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ABSTRACT

While the use of machine learning (ML) classifiers is widespread, their output is often
not part of any follow-on decision-making process. To illustrate, consider the scenario
where we have developed and trained an ML classifier to find malicious URL links. In this
scenario, network administrators must decide whether to allow a computer user to visit a
particular website, or to instead block access because the site is deemed malicious. It would
be very beneficial if decisions such as these could be made automatically using a trained
ML classifier. Unfortunately, due to a variety of reasons discussed herein, the output from
these classifiers can be uncertain, rendering downstream decisions difficult. Herein, we
provide a framework for: (1) quantifying and propagating uncertainty in ML classifiers;
(2) formally linking ML outputs with the decision-making process; and (3) making optimal
decisions for classification under uncertainty with single or multiple objectives.
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1. INTRODUCTION

The decision science (DS) method of utility maximization determines the course of action
that maximizes expected utilities while accounting for the probability that an event will
occur. As DS methods were developed under the assumption that probability values are
deterministic and well-calibrated, they do not consider uncertainty in these estimates.
Therefore, to use such approaches for high-consequence decisions with probabilities
estimated from ML models, the uncertainty in these estimates must be quantified.

Example 1.0.1. Consider an ML model tasked with identifying malicious websites. Allow-
ing a connection to a malicious website could result in a ransomware attack; blocking a
legitimate URL merely results in lost productivity for an inconvenienced user. The costs of
a false negative, predicting that a malicious website is legitimate, are therefore potentially
magnitudes larger than those of a false positive. This domain presents a further complexity:
as with many problems solved with machine learning, the true probabilistic structure
is unknowable. We can, however, understand the reliability of ML model estimates by
quantifying uncertainty.

In this report we formally link ML classification (with two or more classes) with decision
theory; this required modifications to standard decision science techniques to handle uncer-
tainty in probabilistic class labels. We develop a framework for making optimal decisions
for classification under uncertainty with single or multiple objectives; our approach keeps
decision-making independent from ML training, meaning that decision-makers do not
have to be ML experts. We also show how to make decisions that are optimal per instance,
instead of optimal on average across a population as is the case for cost-sensitive machine
learning; this is especially important for high-consequence applications.

This work was developed under the lab-directed research project entitled "Optimizing
Machine Learning Decisions with Prediction Uncertainty" [1]. The overall goal of the
project was to develop decision-making methods that minimize prediction error costs for
any ML model. For each prediction made by the model, the decision-making algorithm
would consider an ML model’s score, or probability estimate, the uncertainty in that
estimate, the consequences associated with available actions, and the costs of further
analyses or information gathering.

Traditionally, the ML community, under the heading of cost-sensitive learning, has at-
tempted to minimize expected error costs by incorporating the relative costs of different
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error types and class imbalance information into training methods, thus averaging cost
over a population of examples. We proposed to focus on the uncertainty estimated for
individual predictions, thereby incorporating example-specific information and explicitly
weighing whether the ML model is qualified to assess a given example.

The need for this type of work became apparent during the Multimodal Data Integration
Under Uncertainty LDRD project [2, 3]. Which developed uncertainty analysis methods
while applying them to a number of problems including malicious URL detection [4], multi-
source image analysis [5], and seismic onset detection [6]. It became increasingly evident
that uncertainty quantification (UQ) for ML predictions provided important information
to consider for decision-making.

We note that ML classification and decision-making are not synonymous. While ML maps
observed data to unobservable properties of interest, decision science defines a decision
as an irrevocable allocation of resources. Therefore, the aim of this work is to decide the
optimal course of action given information provided by and about an ML model’s output.
In this project, we assume that the ML model is already given. In other words, we are
already past the point of changing the model architecture or retraining it. This has the
advantage of clearly separating the problem of model design from the problem of using
ML models as an aid in decision making.
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2. DECISION-MAKING WITH ML CLASSIFIER PREDICTIONS

We first provide some basics of ML classification in Section 2.1. A decision-theoretic
approach based on minimizing expected loss is then presented in Section 2.1.1 for optimal
actions based on ML model outputs. The effects of uncertainty are not considered until
Section 3.

2.1. Basics of machine learning classification

In this section, we review some basics of machine learning (ML) classification and introduce
notion; we follow the notation used by Flach [7].

The objects of interest in ML are referred to as instances; the set of all possible instances X is
called the instance space. Strictly speaking, ML classifiers almost always work on attributes
or features of xxx and not on the instance itself. To simplify notation we do not worry about
this distinction and just assume that each xxx ∈ Rd is a real-valued vector of d > 0 features.
In URL classification introduced in Example 1.0.1, xxx would contain features of a URL, such
as the domain name or the number of characters in the URL.

Next let C denote the label or class space; each member C ∈ C is a class, and we use symbol
κ = |C| to denote the number of classes. In URL classification, C = {benign, malicious}
and κ = 2; this is binary classification. A classifier is a mapping ĉ : X → C; for arbitrary
instance xxx, ĉ(xxx) is an estimate of the true but unknown label function c(xxx). Herein, we
consider scoring classifiers that output a probability vector over the classes, i.e., mappings
p̂ : X → [0,1]κ. The boldface notation indicates that the scoring classifier outputs a vector
p̂(xxx) = ( p̂i(xxx), . . . , p̂κ(xxx))T, where p̂i(xxx) ≥ 0 is the probability assigned to class Ci for
instance xxx, and p̂1(xxx) + · · ·+ p̂κ(xxx) = 1.

We note that p̂(xxx) is an estimate of the true but unknown probability distribution p(xxx).
For the special case of binary classification, i.e., κ = 2, p̂2(xxx) = 1 − p̂1(xxx) and only one
symbol is needed; we then use p̂(xxx) and 1 − p̂(xxx) to represent the probability that instance
xxx is of class C1 and C2, respectively.
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New instance
xxx′

Trained classifier
ĉ( · |T ) ĉ(xxx′|T ), p̂(xxx′|T )

Decision-making
process

Optimal action
a∗

Figure 2-1. A decision about xxx′ based on ML model prediction.

The predicted class label ĉ(xxx) is completely defined by p̂(xxx). For example, for binary
classification, we have

ĉ(xxx) =

(
C1 p̂(xxx) ≤ t
C2 p̂(xxx) > t

(2.1)

where t ∈ (0,1) is a threshold parameter (usually equal to 1/2). For κ > 2 classes, this
generalizes to

ĉ(xxx) = Ci∗ , where i∗ = arg max
1≤i≤κ

p̂i(xxx). (2.2)

Lastly, let T = {(xxx, c(xxx))} denote the training set, that is, a collection of labeled instances
used to calibrate or train the ML classifier. The outputs from a trained ML model depend
on the training data used; we will therefore denote the predicted class label and probability
scores by ĉ(xxx|T ) and p̂(xxx|T ), respectively.

2.1.1. Decision theory applied to ML classification

Suppose now that, given a previously unseen instance xxx′, there exists some action or
decision that needs to be made about xxx′, and the purpose of the trained classifier is to aid
in the decision making process. The objective is then to make the best decision possible
about xxx′ based on supporting information; decision theory provides a formal framework
for doing this. Refer to Fig. 2-1; the remainder of this section provides specifics about the
decision-making process.

A decision problem exists when there is a choice of possible actions to take; the consequence
of these actions depends on the (unknown) truth, typically referred to as the “state of
nature” in the decision theory literature [8]. The general problem in decision theory has
four ingredients [9].

1. A collection of possible actions to take.

2. A collection of all possible states of nature.

3. A loss function.

10



Nature, C

benign malicious

Action, A allow 0 20
block 5 1

Figure 2-2. Example loss function for URL classification.

4. The optimal action.

We define

A = {all candidate actions} = {ai}

to be the collection of candidate actions that a decision-maker can take. For the URL
example problem mentioned introduced in Example 1.0.1, A = {allow,block}.

In the context of ML classification of instance xxx′, the (unknown) state of nature is simply
the true label c(xxx′). Hence, the collection of all possible states of nature is identical to the
label space, C, defined above; the probability of these states being true is p(xxx′).

We define a loss function, L : A× C → [0,∞), to quantify the consequences of each action,
under each state of nature. Hence L(ai,Cj) ≥ 0 is the consequence for taking action ai,
assuming the true label is c(xxx′) = Cj. One possible form for the loss function is given by

L(ai,Cj) = γ(ai) + ψ(ai,Cj), (2.3)

where γ(ai) ≥ 0 quantifies the “cost” of taking action ai, and ψ(ai,Cj) ≥ 0 represents the
penalty associated with taking action ai when the true label of xxx′ is Cj.

Example 2.1.1. The loss function defined by Eq. (2.3) is illustrated by Fig. 2-2 for the
URL classification example introduced in Example 1.0.1; numerical values are made-up
for clarity. If a decision-maker allows a benign URL, there is zero cost and zero penalty.
Blocking a malicious URL, however, has a cost of one, but no penalty. The off-diagonal
terms in the table correspond to scenarios where there are penalties, and the penalty of
allowing a malicious URL is larger than blocking a benign one. ⋄

By definition, the loss is a random variable because the state of nature, i.e., the true class
label of xxx′, is uncertain. We can define the expected loss of action ai as

ℓ(ai) = E[L(ai,C)] =
κ

∑
j=1

L(ai,Cj)pj(xxx′) ≈
κ

∑
j=1

L(ai,Cj) p̂j(xxx′|T ), (2.4)
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xxx′, p̂(xxx′|T )

Compute expected
losses ℓ(ai), ∀a ∈ A

Take action
a∗ = arg minai∈Aℓ(ai)

L, A

Figure 2-3. The decision-making process for ML classification.

which depends on the true and unknown probability vector p(xxx′). In practice, we approxi-
mate p(xxx′) with p̂(xxx′|T ), the output from the ML classifier.

Action ai is optimal if and only if ℓ(ai) ≤ ℓ(aj) for all i ̸= j; in this case, we denote the
optimal action by a∗, that is

a∗ = arg minai∈Aℓ(ai). (2.5)

Therefore, the best decision we can make about xxx′ given the available information we have
is to take action a∗. The decision process is illustrated as a flowchart by Fig. 2-3.

Example 2.1.2. For example, with the loss function discussed in Example 2.1.1, we have

ℓ(allow) = 20
(
1 − p̂(xxx′|T )

�
ℓ(block) = 5 p̂(xxx′|T ) +

(
1 − p̂(xxx′|T )

�
where p̂(xxx′|T ) = P(benign), so that a∗ = allow when p̂(xxx′|T ) ≥ 19/24. ⋄

We note that taking the action that minimizes the expected loss defined by Eq. (2.4) is a
common approach in decision theory, but it is not the only approach. It is possible to base
decisions on alternatives to the expected loss.
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3. DECISION-MAKING WITH ML MODELS UNDER
UNCERTAINTY

In this chapter, we propose a unified framework for decision-making based on the outputs
from ML classifiers that is robust to a variety of sources of uncertainty in ML models. In
Section 3.1 we present an overview of uncertainty in ML classification.

3.1. Uncertainty quantification for machine learning

There are a variety of sources of uncertainty that impact the outputs of ML models [2, 10].
We describe some of the sources below; this is an incomplete list.

3.1.1. Uncertainty from the data

There can be uncertainty in the output of a ML classifier resulting from one or more of the
following sources related to the data.

1. Pre-processing and/or measurement error

Errors in pre-processing of the data, such as improper filtering, can lead to uncertainty
in ML predictions. In addition, one of more instance xxx and/or corresponding label
c(xxx) from the training data may be missing or corrupted with noise; this can occur
by accident or be the result of nefarious activity by an adversary.

2. Limited training data

When the number of training data is small or include redundancies, the training step
can be inaccurate; this can lead to uncertainty in the predicted class labels. One way
to account for this is based on bootstrap sampling (refer to Fig. 3-1):

a) Draw samples with replacement from the training set; call this set Ti ⊆ T .

b) Train the ML classifier on Ti.

c) Make prediction p̂(xxx′|Ti) about the unknown instance xxx′.

d) Repeat the previous 3 steps b > 1 times.

13



Training data
Ti ⊂ T , i = 1,2, . . . ,b

New instance
xxx′

Trained classifier
ĉ( · |Ti)

p̂(xxx′|T2)

p̂(xxx′|T1)

...
p̂(xxx′|Tb)

Figure 3-1. ML model prediction with uncertainty.

The output from this procedure will produce b different predictions, which can be
interpreted as b samples of p̂(xxx′|T ). These samples represent uncertainty due to the
training process.

3. Extrapolation error

If a new previously unseen instance xxx′ is “far” from the centroid of the training
instances, the trained model applied to this instance provides an extrapolation. In
such cases, the predicted class label ĉ(xxx′|T ) will exhibit uncertainty because the
accuracy of the model in this region of the feature space is unknown. One approach
to quantifying the distance that xxx′ is from the training instances is the Local Outlier
Factor (LOF) [11], which we will discuss in Section 3.3.2.

3.1.2. Uncertainty from the model

There can be uncertainty in the output of a ML classifier resulting from one or more of the
following sources related to the ML model.

1. Model form uncertainty

There are many algorithms for binary classification, such as decision trees and
linear classifiers, and each algorithm requires the user to set various parameters; for
example, the maximum depth of a tree. In general, each of these types of algorithms
can be trained and used to make predictions, and different models trained with
identical data may yield different predictions. For example, let ĉ1 and ĉ2 two different
classifiers both trained with T . Given a new instance xxx′, its predicted class label is
uncertain if ĉ1(xxx′|T ) ̸= ĉ2(xxx′|T ). If the predicted class ĉ(xxx′|T ) is the same regardless
of the algorithm used and over a wide variety of parameter values, then this source
of uncertainty can be ignored. In most cases, this is not true.
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2. Feature selection

Feature selection is a extremely important part of ML classification; no classifier will
perform well if features are selected poorly. Ideally, the features are defined in such
a way that, as the number of training data increases without bound, the true label
function can be learned: ĉ(xxx′|T )→ c(xxx′). Unfortunately, in general there is no formal
way to select or design features that can guarantee this result. Further, predictions on
a new instance based on different features will, in general, produce different results.
Feature sets can be non-unique: ML model performance is identical under two or
more feature sets. This is therefore another source of uncertainty in ML outputs.

3.2. Propagation to output class

Recall that, for new instance xxx′, we have the following:

1. The true (unknown) probability vector p(xxx′) = (p1(xxx′), . . . , pκ(xxx′)), where pi(xxx′) =
P(c(xxx′) = Ci) is the probability that the true class of xxx′ is Ci; and

2. Vector p̂(xxx′|T ) = ( p̂1(xxx′|T ), . . . , p̂κ(xxx′|T )), the output from the trained ML classifier,
where each p̂i(xxx′|T ) is an approximation to pi(xxx′).

Due to the variety of sources as discussed in Section 3.1, the output probability scores
from an ML classifier cannot be treated as a deterministic vector and, instead, should
be treated as a random vector, that is, p̂(xxx′|T ) is a vector of κ = |C| continuous random
variables, each with support [0,1]. To further emphasize that p̂(xxx′|T ) is a random vector,
we introduce a new symbol Q, where Qi = p̂i(xxx′|T ) = P(ĉ(xxx′) = Ci|T ), i = 1, . . . ,κ.

Because they represent probabilities, the coordinates of random vector Q must satisfy
0 ≤ Qi ≤ 1, i = 1, . . . ,κ, and Q1 + · · ·+ Qκ = 1 almost surely. Hence the support of Q is
equal to the (κ − 1)-simplex in [0,1]κ. For example, the support of Q is a line segment, a
triangle, and a tetrahedron for κ = 2, κ = 3, and κ = 4, respectively.

The simple approximation p(xxx′)≈ p̂(xxx′|T ) we applied in Sections 2.1 and 2.1.1 is no longer
meaningful because the latter term, which comes from a ML classifier, is not deterministic;
we must therefore derive a suitable approximation for p(xxx′). We first consider binary
classification (κ = 2) for simplicity, and then generalize for the case of κ > 2.

3.2.1. Binary classification

Let p(xxx′) = P(c(xxx′) = C1) and P(c(xxx′) = C2) = 1 − p(xxx′) denote the probability distribu-
tion of the true label. Let random variable Q = p̂(xxx′|T ) = P(ĉ(xxx′|T ) = C1) be the output

15



from the ML classifier; it follows that P(ĉ(xxx′|T ) = C2) = 1−Q. Further let F(q) =P(Q ≤ q)
denote the cdf of Q.

Recall the classification rule defined by Eq. (2.2) introduced in Section 2.1. This implies
that an appropriate approximation for the probability distribution of the true label that
includes uncertainty in the output of the ML model is given by

P(c(xxx′) = C1) ≈ P(Q ≤ t) = F(t)
P(c(xxx′) = C2) ≈ P(Q > t) = 1 − F(t). (3.1)

Example 3.2.1. For example, if the output from the ML classifier p̂(xxx′|T ) follows a beta
distribution with shape parameters a,b > 0, then we approximate the distribution of the
true label as

P(c(xxx′) = C1) ≈ F(t) =
β(t; a,b)
β(1; a,b)

,

where

β(t; a,b) =
Z t

0
xa−1(1 − x)b−1 dx

is the incomplete beta function. This case is illustrated by Fig. 3-2. The pdf of the beta
distribution is shown in Fig. 3-2(a) assuming a = b = 3; the corresponding approximation
for p(xxx′) is shown in Fig. 3-2(b). For threshold t = 2/3, P(c(xxx′) = C1)≈ 0.8 and P(c(xxx′) =
C2) ≈ 0.2. ⋄

Example 3.2.2. If instead the distribution of p̂(xxx′|T ) follows a mixture of n Gaussian
random variables with means µi, standard deviations σi > 0, and weights 0 ≤ wi ≤ 1,
i = 1, . . . ,n, such that w1 + · · ·wn = 1, then we approximate the distribution of the true
label as

P(c(xxx′) = C1) ≈ F(t) =
n

∑
i=1

wi Φ
�

t − µi

σi

�
,

where Φ denotes the cdf of the standard Gaussian random variable. This case is illustrated
by Fig. 3-3 assuming w2 = µ2 = 0.7, w1 = µ1 = 0.3, and σ1 = σ2 = 0.05. For threshold
t = 1/2, P(c(xxx′) = C1) ≈ 0.3 and P(c(xxx′) = C2) ≈ 0.7. ⋄
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Figure 3-2. Approximation for p(xxx′) = P(c(xxx′) = C1) described in Example 3.2.1
assuming the output from the ML model p̂(xxx′|T ) follows a beta distribution.
Panel (a) illustrates the pdf of the beta random variable with a = b = 3; panel
(b) illustrates the approximation P(c(xxx′) = C1) ≈ F(t).
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Figure 3-3. Approximation for p(xxx′) =P(c(xxx′) = C1) described in Example 3.2.2
assuming the output from the ML model p̂(xxx′|T ) follows a mixture of two
Gaussian distributions. Panel (a) illustrates the pdf of the Gaussian mixture;
panel (b) illustrates the approximation for P(c(xxx′) = C1) ≈ F(t).
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3.2.2. Multi-class classification

In the general case of κ ≥ 2 classes, we apply Eq. (2.2), the multi-class classification rule, to
show that

P(c(xxx′) = Ci) ≈ P(Qi > Qj,∀i ̸= j) =
Z

dF(q)
qi>qj
∀i ̸=j

, (3.2)

where F(q) = P(Q1 ≤ q1, . . . , Qκ ≤ qκ) is the joint cdf of Q = (Q1, . . . , Qκ), Qi = p̂i(xxx′|T ) =
P(ĉ(xxx′) = Ci|T ), the (random) output from the ML classifier.

Example 3.2.3. To illustrate this result, we consider a κ = 3 class example. In this case,
the output from the ML classifier p̂(xxx′|T ) is a random vector with three coordinates,
Q = (Q1, Q2, Q3), where Qi = p̂i(xxx′|T ) and Q1 + Q2 + Q3 = 1. For calculations, we assume
the joint cdf of Q, denoted by F(q), is defined such that

Q1 ∼ Beta(a,b)
Q2|(Q1 = q1) ∼ (1 − q1)Beta(a,b)

Q3|(Q1 = q1, Q2 = q2) = 1 − q1 − q2.

With this model, Q1 is a beta random variable with shape parameters a,b > 0 and takes
values in (0,1). The conditional random variable Q2|(Q1 = q1) is a beta random variable
with identical shape parameters and takes values in (0,q1); by this construction, we are
guaranteed that every sample of (Q1, Q2) satisfies Q1 + Q2 ≤ 1. With Q1 and Q2 defined,
random variable Q3 is defined so that Q1 + Q2 + Q3 = 1. Figure 3-4 illustrates contours of

f (q1,q2,q3) =
∂3

∂q1∂q2∂q3
F(q1,q2,q3),

the joint pdf of Q = (Q1, Q2, Q3), assuming shape parameters a = 2 and b = 3. Figure 3-5
then illustrates the approximation for the probability distribution of the true label, i.e.,
the solution to Eq. (3.2). The results indicate that the true label is of class C1, C2, and
C3 with probabilities 0.47, 0.16, and 0.37, respectively. We note that the mean values are
E[Q1] = 0.4, E[Q2] = 0.24, and E[Q3] = 0.36, which are different. ⋄

3.3. Measures of uncertainty

As mentioned in Section 2.1, we will limit our study to uncertainty due to limited training
data and due to extrapolation error; these are sources 1(b) and 1(c) from Section 2.1. We
introduce measures for these two sources of uncertainty in Sections 3.3.1 and 3.3.2.
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Figure 3-4. Contours of the joint pdf of Q = (Q1, Q2, Q3) used in Example 3.2.3
with shape parameters a = 2 and b = 3.

Figure 3-5. The approximation for P(c(xxx′) = Ci), i = 1,2,3 used in Exam-
ple 3.2.3.
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3.3.1. Minimum prediction deviation (MPD)

In practice, the joint cdf F(q) = P(Q1 ≤ q1, . . . , Qκ ≤ qκ) of Q = (Q1, . . . , Qκ), where Qi =
p̂i(xxx′|T ) = P(ĉ(xxx′) = Ci|T ), is typically not known in closed-form. Instead, we are limited
to a finite collection of independent random samples of Q which can be obtained, for
example, by following procedure 1(b) for bootstrap sampling described in Section 3.1.

Accurate estimation of the full joint cdf of Q is difficult even when a large number of
samples are available. We therefore propose an alternative measure of uncertainty for ML
classification referred to as the minimum prediction deviation (MPD) [12], given by

MPD(xxx′|T ) = min
i∈{1,...,κ}

�
E[(1 − Qi(xxx′))2]

�1/2
. (3.3)

MPD(xxx′|T ) takes values in [0,1]. There are four special cases of interest:

1. The first case occurs when Qi(xxx′) = 1 and Qj(xxx′) = 0, ∀j ̸= i; it is obvious that this
case conveys the highest confidence in the classification of xxx′ because the model
predicts its label to be class i with probability one. It follows that MPD(xxx′|T ) = 0 for
this case.

2. The second case of interest occurs when Q = (1/κ, 1/κ, . . . , 1/κ) with probability one.
The joint distribution is equal to a Dirac delta with amplitude one located at the
centroid of the (κ − 1)-simplex in [0,1]κ. It follows that

E[(1 − Qi(xxx′))2] =

�
1 − 1

κ

�2

, i = 1, . . . ,κ,

so that, by Eq. (3.3), MPD(xxx′|T ) = (κ − 1)/κ. For the special case of κ = 2 classes,
the joint distribution is Pr(Q1 = 1/2, Q2 = 1/2) = 1. It should be clear that the ML
classifier in this case is uncertain about the label for xxx′ and is effectively flipping a
coin on this instance.

3. The third case of interest occurs when Q is uniformly distributed over its support,
i.e., the (κ − 1)-simplex in [0,1]κ. This corresponds to a Dirichlet distribution with all
concentration parameters set to unity (the “flat Dirichlet distribution”). It follows
that the marginal distribution of any coordinate follows a beta distribution with
shape parameters (1,κ − 1). Further, we can show that

E[(1 − Qi(xxx′))2] =
κ − 1
κ + 1

, i = 1, . . . ,κ,

so that, by Eq. (3.3), MPD(xxx′|T ) =
p
(κ − 1)/(κ + 1). For the special case of κ = 2,

this corresponds to the case where Q1 and Q2 are both Unif[0,1] random variables;
for κ > 2, the marginal distributions are not uniformly distributed.
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Figure 3-6. The MPD as a function of the number of classes κ for special cases
2, 3, and 4. We note that MPD → 1 as κ → ∞ for all cases.

4. The fourth case, corresponding to the highest level of uncertainty in the output of
the ML model, occurs when

Q =


(1,0,0, . . . ,0,0) with probability 1/κ

(0,1,0, . . . ,0,0) with probability 1/κ
...

...
(0,0,0, . . . ,0,1) with probability 1/κ

The joint distribution of Q is defined as collection of Dirac delta functions with
amplitude 1/κ located at the each of the κ vertices of the (κ − 1)-simplex in [0,1]κ. It
follows that

E[(1 − Qi(xxx′))2] = (κ − 1)/κ, i = 1, . . . ,κ,

so that MPD(xxx′|T ) =
p
(κ − 1)/κ. For κ = 2 classes, this corresponds to the case

where Pr(Q1 = 0, Q2 = 1) = 1/2 and Pr(Q1 = 1, Q2 = 2) = 1/2, that is, exactly half of
the probability mass is concentrated at zero and the other half is concentrated at one.

We note that the MPD for these four cases satisfy the following

0 <
κ − 1

κ
<

r
κ − 1
κ + 1

<

r
κ − 1

κ
< 1,∀κ > 1

so the cases are listed in order of increasing MPD. Figure 3-6 illustrates the MPD for cases
2, 3, and 4 as a function of the number of classes, κ. ⋄

Example 3.3.1. To illustrate the concept of the MPD, let the output from the ML model
Q = p̂(xxx′|T ) be a beta random variable with shape parameters a and b. The values for
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Figure 3-7. The MPD assuming Q = p̂(xxx′|T ) follows a beta distribution as
described in Example 3.3.1. Panel (a) illustrates the pdf of Q for different
values of the shape parameters, and panel (b) illustrates the MPD for 0 ≤ a,b ≤
5.

E[Q2] and E[(1 − Q)2] can be obtained from the mean and variance of Q; it follows that
the MPD for this case can be obtained in closed-form, i.e.,

MPD(xxx′|T ) = min
n�

a b + a2(a + b + 1)
(a + b)2 (a + b + 1)

�1/2

,
�

b3 + ab2 + b2 + ab
(a + b)2 (a + b + 1)

�1/2o
.

Several cases of the MPD for the beta random variable are illustrated by Fig. 3-7(a). For
example, with a = b = 0.1 (blue line), the MPD is 0.704. Uncertainty is high when a = b = 0.1
because the pdf for Q indicates equal and high confidence that xxx′ is of either class. In
contrast, the red curve (a = 3, b = 0.2) indicates a scenario with small uncertainty; as a
grows large and b approaches zero (or vice-versa) we expect the MPD to approach zero.

Figure 3-7(b) illustrates the value of the MPD for the beta random variable as a function of
0 < a,b ≤ 5. As expected, the uncertainty is greatest when a = b and a,b are both small;
in this case MPD → 1/

√
2. Further, as the difference |a − b| grows large, the ML classifier

starts to favor one class over the other, and MPD → 0. ⋄
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3.3.2. Local outlier factor (LOF)

To address extrapolation error, i.e., item 1(c) from Section 3.1, we apply the Local Outlier
Factor (LOF) algorithm. The LOF algorithm [11] is an unsupervised anomaly detection
method which computes the local density deviation of a given data point with respect to
its neighbors. It considers as outliers the samples that have a substantially lower density
than their neighbors.

The LOF score depends on the training set and is non-negative for any instance. Those
instances xxx′ that have LOF scores that are significantly larger than unity are labeled as
outliers, that is, instance xxx′ is deemed an outlier if LOF(xxx′|T )≫ 1.

Example 3.3.2. We now provide an example to illustrate the use of the LOF for outlier
detection. The example dataset is constructed as follows:

• Let G ∼ N(0,0.09) be a Gaussian random variable with zero mean and variance 0.09.
We will build the nominal or “inlier” data from G.

• Next let U ∼ Unif[−4,4] be a random variable distributed uniformly over [−4,4]. We
will build the anomalous or “outlier” data from U.

• We create a total of 220 instances xxx, each with d = 2 features. The first 100 instances,
denoted by xxx1:100, are defined by 100 independent samples of vector (G + 2, G + 2).
The next 100 instances, xxx101:200, are defined by 100 independent samples of vector
(G − 2, G − 2). The final 20 instances, xxx201:220, are defined by 20 independent samples
of vector (U,U).

• The corresponding labels are c(xxx1:200) = inlier and c(xxx201:220) = outlier. The
dataset is illustrated by Fig. 3-8(a); the nominal/inlier and anomalous/outlier data
points are designated by blue and red dots, respectively.

The LOF can be calculated for each point in the dataset; for calculations, we apply the
sklearn.neighbors.LocalOutlierFactor algorithm with parameter n_neighbors=20.
Figure 3-8(b) illustrates each of the 220 data points as circles with radii equal to the LOF
score. Small circles are predicted to be inliers, and large circles are predicted to be outliers.
The algorithm automatically determines a threshold such that any point with LOF score
greater than the threshold is labeled an outlier. The color of the circle of the circle indicates
whether the prediction was correct (green) or incorrect (red). For this example, there
were 8 misclassifications: 5 inliers were incorrectly labeled as outliers, and 3 outliers were
incorrectly labeled as inliers. ⋄
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Figure 3-8. Predicting outliers using LOF. Panel (a) illustrates the ground
truth: the dataset consists of 220 points, 20 of which are outliers. Panel (b)
illustrates each data point as a circle with radius equal to the LOF score: 8
data points are misclassified by the algorithm (red circles).

3.4. Decisions under uncertainty

We introduced decision theory for ML in Section 2.1.1, but our formulation did not account
for any sources of uncertainty in the model output. In this section, we extend the approach
to account for uncertainty due to limited training data and extrapolation error.

There are two steps. Given a trained ML model and new instance xxx′, we first apply the
MPD and LOF measures defined in Sections 3.3.1 and 3.3.2 to establish whether or not the
ML model should even be trusted to make a prediction on the label for xxx′. To establish
this trust, let tMPD ≥ 0 be a threshold parameter which quantifies the maximum degree
of uncertainty (as measured by the MPD) that can be tolerated by the decision maker.
Hence, if MPD(xxx′|T )> tMPD, then we conclude that the ML model is incapable of making
a reliable prediction on instance xxx′ and should not be trusted for decision making.

Similarly, let tLOF ≥ 1 be a parameter that quantifies the maximum degree of extrapolation
error that can be tolerated as measured by the LOF. If LOF(xxx′|T ) > tLOF, the ML model is
deemed incapable of making a reliable prediction on instance xxx′ and should not be trusted
for decision making.

If both MPD(xxx′|T )≤ tMPD and LOF(xxx′|T )≤ tLOF, we can establish trust in the ML model
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MPD, LOF

LOF(xxx′|T ) ≤ tLOF and
MPD(xxx′|T ) ≤ tMPD

LOF(xxx′|T ) > tLOF or
MPD(xxx′|T ) > tMPD

Take no action
Compute expected
losses ℓ(ai), ∀a ∈ A

Take action
a∗ = arg minai∈Aℓ(ai)

L, A

Figure 3-9. Decision process under uncertainty.

and proceed to step two. Based on the results from the Section 3.2, we can define the
expected loss of action ai ∈ A as

ℓ(ai) = E[L(ai,C)] =
κ

∑
j=1

L(ai,Cj)pj(xxx′) ≈
κ

∑
j=1

L(ai,Cj)P(Qj > Qk,∀j ̸= k), (3.4)

where the loss function L is defined by Eq. (2.3) and probability P(Qj > Qk,∀j ̸= k) is
defined by Eq. (3.2). A flowchart of the overall decision-making process is illustrated by
Fig. 3-9.
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