frequency	Revenue	Cost (Operating + Capital)
Process Model	$\max_{d,u,\delta} \sum_{s \in S} \sum_{t \in T} w_s [R(d, u_{s,t}, \delta_{s,t}, \pi_{s,t}) - C(d, u_{s,t}, \delta_{s,t})]$		
Temporal Constraints	$g(d, u_{s,t}, \delta_{s,t}) = 0, \quad \forall s \in S, t \in T$		
	$h(d, u_{s,t}, \delta_{s,t}, u_{s,t+1}, \delta_{s,t+1}) = 0, \quad \forall s \in S, t \in T$		

Multi-Period with Market Surrogates (Bid)

	Revenue	Cost (Operating + Capital)
	$\max_{d,u,x} R(x) - \sum_{s \in S} \sum_{t \in T} w_s(x) [C(d, u_{s,t}, \delta_{s,t})]$	
Process Model		
“Bid Rules”	$g(d, u_{s,t}, \delta_{s,t}) = 0, \quad \forall s \in S$	
Temporal Constraints	$h(d, u_{s,t}, \delta_{s,t}, u_{s,t+1}, \delta_{s,t+1}) = 0, \dots$	
Revenue Surrogate	$R(x) = f_{rev}(x)$	
Multi-Period Dispatch Surrogate	$w_s(x) = f_s(x), \quad \forall s \in S$	

Note: δ are representative days for market dispatch and are parameters (scenario data)