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Motivation

Supersonic magnetized plasma flows in astrophysical enviroments interact with
obstacles to generate strongly radiating shocks.
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Twin jets from young stellar object HH111.
Image: ESA/Hubble & NASA, B. Nisini

Relativistic jets from a supermassive blackhole.
Image: NASA/ESA/STScl

Research goals:
(1) Generate astrophysically relevant magnetized bow shocks on ~1 MA facilities.
(2) Characterize shock morphology and post-shock magnetic field.
(3) Benchmark 3D resistive MHD simulations against experimental results.
(4) Use simulations to predict dynamics of strongly-radiatively cooled shocks on
the ~10 MA generator at the Z HEDP facility for MARZ experiments.

Pulsed-Power Driven Laboratory Plasma

3D GORGON simulation
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An exploding wire array generates radially diverging plasma flows when a
high-amplitude fast-rising current pulse is applied.

On MAGPIE, we use a 1.4 MA peak current with a 250 ns rise time,
generating plasma flows of n_~1x 10" cm=,V ~100 km/s, B ~10T,
andT_~T~10eV.

Experimental Setup
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Exploding wire array with 16 equally-spaced 30 pm @ Aluminum wires.
Obstacles are inductive probes that measure magnetic field.

(2) Combining measured velocity with estimated Mach number (from shock

Shock Geometry Measurements
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(1) Shock opening angle is larger in end-on plane (a(e«)/2 = 30°) thanin
side-on plane (a(e)/2 = 7°).
(2) Mach angles are ~11° (end-on) and ~7" (side-on).
Expected upstream Mach numbers are 5.2+0.3 (end-on),
and 8.2 +£0.6 (side-on).

Magnetic Field and Velocity Measurements

Inductive probes generate a voltage equal to the rate of change of magnetic flux.
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(1) Signal shape at the load matches that at the probes. Magnetic field is
frozen into the flow and advected by the plasma.

geometry) gives us an estimate of the plasma temperature.

subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Sécurity Administration under contract DE-NA0003525.

H Ji*, C C Kuranz>, SV Lebedev?, R Melean®, D R Russell®, L G Suttle?, I Tang?and D A Uzdensky®

'Plasma Science and Fusion Center, Massachusetts Institute of Technology, “Sandia National Laboratories, *Blackett Laboratory, Imperial College London,
*Princeton Plasma Physics Laboratory, °University of Michigan, Ann Arbor, °University of Colorado, Boulder

Comparison With 3D MHD Simulations

3D resistive two-temperature MHD simulations using GORGON (Ax = 180 um).
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Line-outs of magnetic field and
electron denisty along obstacle axis.

Simulated electron density with overlaid
magnetic field lines.

Magnetic field is not compressed and diffuses through the obstacle
due to large L . Simulation predicts hydrodynamic-like shock.

Conclusions & Future Work

Mach Number Mach Number
(from (from fluid
geometry) parameters)

End-On 11 +/- 0.5 52 +/-03 - -
Side-on 7 +/- 0.5 8.2 +/- 06 - 14 +/- 6
End-On 8 7.2 5.5-8

Simulation , ~25 60
Side-on 7 8.2 54-8.2

Mach Angle
(degrees)

Temperature
ZT.(eV)

Velocity
(km/s)

Experiment 62 +/- 12

(1) The upstream Mach number predicted from shock geometryis 5 <M, < 8.
(2) Measured magnetic field (~10T) is higher than simulated (~6T).
(3) Simulated Mach angle is similar in both planes, but the end-on Mach angle (11°)
is higher than the side-on Mach angle (7°)
(4) Simultaneous measurement of shock geometry and inductive probe signal
provides an inexpensive measurement of temperature.

Next Steps:
(1) Better measure shock geometry using Schlieren / Shadowgraphy imaging.
(2) Measure flow profile and fluid Mach number using Thompson Scattering.
(3) Visualize magnetic field using Faraday Polarimetry.

Validating GORGON simulations with MAGPIE (~1 MA) experiments allows
us to predict shock dynamics on the Z facility (~10 MA) for MARZ
experiments.
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