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Stacking Fault Energy (SFE) on Hydrogen

Embrittlement
1 SFE is related to hydrogen compatibility parameter RRA (relative

reduction 1n area) in JOM, 72, 1982 (2020):
» RRA > 80% when SFE > 40 mJ/m?;
» RRA ~20-80% when SFE ~ 20-40 mJ/m?.
1 The austenitic stainless steels (e.g., 304L) deform through hydrogen-
mediated slip bands in Metall. Mater. Trans. A, 52, 1516 (2021).

1 We have performed a detailed study on SFE using molecular

dynamics (MD). This has also led to an Fe-Ni-Cr-H potential.



Presentation Outline
1 An Fe-Ni1-Cr-H interatomic potential

J Experimental validation of molecular

dynamics (MD) simulations

J Stacking fault energy calculations

The presented work has been published in Inter. J. Hydrogen Energy.
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No Fe-Ni-Cr-H potential 1s availab 1191;%\[11;[!@’! can be added to an existing Fe-Ni-Cr
potential.

Smith and Was’ potential (PRB 1989, 40, 10322) was fitted to effective atoms and did not
consider SFE (stacking fault energy), not chosen.

The 2013 Bonny et al’s potential (MSMSE 2013, 21, 085004) predicts phase separation, not
chosen.

The 2011 Bonny et al’s potential (MSMSE 2011, 19, 085008) predicts negative slope of SFE
with N1 composition (should be positive), not chosen.

Tong et al’s potential (Mol. Sim. 2016, 42, 1256) predicts large negative stacking fault
energy, not chosen.

The 2018 Bonny et al’s potential (MSMSE, 2018, 26, 065014) 1s based on the 2013 version,
not chosen.

We adopted our Fe-Ni-Cr potential (J. Comp. Chem., 2018, 39,2420).

Other potentials (e.g., by Mendelev et al) are also available more recently, but are not tested.
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Our Fe-Ni-Cr-H Potential

Energy, volume, stability trends in Fe, Ni, (=~ sewmict T(
Cr. C HEMISTRY =z -
Lattice / elastic constants, and SFE 1n Fe, s

Ni, Cr.

H swelling volume 1n Fe, N1, Cr.

H diffusion energy barriers in Fe, N1, Cr.
H-vacancy and H-interstitial energies in
Fe, N, Cr.

H trapping energies in Fe, Ni, Cr.

77 Journal oL -

Zhou et al, J. Comp. Chem., 39, 2420 (2018).




Stability of Structures

(c) Cr on bee Cr, atom map

(b) Ni on fcc Ni, atom map
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(a) Fe on bee Fe, atom map
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(f) Feo.¢Nig2Crp 2 on fecet+bee Fe, structure map

2Cro 2 on fcc Fe, atom map
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(e) Feo N

(d) Feg ¢Nip2Crp 2 bee Fe, atom map
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Stability is tested using the most stringent growth simulations.



stacking fault energy ¢ (mJ/m2)
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From Potential

T=300K o o
(o)
¢ (o]
® o X X
¢ o x .
o o ° oo
e O o o X X
o o X X o
o o 8 o X X%
x
e 0 o ©oo x -
O O
X X X
o " e ¢=0.011
x o ¢=0.005 A
x ¢=0.000
0.08 0.10 0.12 0.14 0.16 0.18 0.20 022 024

Ni composition Xy (Xge = 0.66)

stacking fault energy ysf (mJ/m2)

70

65

60

55

From DFT

° L4 ° ° ° Y ° °
°
o
o
(o) (o] o ° X
o o o . x
X
X
x
X
% x T=300K
e a=3663A (8MD =0.011)
o a=3.642 A (gy,p =0.005)
x a=3.623A (SMD =0.000)
0.08 0.10 0.12 0.14 0.16 0.18 020 022 024

Ni composition Xy (Xge = 0.66)

Positive slope of SFE with N1 composition 1s achieved.




H-Metal Interaction Energies

(a) DFT (b) EAM
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Statistically-Averaged Diffusivities

T (K), with round-off values

.

( MSD, , (KAL) = Zﬁlz}\};icio_(%(km)] 1250 11111000 909 §33 769 714 667 625 5881_0X100 =
N sm—k[x 2 2 Dy = 201.04 A%/ps >
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6 dt £—0 measured 0.51 eV: San Marchi et al, Inter. J. Hydro.

Ener., 32, 100 (2007).



Experimental Validation: Slip Band Collision
Simulations

(a) c-¢ interaction (b) c-twin interaction

€ boundaries twin boundaries

Experimentally, the
material deforms
through formation
and extension of
slip bands.

(¢) twin-¢ interaction (d) twin-twin interaction . . .
Simulations of slip

band collision
provide a good
problem to validate
our potential.

surfaces

Slip band collision occurs when a shear stress is applied to the surfaces in our MD model.



Validation: o’ Martensite Formation

Transmission electron microscope (TEM) Molecular dynamics (MD)
from Doug Medlin

collision of an e-martensite band (screw Burgers vector)
with an g-martensite band at T = 1.15 GPa

| green fcc red -hcp blue: bee J—

{111}]///{0001}6 //{011},
(110),,//(1120), //{111)q,

Both TEM and MD show:



vdilddatliornl. i1 pPpromotles e=viarterisilte olip
MD conflguratlons MD praﬂd-martensite fraction vs. H content

(@) xy=0.0 at%
0.30 A +

z [001] P

i 0.24
O]/y[OIO] é
& 0.221 + g-martensite has the hep
= (hexagonally-closely packed)
"0 structure.
O.bO 0.I02 0.64 0.I06 0.68 0.I10
H/M

o« Experiments indicate that H promotes e-martensite slip bands,
€, = +25% for 0.2 ns, and Metall. Mater. Trans. A, 52, 1516 (2021).

then g4y = £25% for 0.2 ns




SFE Distributions from 57600 MD
Simulations

(b) Fe-0.11Ni-0.19Cr at 1200 K
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(c) Fe-0.15Ni-0.15Cr at 300 K
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Stacking fault energy based alloy screening for hydrogen compatibility: Gibbs et al,. JOM, 72, 1982 (2020).



Additional After 1.8 ns MD simulations
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SUMMARY

. An Fe-Ni-Cr-H potential suitable for studying SFE and
the related slip bands has been developed.

. This potential reproduces the experimentally observed
H effects on e- and o’- martensite formation in slip
bands.

. SFE in stainless steels is not a single value, but rather is
a distribution due to local composition variations.

. Hydrogen significantly reduces the mean SKFE, in
agreement with experiments.

. Previous views on SFKE effects are too simplistic.
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Plane-Resolved Energies
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otackKing Fault width or Long
Dislocations

H effects on MD configurations Stacking fault width range from 10 replicas
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Errors of (Time-Averaged) MD vs. MS
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