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A platform of three-dimensional (3-D) hot-spot reconstruction procedures has been

developed to quantify 3-D effects in ICF implosion experiments
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* A tomography method is developed to reconstruct the 3-D plasma emissivity.

* Procedures of 3-D analysis are developed by integrating 3-D hot-spot shape asymmetries with nuclear
measurements including ion-temperature (Ti), flow, and areal-density (o R) asymmetries.

* Residual kinetic energies (RKE’s) are shown to be a driving factor causing implosion asymmetries.

The 3-D analysis will be applied to minimize the low-mode implosion asymmetry in our future work.

See Jim’s talk in NO04.00009.
See Kristen’s talk in Z004.00007.
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A 3-D spherical-harmonic Gaussian function is used to reconstruct the 3-D plasma
emissivity
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3-D hot-spot emissivity ¢, at a given spectral frequency v
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Unfold electron temperature 7, and density »

de, Unfold r, from
_> T, =- el,/[ l - emissivity g,(ne,T,)

Unfolded 7, (keV)
For 1-D implosions, the 3-D emissivity model is reduced °

to a super-Gaussian model with an exponent of 4 and

Unfolded n, (A. U.)
zero mode amplitudes.

[ (Te)1_avg =2.96 keV]
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I, =™, 6, = —1/6* 7= 10 m = 5 u ‘ =10, n w
Plxel Pixel
See Ref. [ S. Eck et. al. Medical Image Analysis 32, 18-31 (2016) ] for applying spherical-harmonic Gaussian functions
See Ref. [ G. Aubert, AIP Advances 3, 062121 (2013) ] for rotating spherical harmonics using Wigner d-matrices
See Kristen’s talk in Z004.00007.

&2 ROCHESTER




Igorithm* to fi

ight

d by a dynamic learning a
d at different lines of s

imize

-ray images measure

th x

ions wi

The 3-D plasma emissivity model is opt
its 2-D project

uRr

LLE
LOS-X

LOS-Y

TR
AN

X

e
X

Pixel (2um per pixel)

5
2
&
N
@
Q
=

0 5 10 15 20 25 30 35

o wo weo o w
Frd 8 s

(1ox1d xod wrlg) PXIg

: RMS(%) = 3.19

Pixel (2um per pixel)

LOS-Y fit
0 5 10 15 20 25 30 35

oW o wo o w
- Q8 o

(1oxd aod i) [PXIg

|
-
o3|
1
3
m

10 15 20 25 30 35

Pixel (2um per pixel)

DEC3D : LOSX
0 5 10 15 20 25 30 35
Pixel (2um per pixel)

LOS-X fit

05

(1ox1d aod urrlg) PXIg

CRLRER
XXX
LGNS
.o.o.o%.oooooo..
RHDG
AR
Sy

DEC3D : LOS-Z
0 5 10 15 20 25 30 35
Pixel (2um per pixel)

oW o weo o
Frlda o

(1ox1d xod wrlg) [PXIg

LOS-Y

DEC3D :
0 5 10 15 20 25 30 35
Pixel (2um per pixel)

o 1w 9 B 9 v
Fr &8 A ®®

(1ox1d xod i) PXIg

o 1w 9 1 9 v
Fr a8 A ®®

(1ox1d xod i) [PXIg

1805.11917 [stat.ML]

* Zhenyu Liao et al. arXiv
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https://arxiv.org/abs/1805.11917
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The 3-D plasma emissivity model is used to reconstruct ICF implosions with mode 7
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Residual kinetic energies are the driving factor for T; and hot-spot flow asymmetries

Apparent ion temperatures v is the flow velocity in the laboratory frame.

d is the line of sight (LOS) unit vector.

Mo is the total nuclear reactant mass.

Tt is the ion thermal temperature.

6;; = (; = (v)) - ;= (v))) is the element for 6 = Var[v - d ]
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TR _ 4 M, Var [7 : J] <

apparent

Since the matrix elements ¢;; = ¢;; commute, the velocity-

variance matrix* is Hermitian; hence, it is diagonalizable.

Brysk _ . ro 2 2 g roe 20 22 g ’ 2 o
Tapparent— th + M, (axx sin“ 0’ cos” ¢’ + 6, sin” 0’ sin” ' + o, cos 0)

The eigenvalues ¢’ are hot-spot residual kinetic energies (RKEns) along three rotated orthogonal axes.

Definition * K. M. Woo et. al., Phys. Plasmas 25, 102710 (2018).
** H. Brysk, Plasma Physics 15 611 (1973); the velocity variance term can be

RKEyg = Myg6,,/2 + Mygo,,/2 + Mygo;,/2 obtained by removing the isotropic flow assumption in Brysk’s analysis.
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lon-temperature asymmetries in OMEGA experiments are mostly driven by mode 1
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The presence of quasi-isotropic flows from even-L modes provides additional ion-
temperature asymmetries
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The v.d term in the mode-1 areal-density model* captures the pR asymmetry**

LOS

2.0
g
The arithmetic-mean (AM) and harmonic-mean (HM) pR are related. -
= 1.0
’ 2
'5' 0.5
<
(PR = \/(pR3D>2AM — (ApRY . 00
ApR = (pRmax _pRmin)/2 g = 05
€O
Q=
5 S 1.0
N’
(PRspYam = PRipRE, {pRypdum = pRipRY —15} .
Ry =Thoax!Tinine @ =—03, p=-—047 —2.0 I T R S N
0 20 40 60 80 100 120 _140 160 180
5 Angle 0 (deg) between V] °° and d\ os
2 ~ ~
PR 0400, D, Ry) = pRyp - [R'? — /R - R x 9 - dy (0, 4’)] * K. M. Woo et al,, Phys. Plasmas 28, 054503 (2021)
**Z. L. Mohamed et al. Rev. Sci. Instrum. 92, 043546 (2021)

See Jim’s talk in NO04.00009.
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Ti, flows, pR, and hot-spot shape asymmetries
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Summary/Conclusion

A platform of three-dimensional (3-D) hot-spot reconstruction procedures has been

developed to quantify 3-D effects in ICF implosion experiments
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* A tomography method is developed to reconstruct the 3-D plasma emissivity.

* Procedures of 3-D analysis are developed by integrating 3-D hot-spot shape asymmetries with nuclear
measurements including ion-temperature (Ti), flow, and areal-density (o R) asymmetries.

* Residual kinetic energies (RKE’s) are shown to be a driving factor causing implosion asymmetries.

The 3-D analysis will be applied to minimize the low-mode implosion asymmetry in our future work.

See Jim’s talk in NO04.00009.
See Kristen’s talk in Z004.00007.
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The v.d term in the mode-1 areal-density (9R) model is shown to capture the pR
variations in OMEGA experiments
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The 3-D plasma emissivity model is optimized* by minimizing the fitting error

between its 2-D projections and experimental x-ray images
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* Zhenyu Liao et al. arXiv:1805.11917




The major axis for mode 1 and prolate mode 2 can be reconstructed using its

projection measured at two lines of sight
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Major axis reconstruction

89y X —Py-Xsin(y) &g,y —p,-ysin(g,) | [tan b sin ¢

[131 -2 cos(€) — &, -

2] |8pa-X —Pi-EcosE) &,-F —Py- Y cos&y) [tanG cos qb]
Py-Zsin(g;) —ég, -2

Major axis vector : ¥ = sin @ cos ¢x + sin @ sin px + cos 0%

Projection vector:  Pros = €08 &,05€y,1.0s + Sin 1,058, Los




