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Abstract

Non-biological foldamers are a promising class of macromolecules that share simi-

larities to classical biopolymers such as proteins and nucleic acids. Currently, designing

novel foldamers is a non-trivial process, often involving many iterations of trial synthe-

sis and characterization until folded structures are observed. In this work, we aim to

tackle these foldamer design challenges using computational modeling techniques. We

developed CG PyRosetta, an extension to the popular protein folding python package,

PyRosetta, which introduces coarse-grained (CG) residues into PyRosetta, enabling the

folding of toy CG foldamer models. Although these models are simplified, they can help

explore overarching physical hypotheses about how oligomers can form. Through sys-

tematic variation of CG parameters in these models, we can investigate various folding

hypotheses at the CG scale to inform the design process of new foldamer chemistries. In

this study, we demonstrate CG PyRosetta’s ability to identify minimum energy struc-

tures with a diverse structural search over a range of simple models, as well as two

hypothesis-driven parameter scans investigating the effects of side-chain size and inter-

nal backbone angle on secondary structure. We are able to identify several types of
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secondary structures from single- and double-helices to sheet-like and knot-like struc-

tures. We show how side-chain size and backbone bond angle both play an important

role in the structure and energetics of these toy models. Optimal side-chain sizes pro-

mote favorable packing of side-chains, while specific backbone bond-angles influence

the specific helix type found in folded structures.

1 Introduction

The astounding diversity of structure and function found in proteins and nucleic acids demon-

strate Nature’s ability to design sophisticated macromolecules with ordered 3D structure for

specific chemical functions. These examples in biology have inspired the discovery and de-

sign of novel non-biological foldamers, oligomeric molecules which can self-assemble into

well-structured secondary and tertiary structures.1,2 Researchers studying foldamers thus

aim to design new classes of macromolecules that share similar folding properties as pro-

teins but are constructed from a more diverse set of chemistries. These new non-biological

oligomers show promise for a diverse range of applications ranging from therapeutics,3 an-

timicrobials,4,5 catalysts,6,7 molecular sensors8 to nanostructured materials.9,10

Considerable experimental research over the last twenty years has identified many new

types of foldamers and characterized folding patterns formed by these macromolecules.1 Re-

searchers have explored natural extensions to canonical biopolymers, in addition to foldamers

with novel backbone and side chain chemistries. For example, a number of groups have inves-

tigated biomimetic chemistries such as β-, γ- and δ-peptides,11,12 peptoids13,14 and covalently

constrained variants of these peptides.15–17 Other groups have explored more exotic stabi-

lizing interactions in foldamers, such as π-π interactions and metal coordination.18,19 The

success of this research into novel folding chemistries has suggested a range of new applica-

tions these chemistries enable. For example, Porter et al. have shown that β-peptides exhibit

similar antibacterial properties as their α-peptide counterparts, without triggering the same

immune response and with significantly less proteolytic susceptibility.20 Additionally, groups
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have explored the use of artificial foldamers as molecular containers; Ferrand and Huc show

aromatic oligomer helices can be designed to recognize a range of simple guest molecules.,21

and Collie et al. achieved molecular recognition of small alcohols and diols using helical

assemblies of oligourea foldamers.22

Chemically-novel foldamers have a wealth of future applications if we can figure out how

to rationally design them. Currently, formulations for novel foldamers are a tedious process,

limited by low-yield synthesis methods and difficulties in characterization for all but the most

stable molecules. Most foldamers that resemble existing biopolymers are synthesized using

solid-phase synthesis for their respective linker bond type.23 These solid-phase synthesis

methods suffer from poor protective reaction conditions resulting in low polymer length

and low final product yield.24,25 Furthermore, methods for foldamer characterization have

additional challenges compared to more well-established biopolymer characterization due to

unknown spectroscopic signatures of new foldamer molecules.1

In addition, the design of novel backbone chemistry that folds in a desired solvent is

somewhat of an art. Gellman describes three challenges when designing novel foldamer

molecules.2

• First, a novel polymeric backbone must be proposed that has adequate folding propen-

sities and can form structure at the polymer level.

• Second, the foldamer must have an “interesting” chemical function added by design or

evolutionary techniques.

• Last, for production, the foldamer must have an efficient synthesis method.2

Unfortunately, current foldamer design efforts heavily rely on chemical intuition and in prac-

tice results in the need for trial-and-error synthesis to confirm if a foldamer properly folds un-

der particular conditions of interest, including solvent, temperature ranges, polymer lengths,

solution pH, and many more.
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Current success in foldamer design has stemmed from several biosimilar foldamer back-

bones that borrow many design choices from traditional biopolymers.1,2 Using peptide or

phosphodiester linkers allows researchers to start with a working design that has been evo-

lutionarily selected to fold under certain conditions. These biopolymers include interactions

such as hydrogen bonds in protein backbones, or π-stacking and base-pair hydrogen bonds in

nucleic acids.1,2 Biosimilar foldamers also take advantage of preexisting synthesis techniques

allowing comparatively quick synthesis compared to a novel backbone synthesis.23,26,27 De-

spite their similarity to existing biopolymers, these biosimilar foldamers are still considerably

difficult to design.1 In order to facilitate the foldamer design process, new ways to propose

potentially stable foldamer chemistries are needed. Better tools to formulate novel foldamers

would help discover new backbone chemistries that are not biologically inspired. New com-

putational tools to validate new foldamer chemistries would also help incentivize the use of

more difficult synthetic techniques.

Existing protein structure prediction software, like the popular protein folding pack-

age, Rosetta,28 leverages tools like fragment assembly,29,30 rotamer libraries,31 homology

modeling,32,33 knowledge-based potentials34 and machine learning,35,36 to take advantage of

the abundance known structures in online databases, such as the Protein Databank,37 to

quickly sample structures that are similar to existing proteins structures.38 Unfortunately

for foldamer structure prediction and design, there is a very limited set of solved structures

to guide modeling approaches.39 Any computational or theoretical approach to modeling

foldamers, for now, must be primarily based on physics-based modeling.

Computational methods such as molecular dynamics (MD) simulations are another tool

in researchers’ arsenal to predict foldamer structures and identify molecular mechanisms

driving their folding, and have been used for aromatic helices,40,41 peptoids,42–44 and β and

δ peptides.45,46 Enhanced sampling methods, such as temperature replica exchange molec-

ular dynamics, and others can be used to overcome sampling problems of longer foldamer

oligomers.42,44,47 Often MD simulations are used in conjunction with NMR and X-ray crys-
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tallography to better illustrate foldamer dynamic properties.22,48 While MD simulations can

be a useful tool in foldamer design, their results can be difficult to interpret and validate

without proper physical validation from experimental structures and observables and require

substantial effort to develop new parameterizations for each new monomer class.

In this work, we turn to generic or “toy” coarse-grained (CG) models due to the limited

foldamer structures available in the literature,39 in order to interrogate overarching physical

hypotheses and principles. Unlike traditional CG models, which are typically derived from

an underlying atomistic system,49–51 generic CG models are often chemically-nonspecific and

aim to capture physical phenomena with relatively few model parameters.52,53 These simple

models can capture qualitative insight into the mechanisms that govern the phenomena of

interest. Toy models are a common practice in capturing phenomenology with examples in

ferromagnetism,54,55 phase equilibria,56 amphiphile assembly53 and protein folding.57–59

In this paper, we use generic CG models to explore macromolecule folding using simplified

models. Non-specific CG models with relatively few parameters can capture general features

of macromolecular folding57 and give insight into folding principles that are generally ap-

plicable to all macromolecular systems, not solely oligopeptides and proteins. Despite not

modeling a specific chemical system, these simple models can capture general folding princi-

ples of macromolecules, which can inform the selection or design of novel foldamer monomers

chemistries. We choose to implement these simple models in Rosetta, an existing protein

prediction software, to take advantage of many of the physics-based methods used in tradi-

tional protein folding algorithms. For example, Rosetta offers fast sampling of configuration

spaces of heteropolymer models using Monte Carlo (MC) minimization methods.60

We introduce cg_pyrosetta as an extension to Rosetta which adds new CG function-

ality. In this package, we add new CG models to Rosetta’s library allowing users to fold

a wide range of CG representations of foldamers in the Rosetta workflow. Using Rosetta’s

Python-wrapped C++ library61 we are able to build a set of protocols that identify low-

energy structures available to CG foldamer models. Using cg_pyrosetta, we can explore
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the parameter space of CG foldamer models and investigate the underlying physical driving

forces of secondary structure formation.

In this paper, we demonstrate cg_pyrosetta’s ability to determine CG model mini-

mum energy ensembles with several ab initio folding simulations of a variety of CG models.

Through parameter scans, we explore simple foldamer hypotheses and present several in-

stances of emergent secondary structure in several CG models. We first discuss the model

parameters available in cg_pyrosetta, details of cg_pyrosetta’s implementation, the MC

minimization algorithm used in this work, and the analysis workflow we developed to identify

folded structures. Following this, we share results of several folded structures from a variety

of CG models and two preliminary parameter scans based on hypotheses about foldamer

stability. The first parameter scan varies the side chain Rmin and bond-length parameters

to explore the effects of side chain size on foldamer secondary structure and the second

scan varies backbone bond angles (θB) to explore the effects of local monomer geometry on

foldamer secondary structure. We conclude with remarks on how cg_pyrosetta can be used

in further investigations of foldamers.

2 Methods

2.1 Coarse-grained Model

The CG model implemented in cg_pyrosetta consists of a series of connected CG beads,

which can represent whole or parts of the side chain and backbone moieties. This represen-

tation was chosen as a starting point as it preserves the notion of individual residues and

distinguishes between backbone and side chain interactions. This construction also allows

us to build more complex models by adding more interaction sites or interaction potentials

to either the backbone or the side chain sites. For example, many commonly-used protein

CG models reduce the full-atom representation of a protein to a similar representation while

maintaining sufficient information to study protein folding, protein docking and large-scale
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protein dynamics.51,62,63

Our CG model implemented in cg_pyrosetta uses the standard Rosetta score functions

to implement Lennard-Jones pairwise potentials and the Rosetta molecular mechanics score

functions to implement harmonic bond angle potentials, periodic dihedral angle potentials.34

Electrostatic potentials were not used in this work, but can be explored as needed, using

either new or existing Rosetta score terms. Potentials used in cg_pyrosetta and their corre-

sponding score terms can be found in Table 1. In this work, we assume bond lengths are rigid

at their equilibrium value. This assumption was made in part to reduce the dimensionality

of the configuration space we are sampling and in part due to the minimal contribution bond

stretching contributes to overall protein motion.64

Table 1: Energetic terms, relevant parameters, and potential equations and their corre-
sponding score terms in Rosetta. Pairwise mixing in Rosetta is handled such that, εi,j is the
geometric mean of εi and εj and Rmin

i,j is the sum of Rmin
i and Rmin

j .

Energy Term Rosetta Score Term Parameters Equation

Lennard-Jones fa_atr, fa_rep Rmin
i,j , εi,j Evdw = εi,j

[(
Rmin

i,j

di,j

)12
− 2

(
Rmin

i,j

di,j

)6]
Bond Angles mm_bend kθ,i, θ0,i E = kθ,i (θ − θ0,i)2
Dihedrals mm_twist kφ,i, ni, φ0,i E = kφ,i (1 + cos(niφ− φ0,i))

For the majority of the analysis done in this paper, we explore the 1-backbone/1-side

chain (1b1s) model for a variety of hypotheses. Figure 1 depicts a short segment of a 1b1s

model with relevant topology labeled. We label the torsions, bond angles, and bond lengths

consisting of all backbone atoms as φB, θB, and dBB, respectively. Torsions, bond angles,

and bond lengths including side chain beads are labeled as φS, θS and dBS, respectively.

Since these models are of arbitrary scale, all units in this study are presented in reduced

units of length and energy. We define the backbone interaction bead distance, Rmin
B , and the

backbone energy εB as our base units.
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Figure 1: Illustration of the topology and bonded parameters of a 1-backbone/1-side chain
model (1b1s) containing 4 residues.

We note here that while these foldamer models use traditional molecular dynamics force-

fields terms, these models do not explicitly model specific underlying chemistry. These toy

models represent a simplification of foldamer systems with the goal of understanding how

general macromolecules fold in relation to their model parameters. Using CG models we

can quickly prototype several folding hypotheses through systematic variation of CG model

parameters.

In the 1b1s model and other simple models, when all residues are achiral, any type of

macromolecular folding would have both left- and right-handed versions of folded structures.

These left- and right-handed folded structures are energetically degenerate states and should,

with proper sampling, populate equally. For example, in the 1b1s model, when side chain

angles are kept symmetric about their corresponding backbone bead (θS = 180 − θB) and

torsions can freely rotate, the model is achiral and is expected to have degenerate left- and

right-handed minimum energy structures.

All molecular visualizations of CG models in this work were generated using PyMOL

2.5.65
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2.2 Package Implementation

cg_pyrosetta is implemented as a Python package that adds new CG functionality to

PyRosetta, and can be found at https //github.com/shirtsgroup/cg_pyrosetta. This

functionality is added using a set of CG residues, CG atomtypes, and CG movers. These

additions to PyRosetta work natively in PyRosetta/Rosetta objects and allow for the design

and folding of CG models. Natively, PyRosetta creates immutable library objects once

data files are read, therefore external data files must be loaded when PyRosetta initializes.

This requires new instances of PyRosetta for different types of parameters. cg_pyrosetta

initializes PyRosetta using the flags shown in table 2 to create new instances of PyRosetta

with different parameter files. cg_pyrosetta can be installed using PyRosetta/Rosetta

v2021.45dev61799 or versions after this.

Table 2: Flag descriptions used to add new CG functionality to CG PyRosetta

Flag Description
-add_atom_types Adds new atom types to an AtomTypeSet

from an external file.
-extra_res_fa Adds new residue types to a ResidueTypeSet

from an external file.
-add_mm_atom_type_set_parameters Adds new molecular mechanics atom types to

an MMAtomTypeSet using an external file.
-extra_mm_params_dir Adds new molecular mechanics bond-length,

bond-angle and torsion parameters from ex-
ternal files.

cg_pyrosetta wraps around PyRosetta and initializes it with the proper CG parame-

ter files, ensuring that most native PyRosetta functionality is still intact while performing

cg_pyrosetta simulations. All CG model files are added on top of existing libraries within

PyRosetta and therefore do not interfere with existing PyRosetta data files. The MC simu-

lations used in cg_pyrosetta use the preexisting MC framework present in Rosetta, simply

with CG foldamer models instead of proteins or other Rosetta-compatible residue types. Ad-

ditionally, the energy parameters, residue types and atom types added in cg_pyrosetta all

interact natively with existing Rosetta energy evaluation and minimization objects. When
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adding CG residues to PyRosetta, we turn off the energy parameters read in from the

extra.txt file, as we do not include these in our score function. The exclusion of the energy

terms from extra.txt is toggle-able with a utility function in cg_pyrosetta.

The CG movers added to cg_pyrosetta all inherit from the Rosetta mover base class,

but are implemented in Python. Rosetta’s default torsion movers (small and shear movers)

are implemented to change protein φ and ψ angles and are therefore incompatible with

the CG models we added to cg_pyrosetta. In the CG model space, we are interested in

searching over all available degrees of freedom. We therefore developed a CG torsion mover,

a CG bond-angle mover, and CG bond-length movers for sampling all degrees of freedom in

these CG models. When used on a CG model these movers find all the available degrees of

freedom of their respective type and randomly perturb one of them. Combining these new

CG movers and Rosetta’s existing MonteCarlo and Minimizer objects we develop a folding

algorithm that can quickly explore large regions of configuration space and identify minimum

energy structures of our first-generation CG models. Further details on the folding algorithm

developed are discussed in section 2.3

We use Signac66 to distribute and manage folding simulations. Due to Rosetta’s im-

mutable loading of parameters at the start of each instance of Rosetta, we would be unable

to launch several jobs with different parameters using Rosetta’s built-in job distributor.

Using an external job distributor, like Signac, allows us to run several new instances of

cg_pyrosetta with different sets of parameters without having to change the immutable

definition of parameters internally. Using Signac, we run all folding simulations on single

processes distributed in an embarrassingly parallel fashion. Since no information transfer

between jobs is required all folding replicas can be run independently of one another.

2.3 Monte Carlo Minimization

Monte Carlo (MC) sampling with minimization, also called basin-hopping, is a global op-

timization technique67,68 used to sample folded configurations in many of the folding algo-

10



rithms in Rosetta.60 In a traditional MC simulation, a Markov chain of random moves is

performed where moves are accepted with the probability given by

P (xi,xi−1) = min

(
1, e

−U(xi)−U(xi−1)

kBT

)
, (1)

where xi is the newly proposed coordinate matrix and xi−1 is the coordinate matrix of the

last step, U is the potential energy, and kBT is the effective temperature of the MC process.

MC simulations are used to sample the Boltzmann distribution of a system of interest.

In MC minimization, the addition of a minimization step before the MC evaluation

changes the MC process into an optimization. Instead of sampling the entire Boltzmann

distribution, MC minimization samples local minima on the search for the global minimum.

MC minimization is often effective at finding global minima in multi-dimensional systems

and has been used to great effect in molecular conformation optimization.67–69 Monte Carlo

minimization is easily applied to the CG models described above using Rosetta’s MC frame-

work. Using the CG movers we developed in conjunction with Rosetta’s minimizer object,

we are able to construct a MC minimization algorithm that can quickly search for minimum

energy structures in the simple CG models described above.

We couple MC minimization with simulated annealing to enhance the global-optimization

search. Annealing the simulated temperature, T , changes the tolerance of accepting moves

over the course of the MC minimization process. At higher temperatures, perturbations

which increase the system energy are selected with higher probability, creating a more ex-

ploratory search of the potential energy surface. At low temperatures, moves which increase

the system energy are accepted with lower probability, causing the MC minimization to get

trapped in local minima and exhaustively sample the local potential surface. Combining

exploratory and exhaustive sampling ensures solutions consider a wider range of the solution

space compared to traditional gradient-descent optimization.

In this study, the temperatures for our MC minimizations follow the geometric series

below:
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Tn = T0(ra)
n for n = 0, 1, 2,. . . , (2)

where T0 is the initial simulated temperature, ra is the annealing rate and n is the index

of temperatures. MC minimization simulations are run for N steps at M different tempera-

tures following the annealing schedule above. A flow diagram of the MC minimization with

simulated annealing algorithm used in this work is shown in figure 2.

Figure 2: Flow diagram depicting how the simulated annealing MC minimization simulations
are carried out. Fixed temperature MC simulations with N steps are carried out sequentially
at each M different temperature in the annealing schedule. Structures and energies are
output during the course of the entire simulation.

Simulation parameters used for the MC minimization with simulated annealing are de-

termined empirically for each folding experiment in this study following a few heuristics.

The initial simulation temperature, T0, starts at the same order of magnitude as the ran-

dom structure energy distribution, to ensure high energy moves are accepted early on in the

simulation. To ensure the annealing process spends sufficient time in both the exploratory

and exhaustive regimes, we select an annealing rate, ra, to slowly transition between the

two regimes. The transitions vary from model to model and can give insight into the sur-

face being sampled. We share and examine different transitions in Supporting Information
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section S1.

The number of simulation steps, N , is selected such that energies are exhaustively sam-

pled at each Tn and the number of annealing cycles, M , is chosen such that the final tem-

perature, TM is 2–3 orders of magnitude below the initial energy of the foldamer. Figure 3

shows an example of the trajectories of energy over the annealing process. At high temper-

atures, energies have large fluctuations as the foldamer model explores many configurations.

At lower temperatures, the simulation settles into the local minima of the potential energy

surface and fluctuates much less. To enable the process to find a consensus minima for a

given parameter set, we run 100 replicas of each simulation and verify multiple simulations

are populating the minimum structures found.
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Figure 3: Example energy trajectory of an annealing simulation with 100 replicas. Each
replica’s energy trajectory is shown in a different color. The annealing temperature of these
simulations is drawn as a smooth red line with an axis on the right side. In this partic-
ular trajectory, we see a bifurcation of trajectories as the simulation transitions from the
exploratory regime to the exhaustive regime, as some go visit the minima close to the global
minimum but others are trapped in higher minima. The location and magnitude of the
transition region can vary significantly between models.

2.4 Analysis Techniques

2.4.1 RMSD clustering

To identify relevant structures from simulated annealing trajectories we turn to RMSD clus-

tering of structures. Applying clustering to foldamer trajectories enables us to take a large
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collection of structures and reduce them to a handful of representative structures.70 In this

work, we run clustering on the second half of the folding simulation, to only cluster structures

identified in the low-temperature sampling regime.

We compute an RMSD matrix using:

RMSD(xi,xj) =

√√√√ 1

N

N∑
k=1

‖xik − xjk‖2, (3)

where xi and xj are the coordinate matrices from structure i and j, respectively, xik is

the atom position vector for atom k index within structure i and N is the total number of

atoms of each structure. Structures are aligned using MDTraj before calculating RMSDs,71

such that we are calculating minimum RMSD values between structures. The RMSD ma-

trix was clustered using the Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) method implemented in scikit-learn72 to cluster the RMSD matrix of tra-

jectory frames from our folding simulations. Using the clustering workflow we implemented

in analyze_foldamers,73 we can quickly identify representative structures from the MC

minimization with simulated annealing process. DBSCAN clustering relies on two hyper-

parameters, ε and min_samples. A data point with min_samples other samples within a

distance ε defines a core point of a cluster. Data points within ε of core points without

min_samples surrounding samples are considered neighbors of core points and are included

in the cluster. Points outside of ε of core points are labeled as noise points.74,75 DBSCAN is a

deterministic density-based clustering approach which has worked well for peptide systems76

and similar toy models.77

To improve RMSD clustering we apply a pre-clustering filter to remove especially noisy

trajectory frames, such as those found in the high-temperature regions of the folding simu-

lations. The inclusion of a pre-clustering filter of trajectory structures has made clustering

more reliable in several instances of clustering of bio-molecular structures.77–79 In the pre-

clustering filter, the user specifies a filter percentage, and analyze_foldamers optimizes a
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neighbor cutoff radius and neighbor density cutoff using Scipy minimize80 with the Nelder-

Mead method, to reduce the data to that percentage.73 For this study, we filtered 50% of

the original trajectories based on an optimized distance cutoff for each parameter set.

Cluster medoid structures are defined as the structure with the largest similarity score,

where similarity scores for each structure within a cluster are calculated using:

Si =

Nk∑
j

exp
−RMSD(xi,xj)

dscale
, (4)

where xi and xj represent coordinates of structures i and j within cluster k, Nk is the

total number of structures in cluster k, RMSD is the operation shown in equation (3)

and dscale is a scaling term, often set to the standard deviation of the RMSDs to make

the calculation scale invariant.71 Once a medoid structure for each cluster is selected, we

compute the silhouette score of each point within a cluster using:

si =
bi − ai

max{ai, bi}
, (5)

where a(i) is the average distance between a cluster point and all other points in its own

cluster, and b(i) is the distance between a cluster point and the next nearest cluster medoid.

Silhouette scores range from 1 to -1, where a value of 1 indicates a structure is well separated

from other clusters, a value of 0 indicates a structure is equally distant from its assigned

cluster to another cluster, and a value of -1 indicates a structure is closer to another cluster

than its assigned cluster.81 We calculate the silhouette scores for all structures and report

the average silhouette score of all non-noise structures to evaluate the quality of clustering.

Large silhouette scores imply the cluster was well-defined and structurally distinct from other

clusters.

Choosing clustering hyperparameters is a nuanced task. In this work, we aim to iden-

tify hyperparameters that yield low numbers of clusters and high average silhouette scores.

Finding such hyperparameters represents the simplest way of clustering this data set while
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still finding structurally distinct clusters. To accomplish this we perform a Pareto-like op-

timization over a grid search of hyperparameters. Further details of this hyperparameter

selection is detailed in Supplemental Information section S2.

Additionally, we identify minimum energy structures of each cluster as the representative

structure of that cluster. We choose minimum energy structures of each cluster rather than

the identified medoid structure because our sampling method has a minimization component,

therefore all identified clusters represent identified local minima, where the structure of

interest would be represented by that local minima. Using minimum energy structures

of identified clusters ensures good overlap between representative structures from different

clusters.

2.4.2 Cluster RMSDs

A necessary condition for well-defined structural minima that are likely to have good fold-

ing properties is that there exist well-defined clusters with high structural similarity that

are structurally distant from other clusters. We calculate and report the average RMSD

within all cluster structures to their identified minimum energy structures (RMSDcluster),

to measure how tightly defined the clusters are. We also calculate RMSD between cluster

minimum-energy structures (RMSDinter) to quantify how structurally different clusters are

from one another. With RMSDcluster and RMSDinter, we can asses how structurally distinct

clusters are from one another and how tightly spread clusters are about their medoids.

2.4.3 Degenerate Cluster Exclusion

For models with achiral residues, we expect to find degenerate left- and right-handed versions

of folded structures. Degenerate clusters would have mirror-image structures and also the

same energy distribution. To characterize differences between the minimum energy clusters

to other clusters we exclude mirror clusters from RMSDinter and energy gap Z-score calcu-

lation, such that any minimum cluster RMSDinter and energy gap Z-score is not between
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degenerate clusters.

We identify mirror clusters by calculating the matrix:

Aij = min (RMSD(xi,xj), RMSD(xi,−xj)) (6)

where RMSD is the operation shown in equation (3), xi and xj are atom coordinates of

cluster minimum energy structures. Structures with smaller mirrored RMSDinter compared

to their original RMSDinter are candidates for mirror structures. If the mirror RMSDinter

is smaller than the RMSDcluster of the cluster i, cluster j is considered a mirror of cluster i.

2.4.4 Cluster Energy Distributions

Once folding trajectories are clustered, we can evaluate the energetics of each cluster. In

order to have sufficient impetus to fold, folded structures must have significantly lower ener-

gies compared to competing structures identified in the clustering process. We hypothesize

models must have a minimum energy cluster with energies significantly lower than other

identified clusters to be considered viable folders. We quantify this value using a z-test for

two means between all cluster energy distributions, using:

Zij =
µi − µj√
(σi)2

ni
+

(σj)2

nj

(7)

where µi and µj are the means of the energies in the clusters i and j, σi and σj are

the standard deviations of the energies of cluster i and j, and ni and nj are the number of

samples in each clusters i and j.

Combining cluster energetic information with RMSDcluster illustrates the potential en-

ergy landscape of each identified cluster. In figure 4 we can see two minimum energy clusters

are identified along with two higher energy clusters. In this example, the two minimum

energy cluster corresponds to left- and right-handed helices. The groups of points near 0.08

and 0.12 RMSD away from the minimum energy structure represent structures with frayed
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helix ends.

Figure 4: To characterize the potential energy surface of each model, we plot RMSDs from
cluster minimum energy structures to individual cluster structures against structure energies.
For each cluster, the minimum energy structure will have an RMSD of 0 and will have the
lowest identified energy of its respective cluster. Large gaps in the cluster RMSD of each
cluster are generally associated with terminal residues misfolding from the minimum energy
structure. Minimum energy structures for each cluster are presented below the plot. Clusters
0 and 1 are the degenerate right- and left-handed helical minimum energy clusters identified
in this parameter scan. Clusters 2–4 represent higher energy minima found while searching
this potential energy landscape. Gaps in the RMSD distribution of each cluster are the result
of discrete unfolding events of 1–2 residues. Note carefully that distance along the horizontal
axis represents distances from the cluster minima to each structure, not the distance between
clusters.
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In our energetic analysis, we identify the smallest energy Z-score from the minimum

energy cluster, which we term the energy gap Z-score of the model. If there are degenerate

mirror-image clusters due to the presence of mirror folded states, we exclude the energy gap

Z-score between these identified mirror clusters. In the case of figure 4, clusters 0 and 1 are

mirror clusters, as they represent both left- and right-hand forms of a helix. We expect a

large energetic Z-score value between the minimum energy clusters and other higher energy

clusters. For the example shown in figure 4, the energy gap Z-score from cluster 0 or cluster

1 to the next lowest energy cluster (cluster 3) is 3.98. Large energy gap Z-scores represent

larger energy gaps between identified clusters. Finally, We note the structural and energetic

overlap between degenerate clusters 0 and 1 also indicates good sampling of the configuration

space of this model.

2.4.5 Helix Fitting

To classify helical clusters found in these parameter scan we perform a least square fit of the

backbone coordinates to the parametric helix equations using methods described in Refs.

82 and 83, which we implemented in analyze_foldamers.73 Further details of this fit are

included in Supplemental Information section S3. We find the least-squares fit performed

best when fitting to the internal residues of the helical structures, rather than all residues.

Excluding the end residues from the least-squares fit removes noise introduced from frayed

ends, and more accurately classifies the helix type in the bulk of the structure. From the

least-squares fit, we report helix residues per turn for models with helical minimum energy

clusters. From the least-square fit, we report the root-mean-squared error of the cylindrical

fit, RMSEcyl, and the root-mean-squared error of the helix fit, RMSEhelix, as metrics of

the quality of fit. All helix least-squares fits are detailed in the Supplemental Information

section S3.
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2.5 Identifying Distinct Folded Structures

We are most interested in models with clusters that are structurally compact, are structurally

well-separated from other clusters, and are significantly lower in energy than other identified

clusters to be considered well-behaved. These are likely candidates for models that would

have folded thermodynamic ensembles. In this section, we explore the four metrics for these

properties to identify and evaluate well-behaved clusters.

Using metrics defined in previous sections we can identify candidate foldamer models that

have structured, low-energy folded states. To reiterate, we evaluate the following metrics for

each parameter set:

• Energy gap Z-score: The Z-score between the energies of the lowest energy clus-

ter and the 2nd lowest energy cluster, excluding degenerative clusters. This metric

evaluates the separation in energy from identified clusters. Larger energy gap Z-scores

correspond to energetically distinct minimum energy clusters.

• Average silhouette score: The average silhouette score from clustering is used as a

metric to evaluate the quality of the clustering. Silhouette scores compare the distance

of a point from its own cluster to the next nearest cluster. Larger silhouette scores

indicate more distinct clusters.

• Minimum Inter-minimum RMSD: The smallest RMSD between the lowest energy

cluster’s minimum energy and all other clusters’ minimum energy structures. Struc-

turally distinct clusters will have large minimum inter-minimum RMSDs indicating

that other identified clusters are not structurally similar to the minimum energy clus-

ter.

• Cluster RMSD: The average RMSD of all structures in a cluster to its medoid

structure. Cluster RMSD is a measure of how structurally spread out a cluster is.

Small clusters represent clusters with fewer fluctuations around
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We use the following guidelines to differentiate potential foldamers with likely structured

folds from those with non-structured folds.

1. Identified minimum energy clusters should have a minimum energy gap Z-score greater

than approximately 1.0, indicating that there is little overlap between energy distribu-

tions of the minimum energy cluster energy distribution with other clusters.

2. Identified clusters should also have silhouette scores closer to 1.0, indicating a well-

separated set of clusters.

3. The minimum energy cluster should also have comparatively large minimumRMSDinter

and comparatively small RMSDcluster, indicating structurally distinct and well-defined

clusters.

4. Additionally, to ensure minima can be found consistently we confirm that identified

clusters are found from many replicas of the folding simulation, giving rise to a con-

sensus minimum.

To illustrate these metrics, we plot them on a radar plot for each parameter set. Figure 5

shows an example radar plot for the sample parameter set shown in figure 4. This example

parameter set represents a cluster with a well-defined minimum energy cluster, with optimal

values for each of the four identified metrics. The axes of these radar plots are chosen such

that better performance on each metric results in a larger total area for the model. In

particular, RMSDcluster is plotted on an inverted axis so that a larger value indicates a more

compact cluster.
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Figure 5: Example radar plot (left) of a well-defined helical cluster (minimum energy struc-
ture shown on right). This cluster has a minimum energy gap Z-score of 3.98, an average
silhouette score of 0.76, a RMSDcluster of 0.65 Rmin

B and a minimum RMSDinter of 2.13
Rmin
B . The radar plots are plotted such that larger colored areas represent better candidate

foldamers.

2.6 Simulation Details

2.6.1 Diverse minimum energy structure search

To showcase the diverse toy models available in cg_pyrosetta, we performed several MC

minimization annealing simulations for the 1b1s model, the 1-backbone/no-side chain (1b0s)

model, the 1-backbone/2-side chain (1b2s) model, the 1-backbone/3-side chain (1b3s) and

the 2-backbone/no side chain (2b0s) hetero-oligomer model. Findings from this scan are

shared in the results and discussion in section 3.1. As several different model parameters

and annealing schedules were required for the many parameter scans performed on each of

these models, we direct the reader to section S4 for further details on model parameters and

annealing parameters.
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2.6.2 Side chain size effect on secondary structure

To demonstrate the utility of cg_pyrosetta to test structural hypotheses about foldamers,

we investigate how side chain size in 1b1s models changes the model’s minimum energy

structures, energetics, and ability to form well-folded structures. We perform a series of

folding searches to scan over a range of side chain sizes in a 1b1s model. This parameter

scan was inspired by the wide range of side chain sizes observed in natural amino acids. The

toy models we investigate in this parameter scan do not directly correspond to amino acid

secondary structure, however, the resulting structures can give insight into the effects side

chains have on secondary structure propensities.

For this parameter scan we varied the side chain bond length, dBS, and the side chain

interaction radius, Rmin
S in tandem from values of 0.5 to 3.0 Rmin

B in increments of 0.25 for

a foldamer with 15 residues. We use SC to indicate the single value of both Rmin
S and dBS

used for a model for the remainder of the paper. 15 residue homo-polymers were used in this

study as we were able to identify single folding helices at this chain length. Longer chain

length simulations were tested and are discussed in the Supplemental Information section S5.

Bonded modeling parameters were chosen to best replicate a 6 residues-per-turn helix with

the fewest model parameters necessary. These model parameters include: backbone bond

lengths dBB = Rmin
B , bond angle parameters of θB = 120◦ and θS = 180 − θB

2
. Energetic

parameters for these models were selected to have practically rigid bond-angles, with a

kθB = kθS = 3750εB and equivalent side chain and backbone interactions, with εS = εB. No

torsion potentials were used for these models, essentially modeling freely rotating torsion

angles. Since there are no preferred torsion angles, we expect to find degenerate left- and

right-hand helix clusters if a helix cluster is identified.

The annealing schedule used for the side chain size parameter scan used the following

annealing parameters: T0 = 50εB, ra = 0.9, annealing was run for M = 50 cycles, and

MC simulations at each temperature are run for N = 10000 steps. Each parameter set was

repeated with 100 replicas, to identify a consensus minimum energy structure. Individual
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simulation replicas for the side chain size parameter scan took 50± 21 minutes to finish on

single core processes, with variations occurring because of differences in minimization times

for different models. In this scan, minimum energy clusters sampled from an average of 33

out of 100 simulations, indicating excellent sampling, with the lowest parameter set sampling

4 out of 100 simulations, which indicates that the same minima can be found multiple times.

Findings from this experiment are described in the results and discussion in section 3.2.

2.6.3 Internal bond-angle effect on secondary structure

In nature, there are a wide range of helices observed in biopolymer secondary structure.

From 3.6 residues-per-turn α-helices in proteins to 10.5 residues-per-turn double helices in

B-DNA,84 biopolymers adopt a wide range of helical secondary structures. Inspired by

the diversity of helices observed in nature, we designed a parameter scan in a 1b1s model

to explore the different helix types accessible within these toy models. The θB parameter

most easily changes the number of residues-per-turn in this model and is the focus of the

next parameter scan. For this parameter scan we varied the θB from 100◦ to 160◦. Other

model parameters include: dBB = Rmin
B , dBS = Rmin

B and θS = 180 − θB
2
. Similar energetic

parameters to the side chain parameter scan were selected for the bond-angle parameter

scan, with εS = εB and kθ = 3750εB. We borrow the Rmin
S = rBS = 1.28Rmin

B side chain

parameter from the side chain size parameter scan, Rmin
S = rBS = 1.28Rmin

B and θB = 120◦

had one of the more well-defined helical minimum energy clusters.

The annealing schedule used for the backbone bond angle parameter scan used the follow-

ing annealing parameters: T0 = 50εB, ra = 0.925, annealing was run for M = 68 cycles, and

MC simulations at each temperature are run for N = 10000 steps. Each parameter set was

repeated with 100 replicas, to identify a consensus minimum energy structure. Individual

simulation replicas for the backbone bond angle, θB, parameter scan took 38± 9 minutes to

finish on single core processes. Minimum energy clusters were sampled on average in 52 out of

100 simulations, indicating excellent sampling, with the lowest parameter set sampling 3 out
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of 100 simulations, indicating moderate repeatability when using a large number of replicas.

Findings from this experiment are described in the results and discussion in section 3.3.

3 Results and Discussion

3.1 Diverse minimum energy structure search

Figure 6: Structures found from a diverse range of folding simulations, with side and top
views shown on the left and right, respectively. Structures A, B, D, and F are several types
of helices found with homopolymer models, structure C is a loop conformation, structure
E is a sheet-like fold, structure G is a double-helix, structure H is a knot-like structure,
and structure I is a helix with a heterogeneous backbone. Further detail on each structure
can be found in the text of this section. To aid visualization of interaction site placement,
especially the backbone, CG spheres are drawn to 0.25 of their original Rmin. Visualizations
with to-scale CG spheres are presented in section S4.

Using cg_pyrosetta we can quickly prototype a wide range of CG models to investigate

foldamer design principles. Figure 6 showcases a variety of interesting low-energy structures
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we are able to fold using models generated with cg_pyrosetta. A relatively straightforward

search for interesting structures identified many types of secondary structure, such as many

types of single helices, double helices, sheet-like and knot-like structures. These complex

secondary structures were found by modulating parameters in fairly simple toy models.

More information on how these folding simulations were set up is described in more detail

in section S4.

In figure 6 structure A, B and C are examples of helix and loop configurations found

with different parameters using the 1b1s model. Structure A shows a 3.6 residues-per-turn

helix, structure B shows a 6.6 residues-per-turn helix, and structure C shows an 11 residue

loop. These structures were found in the θB parameter scan using the 1b1s model presented

in section 3.3.

Structure D, E and F shows secondary structures we found using the 1b2s and 1b3s

models. Structure D is a 1.7 resides-per-turn helix, structure E is a folded sheet-like structure,

and structure F is a 5.5 residues-per-turn helix. The longer side chains in the 1b2s and 1b3s

models adds more conformational flexibility compared to the 1b1s model, making models

folding difficult due to many competing partially folded metastable states. To address this

conformational flexibility we added model parameters that aim to reduce the conformational

flexibility of these models. For example, in structure D steric clashes between large side

chains reduced conformational flexibility. In model F rigid torsion constraints of the side

chains also helped reduce conformational flexibility.

Structure G and H are secondary structures found using a 1b0s chain model. Structure

G is a single-stranded foldamer that folds into a double helix where each strand is a 10.9

residues per turn helix. We discovered this structure by placing a rigid hinge residue in the

center of two freely rotating strands of backbone beads with θB = 155◦. Both left- and right-

hand versions of these double helix structures are observed in equal frequency. Structure H

is a knot-like structure found from a freely rotating strand of backbone beads with a θB of

155.
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Structure I was generated using a 2b0s model. Instead of having a uniform backbone

geometry, there are 2 different bead types shown as red (R) and orange (O) beads arranged in

a ROR repeating unit. The red beads have equilibrium θB = 120 and the orange beads have

equilibrium θB = 60. In this model, we were able to find a 6.3 residues-per-turn helix. For this

structure, rigid backbone angle and torsion potentials were used to reduce conformational

flexibility and helped form a helix with a heterogeneous backbone. Additionally, this was the

first example of a stable helix structure emerging from our toy foldamer model without side

chain beads, indicating helix configurations could be stabilized without the need for volume

exclusion from SC moieties.

The preceding structures were identified by examining the minimum energy structures

of many folding simulations, with specific parameters and simulation details of provided in

the supporting information (SI S4). These represent local minimum energy structures on

complex potential surfaces, but may or may not represent well-folding models. For a better

understanding of how well these structures might fold, one would have to identify all of the

minimum energy structural clusters and determine whether they are both energetically and

structurally distinct from other clusters of local minima observed in the process. The other

two sections in this work perform more rigorous energetic and structural analysis to identify

the best folding candidates during two parameter scans performed with cg_pyrosetta.

3.2 Side chain size effect on secondary structure

Our analysis workflow is able to identify and characterize a wide range of minimum energy

clusters for each foldamer model in the SC parameter scan. Figure 7 shows all minimum

cluster structures identified in this parameter scan except for parameter set SC = 3.0Rmin
B .

Parameter set SC = 3.0Rmin
B is excluded as it shares a similar structures and metrics as

parameter sets SC = 2.5Rmin
B and SC = 2.75Rmin

B . Structures are presented with a side-on

and top-down view, along with a radar plot with all four metrics previously described. All

radar plots share the same axis for comparison between SC values. Summary metrics for
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the entire SC parameter scan are shown in section S5 and all energy vs cluster RMSD plots

are shown in section S8.

A range of ordered and disordered structures were found in this relatively simple param-

eter scan. Models with parameters SC = 0.5Rmin
B , SC = 0.75Rmin

B and SC = 1.0Rmin
B all

adopt a disordered globule minimum energy structure. These structures are compact but

have no regular structure. Models with parameters SC = 1.25Rmin
B and SC = 1.5Rmin

B

have helical minimum energy clusters that with 5.5 residues-per-turn and 5.4 residues-per-

turn, respectively. Models with even larger side chains with parameters SC = 1.75Rmin
B ,

SC = 2.0Rmin
B and SC = 2.25Rmin

B all have helical minimum energy clusters with 4.7

residues-per-turn, 4.6 residues-per-turn and 4.6 residues-per-turn, respectively. At large side

chain sizes, like SC = 2.5Rmin
B and SC = 2.75Rmin

B , we see minimum energy structures

with more extended configuration, with some degree of normal SC packing, but with a fairly

disordered backbone. Through modification of the Rmin
S and dBS parameters, we are able to

change the minimum energy conformations of these simple models.

The transition from disordered minimum energy structures in parameters SC = 0.5,

SC = 0.75Rmin
B and SC = 1.0Rmin

B to more ordered helices from parameters SC = 1.25Rmin
B

and higher hints to a minimum necessary side chain volume to stabilize helical conformations.

As these models do not have torsion potentials biasing structures into specific equilibrium

helix pitches, these emergent helices are primarily driven by the side chain excluded volume

and the internal backbone bond-angle of θB = 120◦. With an internal angle of 120◦ we

expected to find helices with 6 residues-per-turn, but in practice find helices with half-

increment helices (∼5.5 residues-per-turn and ∼4.5 residues-per-turn). These half-increment

helices appear more favorable, as they allow hexagonal-like packing of the side chain beads

around the helix.

We are able to identify minimum energy clusters for each of these parameter sets. How-

ever, not all parameter types yield well-defined minimum energy structures according to the

four metrics described earlier. As listed in figure 7, models SC = 0.5Rmin
B , SC = 0.75Rmin

B
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and SC = 1.0Rmin
B all have poor RMSDinter and RMSDcluster scores. Energetically these all

share very small energy gap Z-score values, indicating minimum energy clusters have ener-

getic significant overlap with other identified clusters. Parameter SC = 1.25Rmin
B has a large

energy gap Z-score of 4.0, an average silhouette score of 0.76, a minimum cluster RMSDcluster

of 0.65 Rmin
B and a minimum cluster RMSDinter of 2.1 Rmin

B indicating a very well-behaved

minimum energy cluster that is both energetically and structurally distinct from other clus-

ters. Models with parameters SC = 1.5Rmin
B , SC = 1.75Rmin

B and SC = 2.0Rmin
B all have

reasonably well-behaved silhouette scores and minimum cluster RMSDinter, indicating struc-

turally distinct minimum energy clusters. The SC = 1.5Rmin
B and SC = 2.0Rmin

B models had

the two largest RMSDcluster observed in this parameter scan with both having RMSDcluster

values of 0.11Rmin
B , indicating a rather large spread of structures for these identified clusters.

Energetically, models with parameters SC = 1.5Rmin
B , SC = 1.75Rmin

B and SC = 2.0Rmin
B

all exhibit small to moderate energy gap Z-scores, indicating that identified minimum en-

ergy clusters have some overlap between energetic clusters. Parameter set SC = 2.25Rmin
B

has a large energy gap Z-score of 3.2, but fairly poor silhouette scores, RMSDcluster and

RMSDinter. Parameters SC = 2.5, SC = 2.75 and SC = 3.0 (not shown), all have good

silhouette scores, RMSDcluster values and RMSDinter values, indicating structurally well-

defined clusters. However, all three have very small energy gap Z-score values, indicating

there are other clusters that are energetically similar to the minimum energy clusters iden-

tified in these parameter scans. In section S7 we share several examples of cluster minimum

energy structures for clusters of the next lowest energy structures, to give a structural basis

for the RMSDinter.
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Figure 7: Minimum energy cluster minimum energy structures from the side chain size
experiment (extended SC = 3.0 not shown), with summary metrics plotted on radar plots.
CG spheres are drawn to 0.25 of their original Rmin to help with the visualization of the
backbone structure. Space-filling versions are shown in figure S3. This 1D parameter scan
reveals a few types of helical structures, such as the 5.5 and 5.4 residues-per-turn helix
found at SC = 1.25Rmin

B and SC = 1.5Rmin
B , respectively, the 4.7 residues-per-turn helix

found at SC = 1.75Rmin
B and the 4.6 residues-per-turn helix found at SC = 2.0Rmin

B and
SC = 2.25Rmin

B . While helices are possible low-energy structures for many of these parameter
sets, not all identified helices have favorable cluster metrics. We observe that no helices were
found below Rmin

S = 1.25Rmin
B . 31



The SC parameter scan also identifies two distinct modes of helix stabilization. Looking

at the average energy of each of the minimum energy clusters over each side chain size, shown

in figure 8. At SC = 1.25Rmin
B the minimum energy cluster has an average energy of around

-100 εB, where at SC = 2.25Rmin
B , we see an average energy of the minimum energy cluster

with a value of 0 εB. Both these parameter sets achieve a large energy gap Z-score, but

with different types of stabilization. With larger side chain volumes steric clashes become

larger, increasing the overall energy of larger side chain models.
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Figure 8: Average energy of all minimum energy clusters in the side chain parameter scan.
The blue dashed lined denotes parameter set SC = 1.25Rmin

B and the red dashed lined
denotes parameter set SC = 2.25Rmin

B . These two parameters represent the two minimum
energy structures with the most prominent energy gap Z-score. When SC = 1.25Rmin

B ,
we see a minimum in the average energies, representing a side chain size where favorable
interactions are being maximized. At SC = 2.25Rmin

B and larger side chains, the average
energy of the minimum energy clusters are much larger in energy, indicating steric exclusions
play a primary role in structure formation. Note spheres are shown with radii 0.25 of their
actual value to enable the backbone structure to be seen; space-filling structures are shown
in figure S3.

3.3 Internal bond-angle effect on secondary structure

For the bond-angle parameter scan we ran folding simulations for 31 sets of θB from θB = 100◦

to θB = 160◦ in increments of 2◦. Figure 9 shows radar plots of a subset of this parameter

scan, with foldamer structures and metrics being shown for increments of 4◦. We show
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structures and metrics up to θB = 144◦, as all structures beyond this point have similar

structures to the minimum energy cluster for θB = 144◦. All summary metrics for the

entire parameter scan are shown in section S6 and all energy vs cluster RMSD plots for the

structures shown in this parameter scan are shown in section S9.
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Figure 9: A subset of cluster minimum energy structures with summary metrics plotted
on radar plots for the bond-angle parameter scan. CG spheres are drawn to 0.25 of their
original Rmin to help with the visualization of the backbone structure. Scanning over θB we
identified helices from 4.2 residues-per-turn to 6.6 residues-per-turn. After the partial helix
found for θB = 132◦, larger θB models adopt an open loop configuration.

Variation of the internal backbone angle θB in the 1b1s model modulates minimum energy
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structures through a range of different helices. For the θB = 100◦ model we identify a 3.6

residues-per-turn helix, for the θB = 112◦ model we identify a 4.7 residues-per-turn helix,

for the θB = 116◦ model we identify a 5.3 residues-per-turn helix, for the θB = 120◦ model

we identify a 5.5 residues-per-turn helix, for the θB = 124◦ model we identify a 5.9 residues-

per-turn helix and for the θB = 128◦ model we identify a 6.6 residues-per-turn helix. At

lower θB values when helices are not achieved we observe partial helical folds (θB = 108◦)

and disordered folds (θB = 104◦). These misfolded structures arise from bonded geometry

restricting the optimal arrangement of non-bonded interactions in a repeating structure. At

larger θB values helices become less favorable and loop conformations become the dominant

structure. For the 15mer foldamer models used here, loop conformations become the primary

structure when there are not enough residues to form several helical turns. For models with

θB > 150◦, all identified structures did not fold back onto themselves and resulted in few to

no clusters.

Different internal backbone angles θB lend themselves to different packing of the side

chains. The minimum energy interaction distance for backbone and side chain beads is 2Rmin.

As we change the θB different emergent structures optimize these distances. Helices offer a

periodic solution to place backbone and side chain beads near their ideal interaction distance.

However, in cases like θB = 104◦ and θB = 108◦, the folding simulations are not able to

identify a helix that places backbone and side chain beads at this optimal interaction distance

for all contacts. In addition, the loop conformations become favorable when more ideal length

interactions are satisfied in the loop conformation compared to a helical conformation.

The backbone angle θB also governs the energetic characteristics of the minimum energy

structures identified in the bond-angle scan. The energy gap Z-score for θB = 100◦, θB =

104◦, θB = 108◦ and θB = 116◦ all have very small energy gap Z-scores. There are clusters

with both helices and disordered structures with similar energies, resulting in poor energy

gap Z-scores. This indicates that while helices are low-energy structures, they do not always

form well-separated minima. Typical structural changes to helices that result in small energy
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changes tend to be misfolds of the terminal resides. The more disordered structures with

poor Z-scores tend to appear at transitions between helix types. Examples of end misfolds

are shown in the section S7. We identified large energy gap Z-scores for the θB = 112◦

model, θB = 120◦ model, θB = 124◦ model, θB = 128◦ model and θB = 144◦ model. At

larger θB few to no clusters were identified, therefore no energetic analysis was performed.

We note for some examples in the θB parameter scans we identified cases where sampling

of the minimum energy clusters did not adequately capture both left- and right-handed

versions of the folded structures. We present energy vs. cluster RMSD plots for all structures

presented in the two parameter scans in section S8 and section S9. One instance of poor

sampling was identified where only a single helical minimum energy cluster was identified.

If true exhaustive sampling was achieved, we would expect to find both left- and right-hand

versions of this single helix. Identifying a single helical cluster does not change the calculated

energy gap Z-score and RMSDinter from the lowest energy cluster to other clusters; however,

it does indicate that in some cases these sampling techniques may not be able to accurately

capture the other identified clusters. In particular the θB = 116◦ model (figure S23) and the

θB = 128◦ (figure S26) model exhibit this poor sampling.

Another example of poor sampling was identified where energetically similar minimum

energy clusters had poor overlap between their mirrored minimum energy structures. Here

both left- and right-handed clusters were identified, however, due to poor overlap between

the mirrored minimum energy structures of each cluster, these clusters were not labeled as

mirror clusters, resulting in an extremely small energy gap Z-score where larger values would

have been reported. The θB = 124◦ model (figure S25) exhibited this inadequate sampling.

4 Discussion and Conclusions

In this work, we demonstrate cg_pyrosetta’s ability to find both minimum energy struc-

tures and putative well-structured ensembles of a variety of toy foldamer models. We have
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shown that folding CG foldamer models with MC minimization with simulated annealing

is a fast and effective way to identify potential global minimum energy structures over a

large range of coarse-grained foldamer topologies. We presented a variety of examples of

folded structures using a range of toy models. We additionally investigated two folding hy-

potheses relating model parameters of the (1b1s) model to foldamer secondary structure.

We identified a rich diversity of secondary structures available to these simple models, in-

cluding several single helices, double helices, sheet-like structures, and knot-like structures.

We found that minimum values of Rmin
S and dBS are needed to promote helix formation

and that certain side chain sizes allow for better packing. Varying θB quickly changed the

minimum energy structures of these models from 3.6 residues-per-turn helices to more open

loop configurations. Using the CG models shown in this work, we can identify structural

and energetic changes made to generic macromolecules to help steer the atomistic design of

novel foldamer molecules.

With cg_pyrosetta we can investigate further folding hypotheses with the goal to inform

atomistic foldamer design. While this study was a feasibility study, further folding hypotheses

can easily be explored using cg_pyrosetta’s framework. In this study, we explored the effects

of model changes on an initial 5.5 residue per turn helix identified previously in the study.

Along these lines, cg_pyrosetta enables exploration of folding effects of model parameters

on broad families of secondary structures, giving a clearer picture of the overall effect of these

model changes, including increased complexity of monomer sites to better capture molecular

structure. Given how computationally inexpensive (≤ 1 hour/simulation running on a single

core) these simple MC simulations are, expanding the study to families of models is easily

achievable.

In addition, more complex energy functions can be explored with this framework, and

such additional terms in the energy functions can bring these models closer to more atom-

istically realizable models. Using both Lennard-Jones and Coulombic interactions, already

implemented in Rosetta, one can investigate the effects of short-range versus long-range in-
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teractions on foldamer secondary structure. Directional terms, such as hydrogen bonding

terms already implemented in Rosetta allow investigation of anisotropic attraction and its

importance in stabilizing foldamer secondary structure. Rosetta has a modular architecture

that allows other score function libraries to be easily implemented as well.

cg_pyrosetta can therefore be of use to identify minimally descriptive CG models that

can accurately describe the folding of atomistic foldamer systems. These further explorations

will continue to expand the number of physical hypotheses that can be explored through sim-

pler coarse-grained, models, which can then inspire the development of atomistic resolution

foldamers both computationally and experimentally.
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S1 Energy Sampling Regime Transitions

The transition between the exploratory and exhaustive regimes is both model-dependent

and annealing-parameter-dependent. From the side chain parameter scan, we share the

energy trajectory of models SC = 1.25Rmin
B and SC = 2.25Rmin

B in figure S1. Both models

share the same annealing parameters but have characteristically different energy trajectories.
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Figure S1: Energy trajectories and visualisations of the identified minimum energy clusters
from SC = 1.25Rmin

B and SC = 2.25Rmin
B models. The space-filling spheres are drawn

match to the Rmin
S of each model. The energy trajectory of the SC = 1.25Rmin

B model has
a more pronounced transition between the exploratory and exhaustive phases compared to
the SC = 2.25Rmin

B model.

In the SC = 1.25Rmin
B model, the side chain Rmin

S enables energetically favorable packing

of side chains. This is reflected in the energy trajectory with a large decrease in energy as the

simulation transitions from the exploratory phase to the exhaustive phase. New energetic

minima are found as the simulation exhaustively explores the side chain interactions that

give the most favorable energies.

S2



In the SC = 2.25Rmin
B model, the larger side chain Rmin

S causes steric clashes between

side chains resulting in energetically unfavorable packing of the side chains. This is reflected

in the energy trajectory with a nominal decrease in energies from the exploratory phase to

the exhaustive phase. Similar energetic states are sampled at the high-temperatures and

low-temperature phases, indicating that unfolded structures share similar energies to the

folded structures.

S2 Hyperparameter Selection

Selecting hyperparameters for a clustering algorithm takes careful consideration. In

scikit-learn’s implementation of DBSCAN, the two clustering hyperparameters of interest

are ε and minSamples.72 The clustering ε is the distance cutoff between entries within the

RMSD matrix used in clustering and is related to the distances used in our folding simula-

tion. We select ε values to reflect distance on a similar length-scale of the foldamer model.

For this reason, we ensure that clustering ε are never less than half of the shortest bond

length in the foldamer. This heuristic helps ensure that clusters remain within 1–2 bond

lengths from the minimum energy structure in the cluster. We select a minimum number of

samples per cluster (minSamples) value such that the resulting clusters are not very noisy.

We found values between 0.2% to 2% of the total number of frames input into the clustering

gave decent clustering.

To select optimal parameters we performed a grid search of clustering hyperparameters

with values of ε from 0.5 to 4.0 dB and values of minSamples from 50 to 350. For a given

parameter set, we plot the resulting average silhouette score against the number of clusters

to visualize trade-offs between these two metrics. An example of this Pareto-like plot is

shown in figure S2. We exclude identified clustering that gave 3 or fewer clusters because we

want to exclude clustering that resulted in two large degenerate clusters and a noise cluster.
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We found that this range of hyperparameters populates clustering values near the Pareto

front, represented by points at the bottom left corner of figure S2.

Figure S2: Pareto-like plot used to evaluate optimal clustering hyperparameters. Points that
fall in the bottom left corner are optimal clustering solutions that minimize the number of
clusters and maximize the average silhouette score. Points that fall within the clear red area
have less than 3 identified clusters and are excluded. minSamples (labeled) are varied from
50 to 350, while clustering ε (not labeled) are varied from 0.5 Rmin

B to 2.0 Rmin
B .

With the insight gained from these Pareto-like plots, we define an objective function to

select clustering hyperparameters on the Pareto front. We define and select the clustering

hyperparameters that minimize the L2 norm of the normalized average silhouette scores and

number of clusters, using

f(x1, x2) =
√
x21 + x22 (1)
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where x1 is the normalized 1− (Avg. Silhouette Score) and x2 is the normalized N Clus-

ters. We invert the axis of x1 to ensure we are maximizing the average silhouette score. Both

sets of metrics are normalized to ensure both metrics are considered equally.

S3 Helix Fitting

To identify and classify helical structures, we perform a least-squares fit of the backbone

coordinates of structures of interest to the helix equation. For each structure, we remove

the terminal 2 residues from each end to limit the least-squares fit to the internal residues.

Additionally, we scale the coordinates by a factor of 100, to help with numerical stability. We

first fit the backbone coordinates to an infinite cylinder, defined by a cylinder axis containing

point C and having unit-length direction W and radius r. The least-squares error function

for defining this cylinder is shown below:

E(r2,C,W ) =
n∑
i=1

[
(X i −C)T

(
I −WW T

)
(X i −C)− r2

]2
(2)

where n is the number of coordinates and X i is a coordinate vector.

Once the center and axis of the helix is identified, we rotate the original coordinates

to orient the helical axis with the z axis, then we translate the coordinates such that the

minimum z-coordinate is placed set to 0. Since the helix equation has periodic symmetry, we

expect to find multiple equivalent minima at multiples of the angular frequency. To account

for these multiple minima, we add a quadratic angular frequency term to penalize the fit for

having angular frequencies that are too large. We fit the coordinates to the helix equation

by minimizing the least-square error function shown below:

E(ω, φ) =
n∑
i=1

(xi − r cos(ωzi + φ))2 + (yi − r sin(ωzi + φ))2 + ω2 (3)

where n is the number of coordinates, xi, and yi is the x and y coordinate components,
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ω is the angular frequency and φ is the phase shift of the fitted helix. We use the radius

calculated from the cylindrical fitting to reduce the number of parameters needed for this

fit.

First, the cylindrical error (equation (2)) is minimized using SciPy’s L-BFGS minimizer

to find the helical axis. Then we minimize the helix error (equation (3)) using SciPy’s

basin hopping algorithm with L-BFGS minimization to rigorously search the helix parameter

space.80 Results for these two least-square fittings are reported in root-mean-square errors,

RMSEcyl and RMSEhelix, for the cylindrical and helical fitting respectively.

Below we present the helix RMSE, cylinder RMSE and reported residues per turn for

all structures presented in this work. Table 1 shows the helix fitting for the side chain size

parameter scan (SC), table 2 shows the helix fitting for the internal bond-angle parameter

scan (θB) and table 3 shows helix fits for structures presented in the diverse fold section.

Table 1: Helix RMSE, cylinder RMSE and residues per turn from the least-squares fit of
minimum energy structures found the in SC size parameter scan (section 3.2). Table rows
are colored green for clusters that were visually identified to have helical minimum energy
structures. Structures with unfolded terminal residues have larger RMSEhelix and RMSEcyl
values.

SC(Rmin
B ) Helix RMSE (Rmin

B ) Cylinder RMSE (Rmin
B ) Residues/Turn

0.50 9.385 27.664 1.35
0.75 9.274 9.433 0.16
1.00 11.710 15.805 0.41
1.25 0.331 0.119 5.54
1.50 0.634 0.691 5.44
1.75 0.439 0.850 4.71
2.00 0.472 0.261 4.64
2.25 0.523 0.191 4.61
2.50 2.779 16.250 0.58
2.75 2.523 15.698 0.29
3.00 2.547 15.506 0.29

S6



Table 2: Helix RMSE, cylinder RMSE and residues per turn from the least-squares fit
of minimum energy structures found in the θB parameter scan (section 3.3). Table rows
are colored green for clusters that were visually identified to have helical minimum energy
structures. Structures with unfolded terminal residues have larger RMSEhelix and RMSEcyl
values.

θB Helix RMSE (Rmin
B ) Cylinder RMSE (Rmin

B ) Residues/Turn
100 0.028 0.050 3.62
102 0.709 3.035 11.09
104 6.305 31.781 10.75
106 7.312 31.320 0.95
108 5.742 22.286 0.20
110 0.263 0.336 4.55
112 0.214 0.429 4.66
114 6.330 25.106 4.86
116 3.310 3.390 5.28
118 2.359 2.133 5.31
120 0.370 0.377 5.54
122 0.026 0.032 5.76
124 1.023 0.719 5.89
126 2.301 1.788 6.42
128 0.332 0.264 6.55
130 3.379 1.028 7.38
132 13.180 13.804 1.11
134 10.555 14.951 0.51
136 11.290 6.768 1.75
138 10.608 5.131 1.77
140 11.605 5.082 0.29
142 9.719 2.687 14.09
144 5.589 2.643 11.99
146 9.731 7.571 15.78
148 3.940 2.254 13.91
150 14.260 0.916 0.29

Table 3: Helix RMSE, cylinder RMSE and residues per turn from the least-squares fit of
minimum energy structures found in the diverse fold section of the main text (section 3.1)

Fold ID Helix RMSE (Rmin
B ) Cylinder RMSE (Rmin

B ) Residues/Turn
A 0.028 0.050 3.62
B 0.332 0.264 6.55
D 1.07 2.27 1.66
F 3.23 10.10 5.51
G 5.76 4.71 10.86
I 3.43 0.23 6.31
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S4 Diverse range of folding simulations simulation pa-

rameters

Figure S3: Structures presented in section 3.1 with transparent CG bead radii drawn to
scale. Drawing full-scale CG bead radii show the bead packing achieved in these structures.
Structures A, B, D, and F are several types of helices found with homopolymer models,
structure C is a loop conformation, structure E is a sheet-like fold, structure G is a double-
helix, structure H is a knot-like structure, and structure I is a helix with a heterogeneous
backbone. Simulation and model parameters of each structure can be found below.

S4.1 1 back-bone / 1 side chain

Structures A, B, and C are helices found while varying parameters in the 1b1s model. All

structures have the same Lennard-Jones parameters where backbone beads have a Rmin
B = 1

a and εB = 1 and side-chain beads have a Rmin
S = 1.27 and εS = 1. All bond-lengths are kept

rigid at dB = Rmin
B and dS = 1.27Rmin

B . No torsion potentials were applied to these foldamers,
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allowing a freely rotating backbone. Structure A has a θB = 100◦ and θS = 130◦, structure

B has a θB = 120◦ and θS = 120◦ and structure C has a θB = 150◦ and θS = 105◦. All

structures have a bond-angle energy parameter of kθ = 7500εB, making all angles effectively

rigid. These structures were selected from the two 1D parameter scans as they showcased

the range of helices we were able to achieve within a single residue topology.

Annealing parameters for helices A, B, and C are the same as those presented in the

bond-angle parameter scan in the main text. The annealing schedule used for the backbone

bond angle parameter scan used the following annealing parameters: T0 = 50εB, ra = 0.925,

annealing was run for M = 68 cycles, and MC simulations at each temperature are run for

N = 10000 steps. Each parameter set was repeated with 100 replicas, to increase the chance

we have a consensus minimum energy structures.

S4.2 1 back-bone / 2 side chain

Structure D and E both are examples of folds using the 1b2s model. S1 and S2 denote

the parameters involving the first and second side-chain bead respectively. Similar to 1b1b,

model parameters involving back-bone beads are denoted with a B. We use base length

units the backbone Rmin
B = 1 and energy units of the backbone εB = 1. These structures

were found in a parameter scan where the size of the terminal side-chain bead for each

residue was varied from Rmin
S2

= rS2 = 0.5Rmin
B to Rmin

S2
= rS2 = 2.0Rmin

B . Other non-

bonded parameters (Rmin and ε) and bond-lengths (r) were held constant in this scan at

Rmin
S1

= rS1 = Rmin
B , rB = Rmin

B and εS1 = εS2 = εB. Bond-angle equilibrium values were

set to θB = θS1 = θS2 = 120◦. Bond-angle force constants were the same kθ = 7500εB. A

torsion potential is used on the backbone beads to restrict the available conformations the

foldamer could adopt with parameters, kφBBBB
= 6.0εB, nφBBBB

= 1 and φBBBB,o = 30◦.

The annealing schedule used for the two side chain parameter scan used the following

annealing parameters: T0 = 50εB, ra = 0.9, annealing was run for M = 60 cycles, and

MC simulations at each temperature are run for N = 20000 steps. Each parameter set was
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repeated with 100 replicas, to increase the chance we have a consensus minimum energy

structures.

S4.3 1 back-bone / 3 side chain

Structure F shows a folded helix using the 1b3s model. We use S1, S2, and S3 to denote the

parameters involving the first, second and third side-chain bead respectively. Similar to the

1b1b model parameters involving back-bone beads are denoted with a B. This structure was

found in a parameter scan varying the side-chain bond angles, θS2 and θS3 in tandem from 90◦

to 180◦. Lennard-Jones parameters for all beads were set toRmin
B = Rmin

S1
= Rmin

S2
= Rmin

S3
= 1

and εB = εS1 = εS2 = εS3 = 1, with bond-lengths of dB = rS1 = rS2 = rS3 = 1. The

remaining bond-angle parameters were set to θB = 120◦ and θS1 = 120◦. All bond-angle

parameters had a energy constant of kθ = 7500εB, having effectively rigid bond-angles.

A torsion potential was applied to the side-chain beads to minimize their configurational

flexibility. The side-chain torsion potential had parameters, kφSSSB
= 100.0εB, nφSSSB

= 1

and φSSSB,o = 180◦. The strong side-chain torsion potential keeps the side-chain beads rigid

during the folding simulation, greatly reducing the available conformations the foldamer can

adopt. A less strong torsion was applied to the backbone beads with parameters, kφBBBB
=

25.0εB, nφSSSB
= 1 and φSSSB,o = 0◦. This backbone potential was applied to have the

foldamer model sample more extended configurations.

The annealing schedule used for the three side chain parameter scan used the following

annealing parameters: T0 = 50εB, ra = 0.95, annealing was run for M = 120 cycles, and

MC simulations at each temperature are run for N = 20000 steps. Each parameter set was

repeated with 100 replicas, to increase the chance we have a consensus minimum energy

structures.
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S4.4 Double helix

Structure G is a double helix folded with a 1-backbone bead (denoted as B) model with

an added rigid hinge residue (denoted as H). These double helix structures were found by

scanning through bond-angle parameters of the hinge residue shown in blue. To keep the

hinge residue rigid a strong torsion potential with parameters, kφBHHH
= 100.0εB, nφBHHH

=

1 and φBHHH,o = 180◦. Bond angle parameters of the hinge parameters were chosen to

keep the residues emerging from the hinge parallel with each other. The H-H-H bond-

angle parameters were varied from θHHH = 60◦ to θHHH = 160, while was set to θBHH =

360◦ − 2θHHH . The backbone and hinge beads have the same Lennard-Jones parameters

Rmin
B = Rmin

H = 1 and εB = εH = 1. All bead-to-bead bond-lengths were set to dBB =

dBH = dHH = 1. The backbone beads have bond-angle parameters of θB = 160◦ and

kθB = 4000εB giving rigid bond-angles. The hinge residue angles have rigid force constants

of kθH = 4000εB.

The annealing schedule used for the two side chain parameter scan used the following

annealing parameters: T0 = 50εB, ra = 0.9, annealing was run for M = 50 cycles, and

MC simulations at each temperature are run for N = 20000 steps. Each parameter set was

repeated with 100 replicas, to increase the chance we have a consensus minimum energy

structures.

S4.5 Knot-like structures

Structure H is a knot folded with the 1-backbone bead model, and was found through a bond-

angle parameter scan from θB = 145◦ to θB = 160◦ with a energy constant kθB = 4000εB.

In this relatively small scan, we found several examples of different knots. The chain beads

have Lennard-Jones parameters of Rmin
B = 1 and εB = 1. All bond-lengths were all set to

dB = 1. These models had no torsion parameters and could freely rotate.

The annealing schedule used for the two side chain parameter scan used the following

annealing parameters: T0 = 50εB, ra = 0.9, annealing was run for M = 50 cycles, and
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MC simulations at each temperature are run for N = 20000 steps. Each parameter set was

repeated with 200 replicas, to increase the chance we have a consensus minimum energy

structures.

S4.6 Heterogeneous backbone helix

Structure I is a i→ i+ 6.5 helix folded with the 2-backbone bead model. Here we used CG

parameters to try and replicate the torsions and bond-angles found in aromatic oligomers.

Beads representing aromatic groups with ortho- and meta-bonding are represented by blue

and red beads respectively. Ortho-bonding beads are colored orange and are denoted with

O and meta-bonding beads are colored red and denoted by R. The internal angle for ortho-

beads is θROR = 60◦ and the angle for the meta-beads is θRRO = 120◦. These both have

force constants of kθ = 4000εR. All bead-to-bead bond-lengths were set to dMM = rRO =

rOO = 1. All beads share the same pair-wise LJ parameters of Rmin
R = Rmin

O = rRR and

εR = εO = 1. Torsions were selected to resemble the planar nature of aromatic groups with,

φRORR = φORRO = 180◦, with periodicity of n = 2. All torsions have a force constant of

kφ = 20εR.

The annealing schedule used for the two side chain parameter scan used the following

annealing parameters: T0 = 50εB, ra = 0.9, annealing was run for M = 50 cycles, and

MC simulations at each temperature are run for N = 20000 steps. Each parameter set was

repeated with 100 replicas, to increase the chance we have a consensus minimum energy

structures.

S5 Foldamer chain length

The side-chain experiment was carried out at several different chain lengths to assess the

optimal chain length for folding these toy foldamer models. 1b1s homopolymers with lengths
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of 15 residues, 18 residues, 21 residues, 24 residues, 27 residues and 30 residues were folded

with side-chain folding parameters varying from Rmin
S = rS = 0.5 to Rmin

S = rS = 4.0. Other

model parameters include, Lennard-Jones εB = εS = 1, harmonic bond-angle parameters of

θB = 120 with a kθB = 7500 and θS = 120 with a kθB = 7500. These models had no torsion

potentials and could freely rotate about all bonds.

The number of simulation steps was determined by scaling the 500,000 time steps used in

the 15mer simulations timesteps by the number of atoms added in each of the longer models.

Resulting in 600,000 time steps for the 18mer simulations, 700,000 time steps for the 21mer

simulations, 800,000 time steps for the 24mer simulations, 900,000 time steps for the 27mer

simulations, and 1,000,000 time steps for the 30mer simulations.

At each chain length in this experiment, all identified minimum energy clusters were

correctly formed helices. We ultimately decided to only use the 15mer model since similar

secondary structure had been observed at all chain lengths. At longer chain lengths we

observed more identified structures with back-folding of terminal residues, shown in figure S4,

often resulting in a larger number of identified clusters. Back-folding was not observed in

shorter chain length homopolymers.
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Figure S4: Selected minimum energy structures of parameter SC = 1.28Rmin
B from the

chain length experiment. Misfolded helices become more prevalent in the minimum energy
structures of longer chain length models. We note that all longer chain length structures
identify the same 5.5 residues per turn helix identified in the main text for SC = 1.25Rmin

B ,
just with varying degrees of terminal residues misfolding.

S6 Side chain size and bond-angle complete data sets

In the main text, for the sake of brevity, we presented subsets of the side chain size and bond-

angle parameter scan in figures 7 and 9. Here we present the entire set of performance metrics

(average silhouette score, energy gap Z-score, RMSDcluster andRMSDinter) for all parameter

sets in both sections. Metrics from both data sets are normalized using equation (4) with

metric values across each data set, such that each metric is placed on a scale from 0 to 1.
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For the case of RMSDcluster where smaller values indicated better structural clustering, we

normalize the negative magnitude of this metric, so that larger bar plots represent smaller

RMSDcluster.

xnorm =
x−minx

maxx−minx
(4)

Figure S5: Summary metrics for the side chain size (SC) parameter scan. Metrics are nor-
malized to have values of 0 to 1, where values of 1 indicate better performance. Average
silhouette score is abbreviated as SS, energy gap Z-score is abbreviated as EGZ, minimum
cluster RMSDcluster is abbreviated as CRMSD, and minimum cluster RMSDinter is abbre-
viated as MIMR.
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Figure S6: Summary metrics for the internal bond-angle (θB) parameter scan. Metrics
are normalized to have values of 0 to 1, where values of 1 indicate better performance.
Average silhouette score is abbreviated as SS, energy gap Z-score is abbreviated as EGZ,
minimum cluster RMSDcluster is abbreviated as CRMSD, and minimum cluster RMSDinter

is abbreviated as MIMR.

S7 Next-Lowest Energy Cluster Structures

In the analysis in the main text, we exclusively looked at structures of the minimum

energy clusters. Summary metrics like the energy gap Z-score and RMSDinter are meant to

give context to the energetic and structural differences between the minimum energy cluster

and other identified clusters. While this analysis gives an at-a-glance confirmation of folded

minimum energy clusters and their energetic and structural distance from other clusters, it

does not delve into the structural changes that give the changes to some of these metrics.

Large energy gap Z-scores come from a variety of different structural changes from the

minimum energy cluster. Minimum energy clusters and their next-lowest energy clusters for
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several models are presented in figure S7. In some cases, like that of the SC = 1.25Rmin
B

model, the structure of the next lowest-energy cluster is an entirely different, non-helical

structure. In the SC = 2.25Rmin
B model, the next-lowest energy cluster is very similar

to the minimum energy cluster model with a handful of misfolded residues. In models

with large steric clashes, like SC = 2.25Rmin
B these small structural changes can result in

large energetic changes, resulting in the large energy gap Z-score of 8.13 seen in the main

text. Some structures, like the SC = 2.5Rmin
B model have multiple ordered folds. The

identified minimum energy cluster is an extended structure with side chains packed in an

i → i + 2.5 fashion with a fairly disordered backbone. The next-lowest energy cluster for

the SC = 2.5Rmin
B model is a more ordered i→ i + 4.5 helical structure. In this case, both

structures have similar energetics, with an energy gap Z-score of 0.67 between them.

Figure S7: Comparison between the minimum energy cluster structure to the next-lowest
energy cluster structure for the SC = 1.25Rmin

B , SC = 2.25Rmin
B and SC = 2.5Rmin

B mod-
els.The SC = 1.25Rmin

B and SC = 2.5Rmin
B models see have large structural changes in the

next-lowest energy cluster. The SC = 2.25Rmin
B model has a small structural change due to

two terminal residues misfolding.
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S8 RMSD vs. Cluster Energy Plots for the side chain

parameter scan

Figure S8: Energy vs. RMSD to minimum energy structure for all clusters identified in for
the SC = 0.5Rmin

B model.
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Figure S9: Energy vs. RMSD to minimum energy structure for all clusters identified in for
the SC = 0.75Rmin

B model.
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Figure S10: Energy vs. RMSD to minimum energy structure for all clusters identified in for
the SC = 1.0Rmin

B model.
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Figure S11: Energy vs. RMSD to minimum energy structure for all clusters identified in for
the SC = 1.25Rmin

B model.
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Figure S12: Energy vs. RMSD to minimum energy structure for all clusters identified in for
the SC = 1.5Rmin

B model.
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Figure S13: Energy vs. RMSD to minimum energy structure for all clusters identified in for
the SC = 1.75Rmin

B model.
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Figure S14: Energy vs. RMSD to minimum energy structure for all clusters identified in for
the SC = 2.0Rmin

B model.
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Figure S15: Energy vs. RMSD to minimum energy structure for all clusters identified in for
the SC = 2.25Rmin

B model.
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Figure S16: Energy vs. RMSD to minimum energy structure for all clusters identified in for
the SC = 2.5Rmin

B model.
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Figure S17: Energy vs. RMSD to minimum energy structure for all clusters identified in for
the SC = 2.75Rmin

B model.
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Figure S18: Energy vs. RMSD to minimum energy structure for all clusters identified in for
the SC = 3.0Rmin

B model.

S9 RMSD vs. Cluster Energy Plots for the bond-angle

parameter scan
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Figure S19: Energy vs. RMSD to minimum energy structure for all clusters identified in for
the θB = 100◦ model.
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Figure S20: Energy vs. RMSD to minimum energy structure for all clusters identified in for
the θB = 104◦ model.
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Figure S21: Energy vs. RMSD to minimum energy structure for all clusters identified in for
the θB = 108◦ model.
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Figure S22: Energy vs. RMSD to minimum energy structure for all clusters identified in for
the θB = 112◦ model.
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Figure S23: Energy vs. RMSD to minimum energy structure for all clusters identified in for
the θB = 116◦ model.
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Figure S24: Energy vs. RMSD to minimum energy structure for all clusters identified in for
the θB = 120◦ model.
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Figure S25: Energy vs. RMSD to minimum energy structure for all clusters identified in for
the θB = 124◦ model.
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Figure S26: Energy vs. RMSD to minimum energy structure for all clusters identified in for
the θB = 128◦ model.
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Figure S27: Energy vs. RMSD to minimum energy structure for all clusters identified in for
the θB = 132◦ model.
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Figure S28: Energy vs. RMSD to minimum energy structure for all clusters identified in for
the θB = 136◦ model.
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Figure S29: Energy vs. RMSD to minimum energy structure for all clusters identified in for
the θB = 140◦ model.
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Figure S30: Energy vs. RMSD to minimum energy structure for all clusters identified in for
the θB = 144◦ model.
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