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; | Scaled Power Flow Experiments on Z

1. Motivation for a next-generation pulsed power (NGPP) facility.
2. Design of a 50-MA-equivalent power flow scaling platform at 20 MA on Z.

3. Using velocimetry to diagnose the current delivered through scaled
transmission lines.

4. Results, analysis, and modeling of the first power flow scaling experiments.

5. Follow-on scaling experiments and future work.

The first power flow scaling experiments on Z indicate that the current coupling
through a 50-MA-equivalent transmission line (R ~ 1-2 cm) is essentially lossless.
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, | Scaled Power Flow Experiments on Z

1. Motivation for a next-generation pulsed power (NGPP) facility.

2.
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Ieadlng multi-mission capability for stockplle stewardshlp and
discovery science.
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We are evaluating driver technologies and developing designs to
6 I advance magnetically-driven HED/ICF to >50 MA levels.

In 2030, Z will:

Celebrate ~35 years of z-pinch research.
Mature NGPP scalings for rad & fusion sources.
Some parts of the infrastructure will be ~45 years

old.

A next generation pulsed power facility would be:

The world’s most powerful warm x-ray and fast
fusion neutron source (hostile survivability,
fundamental science)

An enabling capability for high energy density
physics

(nuclear explosive package certification,
fundamental science)

It would attract and test tomorrow’s stewards of
pulsed power research

It would provide a venue for scientific and
technical innovation for national security

An unprecedented engine of discovery for
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These designs can deliver >5—-10 MJ to HED/ICF targets



.| Scaled Power Flow Experiments on Z

1.
2. Design of a 50-MA-equivalent power flow scaling platform at 20 MA on Z.

3.
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I|ne archltecture that has been used to great effect on Z and Saturn
before it.

Four parallel outer MITLs (magnetically ‘\\ - | /
insulated transmission lines) combine at
the convolute to form one

The delivers current to the
load region where the associated
magnetic pressure implodes the load.

Current loss can occur in the convolute,
the , and/or the load region.

Key question: Will this architecture hold
up under increased electromagnetic stress
on an NGPP facility?

Load region

Convolute
Outer MITLs
Approach: Conduct scaled power flow

experiments at 20 MA on Z to test current
delivery at 50 MA NGPP conditions.
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Z is quite successful at driving a number of different physics loads.
9 I Current loss depends on the inductive characteristics of the load.

Dynamic Hohlraum MagLlIF
The load that Z was designed to drive. One of the most stressful loads for Z.
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bundmg predlctlve multl scale models - Are there any surprlses at
10 # NGPP conditions?

Power-flow loss mechanisms are generally Efficient models will improve our
understood to be self-limiting detailed 3D understanding

(DFT on H20 desorption)

Detailed surface
science models

Electron flow current  lon losses enhanced Plasma expansion
and ion diode losses by electron flow & gap closure v
o . ] Large-scale 3D J
Space charge limited, Space charge limited, Reducing the hybrid fluid-PIC
clamped by magnetic clamped by negative effective gap could e ey
insulation voltage feedback enhance losses

Use both experiments and modeling to test our understanding.

Hutsel et al. PRAB 21, 030401 (2018) CLAYTON MYERS — POWER FLOW SCALING — PPC/SOFE — DECEMBER 14, 2021 Bennett et al. PRAB 22, 120401 (2019)



line driven by a generator and stressed by an imploding inductive
load.

Load by Outer MITLs

Convolute

Anode
A
% Y d Iload

Load Region

Lload
Load region Cathode Y
Convolute
Outer MITLs
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understandlng and mitigating inner MITL current Ioss on Z [Gomez

PRL 2020].
= 501 (B) ypper ey N - (d) 5 mm AK gap
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* Tactics: Grow the minimum A/K gap and reduce the load region inductance.

* Result: MagLIF current delivery increases from ~16 MA to ~20 MA.

« Additional tests indicate that inner MITL current loss is reduced (in addition to the convolute).

Gomez et al. PRL 125, 155002 (2020) CLAYTON MYERS — POWER FLOW SCALING — PPC/SOFE — DECEMBER 14, 2021



13

Y A D

can we use a S|m|Iar inner MITL W|th S|m|Iar gaps and st|II dellver

current?
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A scaled transmission line with a 2 mm A/K gap that spans R = 5-9
mm on Z can match the J and E of a 50 MA MagLIF inner MITL.
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MagLIF implosion.

40

w
4]

W
o

Height [mm)]
N
(3]
T

N
o

-
(&)}

101

Height [mm)]

-10

-15

T T

Z Scaled

T T T T T T T

Scaled inner MITL

Culiner
AR5, R2.0mm:

Be liner
AR6, R4.9mm :

-25 -20 -15

-10 -5 0 5 10 15 20 25
Radius [mm]

4

Current / MA

Electric Field MV/cm

e e

mimics the dynamic stress of a representatlve 50-MA NGPP

507 Outer surface s
40 ;4
1 Inner surface | €
30 13E  Thisis just one
- 19 possible NGPP
20 12 '-CEU MagLIF design.
10+ _
' 40
0 T T T T T T T
3000 3050 3100 3150
Time / ns
15+
—50 MA MagLIF
—Imploding scaled
104 ——Non-imploding scaled

&)

R=9 mm

0 T
2990

3030 3070
Time / ns

3110

CLAYTON MYERS — POWER FLOW SCALING — PPC/SOFE — DECEMBER 14, 2021



. | Scaled Power Flow Experiments on Z

3. Using velocimetry to diagnose the current delivered through scaled
transmission lines.
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Myers et al. PRAB, to be submitted (2021)
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Load current velocimetry is a powerful technique that is routinely
used to infer the current delivered to load region on Z.

fiber-coupled VISAR and PDV point probes.

* Use MHD simulations of the flyer to infer the

* Measure the explosion of the return can with i
load current waveform. I
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Jennings et al. PRAB, in preparation.
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that prowdes radlally resolved veIOC|ty measurements on the top
i | flyer plate.
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ZLV has become a workhorse diagnostic for understanding
current drive on ICF, power flow, and materials experiments.
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Myers et al. PRAB, to be submitted (2021) CLAYTON MYERS — POWER FLOW SCALING — PPC/SOFE — DECEMBER 14, 2021 Datte et al. RS/ 91, 043508 (2020)



agree with four I\/IHD oodes to +5% 9 ZLV and the codes work in

19
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this regime.
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Myers et al. PRAB, to be submitted (2021)

{1 8.5 mm

300
200 * Velocities are extracted from the ZLV interferograms using
100 £ the Fourier Transform Method of Celliers et al. [RS/ 2004].
[e]
00 O + 2D simulations are driven with the load current extracted
o from return can velocimetry. - “Lossless” current delivery.
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Farmer et al. PRAB, to be submitted (2021)
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Is decoupled radially so that 1D current unfold techniques can be
20 I ysed.

Simulated velocities [km/s]

©

The 1D and 2D Eulerian simulations are generated by
the SNL implementation of the GORGON MHD code
[Chittenden PPCF 2004, Jennings IEEE TPS 2010].
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,, | Scaled Power Flow Experiments on Z

4. Results, analysis, and modeling of the first power flow scaling experiments.
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Use load current velocimetry to diagnose the current delivered to
23 I the return can and through the scaled transmission line.

Spatially resolved
current delivery

along the scaled ——
transmission line.

Input current to

Z Line VISAR ¢

 * . Scaled transmission line

Fiber probes

the scaled -

transmission line.

5 mm
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Power Flow Scaling experiments agree with pre-shot circuit
24 I modeling.

I

Measured return can currents
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shock breakout and flyer veIOC|ty mformatlon along the scaled
transmission line.

Non-imploding — z3537

Radius [mm]

» Shock breakout and post-shock
fringe motion observed on the first
Power Flow Scaling experiment!

* Reduction in reflectivity at small radii
(highest velocities/pressures).

Radius [mm]
Velocity [km/s]

* A velocity map was successfully
extracted from the ZLV data.

T T T T T T T *“_*‘ O
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Iossless post-shot simulations to better than 10%! 9 Mlnlmal current
loss.

Non-imploding — z3537

>
Shock breakout and post-shock
fringe motion observed on the first
Power Flow Scaling experiment!
Reduction in reflectivity at small radii T 2
(highest velocities/pressures). % =
A velocity map was successfully E’ §

extracted from the ZLV data.

1D Lagrangian flyer simulations are

driven by the return can current. 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165
Time [ns]
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Current delivery through a 50-MA equivalent scaled transmission
27 ¥ |ine that is stressed by a static inductance is essentially lossless!
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Current delivery through a 50-MA equivalent scaled transmission line
that is stressed by a static inductance is essentially lossless!
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The imploding experiment with LiF windows generated a high-
29 I quality interferogram across the full ZLV field of view (R = 5-9 mm).

9 _A e —————
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* Much cleaner interferograms 5
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to better than 10%. - Still m|n|mal Ioss in spite of the |mplod|ng
30 1 liner!

Imploding — 23617

Radius [mm]
Velocity [km/s]

* Much cleaner interferograms
obtained with LiF windows.
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Current delivery through a 50-MA equivalent scaled transmission
31 ¥ line that is stressed by an imploding liner is essentially lossless!
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expected pressure IS drlvmg the fIyer at smaIIer radii. 2 ~5% effect

on the current.

Radius [mm]

5 We have ruled out many possible causes:
. « Temporal or spatial shifts of the ZLV data.
s 55; * Nonlinear LiF window index of refraction.
: § » Larger-than-expected early time current.

Radius [mm]

. This leaves two candidate effects:
. * Particle/plasma bombardment of the flyer.
.  Radially varying current asymmetries.
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imploding experiment shows extensive plasma formation but little
33 1 |oss.

 Multi-fluid and kinetic simulations show negligible loss (~100 kA) in spite of 10'/cc plasmas.
« Consistent with the E/B scaling of the Hall diffusion current loss mechanism of Bennett et al.
* Ongoing work: Calculate particle/plasma energy deposition in flyer. - Feed to current unfolds.

t = 100.0 n I
[MA] rBtheta (Inet(r))
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CLAYTON MYERS — POWER FLOW SCALING — PPC/SOFE — DECEMBER 14, 2021 Bennett et al. PRAB 24, 060401 (2021)
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;5 | Scaled Power Flow Experiments on Z

4,

5. Follow-on scaling experiments and future work.
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36 I Further increase the electric field stress and test reproducibility.

Height [mm]

Increase static stress — 500 ym gap
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Increase dynamic stress — AR10 Cu liner
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Increase the static stress by reducing the A/K gap from 2

mm to 500 ym. - Study gap closure effects.

Increase the dynamic stress by decreasing the liner wall
thickness from 400 ym to 200 ym. - AR5 to AR10.

Make bottom-side velocimetry measurements to quantify
the current delivered to the inner target volume.

Implement higher-precision machining methods and
conduct detailed as-built flyer metrology.
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37 1 3 cm.

5 - B-field, current density, and ohmic heating
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operating at 50 MA
cm of the load!

e

conditions can efficiently deliver current to within 1
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