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Motivation
Supersonic magnetized plasma �ows in astrophysical enviroments interact with 

obstacles to generate strongly radiating shocks.

Research goals:
(1) Generate astrophysically relevant magnetized bow shocks on ~1 MA facilities.

(2) Characterize shock morphology and post-shock magnetic �eld.
(3) Benchmark 3D resistive MHD simulations against experimental results.

(4) Use simulations to predict dynamics of strongly-radiatively cooled shocks on 
the ~10 MA generator at the Z HEDP facility for MARZ experiments.

Twin jets from young stellar object HH111. 
Image: ESA/Hubble & NASA, B. Nisini

Relativistic jets from a supermassive blackhole. 
Image: NASA/ESA/STScI
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Pulsed-Power Driven Laboratory Plasma

An exploding wire array generates radially diverging plasma �ows when a 
high-amplitude fast-rising current pulse is applied.

 
On MAGPIE, we use a 1.4 MA peak current with a 250 ns rise time, 
generating plasma �ows of ne ~1 x 1018 cm-3, V ~100 km/s, B ~10 T, 

and Te ~ Ti ~10 eV.

(c)      3D GORGON simulation
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Experimental Setup

Exploding wire array with 16 equally-spaced 30 μm Φ Aluminum wires. 
Obstacles are inductive probes that measure magnetic �eld.

(a) End-on View
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(b) Side-on View
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Magnetic Field and Velocity Measurements

(1) Signal shape at the load matches that at the probes. Magnetic �eld is 
frozen into the �ow and advected by the plasma.

(2) Combining measured velocity with estimated Mach number (from shock 
geometry) gives us an estimate of the plasma temperature.

Inductive probes generate a voltage equal to the rate of change of magnetic �ux.
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t ≈ 330 ns
B ≈ 5.5 T

t ≈ 340 ns
B ≈ 14 T 
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At t = 300 ns,

V = 62 ± 12 km/s

For side-on (hydrodynamic) shock
Ms = 8.2 ± 0.6

So electron temperature:
ZTe =  14 ± 6 eV

 

Simulated electron density with overlaid 
magnetic �eld lines.

Line-outs of magnetic �eld and 
electron denisty along obstacle axis.

Comparison With 3D MHD Simulations

Simulated electron density slices

Magnetic �eld is not compressed and di�uses through the obstacle
due to large Lη. Simulation predicts hydrodynamic-like shock.
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3D resistive two-temperature MHD simulations using GORGON (∆x ≈ 180 µm). 

Conclusions & Future Work

(1) The upstream Mach number predicted from shock geometry is 5 < M1 < 8.
(2) Measured magnetic �eld (~10 T) is higher than simulated (~6 T).

(3) Simulated Mach angle is similar in both planes, but the end-on Mach angle (11°) 
is higher than the side-on Mach angle (7°)

(4) Simultaneous measurement of shock geometry and inductive probe signal 
provides an inexpensive measurement of temperature.

Next Steps:
(1) Better measure shock geometry using Schlieren / Shadowgraphy imaging.
(2) Measure �ow pro�le and �uid Mach number using Thompson Scattering.

(3) Visualize magnetic �eld using Faraday Polarimetry.

Validating GORGON simulations with MAGPIE (~1 MA) experiments allows 
us to predict shock dynamics on the Z facility (~10 MA) for MARZ 

experiments.
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Shock Geometry Measurements

(1) Shock opening angle is larger in end-on plane (α(∞)/2 ≈ 30˚)  than in 
side-on plane (α(∞)/2 ≈ 7˚).

(2) Mach angles are  ~11˚ (end-on) and ~7˚ (side-on).
 Expected upstream Mach numbers are 5.2±0.3 (end-on),

and 8.2 ±0.6 (side-on).
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σ = α(x)/2 - θu1-   

μ = σ(x → ∞)-≈ sin-1(1/M1)   
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