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• A tomography method is developed to reconstruct the 3-D plasma emissivity.


• Procedures of 3-D analysis are developed by integrating 3-D hot-spot shape asymmetries with nuclear 
measurements including ion-temperature (Ti), flow, and areal-density ( ) asymmetries.


• Residual kinetic energies (RKE’s) are shown to be a driving factor causing implosion asymmetries.

ρR

A platform of three-dimensional (3-D) hot-spot reconstruction procedures has been 
developed to quantify 3-D effects in ICF implosion experiments

See Jim’s talk in NO04.00009.

See Kristen’s talk in ZO04.00007.

Summary

The 3-D analysis will be applied to minimize the low-mode implosion asymmetry in our future work.
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A 3-D spherical-harmonic Gaussian function is used to reconstruct the 3-D plasma 
emissivity

ln εν(r, θ, ϕ) =
∞

∑
n=0

σnRn [1 +
∞

∑
ℓ=1

ℓ

∑
m=−ℓ

∞

∑
k=0

Aℓ mkRkYℓ m(θ, ϕ)]
n

3-D hot-spot emissivity  at a given spectral frequency εν ν

See Ref. [ S. Eck et. al. Medical Image Analysis 32, 18-31 (2016) ] for applying spherical-harmonic Gaussian functions.

See Ref. [ G. Aubert, AIP Advances 3, 062121 (2013) ] for rotating spherical harmonics using Wigner d-matrices.

See Kristen’s talk in ZO04.00007.

For 1-D implosions, the 3-D emissivity model is reduced 
to a super-Gaussian model with an exponent of 4 and 
zero mode amplitudes.

ln I1D =
4

∑
n=0

σnRn → I1D = I0e−(R/σ)4

I0 = ea0, σ4 = − 1/σ 4

Unfold electron temperature  and density Te ne

Te = − εν /[ ∂εν

∂hν ] Unfold  from 
emissivity 

ne
εν(ne, Te)
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The 3-D plasma emissivity model is optimized by a dynamic learning algorithm* to fit 
its 2-D projections with x-ray images measured at different lines of sight

* Zhenyu Liao et al. arXiv:1805.11917 [stat.ML]
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Solution for optimization : L̇ = !∇L · !̇P

Steepest Descent Method

M = -2 M = -1 M = 0 M = 1 M = 2
L = 1 7.876e-02 -7.912e-01 -1.235e-01
L = 2 -1.778e-02 4.426e-03 1.740e-01 -8.932e-03 -1.284e-02

N = 1 N = 2 N = 3 N = 4
Coef. for lineout expansion 4.708e-07 4.361e-06 1.977e-02 -2.209e-02
Coef. for contour expansion -2.504e-06 -9.236e-06 -1.916e-05 1.974e-04
Coef. for avgR expansion 2.483e-02 -5.748e-03 2.264e-02 -1.202e-01

77068 : 3D Hot-spot Reconstruction Report

LOS-Y LOS-X

LOS-ZInitial

guess

After 

5 steps

After 
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https://arxiv.org/abs/1805.11917
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The 3-D plasma emissivity model is used to reconstruct ICF implosions with mode  
= 1, 2, and 6 hot-spot shapes

ℓ

(θ, ϕ)xray = 45∘,238∘
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Solution for optimization : L̇ = !∇L · !̇P

Steepest Descent Method

M = -2 M = -1 M = 0 M = 1 M = 2
L = 1 -6.409e-02 9.593e-02 3.644e-03
L = 2 3.253e-02 1.318e-01 5.946e-02 -8.147e-02 -7.306e-02

N = 1 N = 2 N = 3 N = 4
Coef. for lineout expansion 6.250e-06 6.316e-05 2.062e-02 5.693e-03
Coef. for contour expansion -1.516e-05 1.720e-04 4.552e-03 7.319e-02
Coef. for avgR expansion 8.772e-05 8.568e-04 7.603e-03 1.035e+00

94017 : 3D Hot-spot Reconstruction Report
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Solution for optimization : L̇ = !∇L · !̇P

Steepest Descent Method

M = -2 M = -1 M = 0 M = 1 M = 2
L = 1 -6.409e-02 9.593e-02 3.644e-03
L = 2 3.253e-02 1.318e-01 5.946e-02 -8.147e-02 -7.306e-02

N = 1 N = 2 N = 3 N = 4
Coef. for lineout expansion 6.250e-06 6.316e-05 2.062e-02 5.693e-03
Coef. for contour expansion -1.516e-05 1.720e-04 4.552e-03 7.319e-02
Coef. for avgR expansion 8.772e-05 8.568e-04 7.603e-03 1.035e+00

94017 : 3D Hot-spot Reconstruction Report
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Solution for optimization : L̇ = !∇L · !̇P

Steepest Descent Method

M = -2 M = -1 M = 0 M = 1 M = 2
L = 1 -2.145e-01 1.648e-01 -9.003e-02
L = 2 -4.186e-01 -1.542e-01 -2.009e-01 -2.566e-01 -2.158e-01

N = 1 N = 2 N = 3 N = 4
Coef. for lineout expansion 4.518e-07 4.648e-06 1.356e-02 -4.355e-02
Coef. for contour expansion -1.016e-06 -3.952e-07 2.865e-05 4.373e-04
Coef. for avgR expansion -1.165e-01 -3.262e-02 2.216e-02 -6.570e-02

96806 : 3D Hot-spot Reconstruction Report
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Solution for optimization : L̇ = !∇L · !̇P

Steepest Descent Method

M = -2 M = -1 M = 0 M = 1 M = 2
L = 1 -2.145e-01 1.648e-01 -9.003e-02
L = 2 -4.186e-01 -1.542e-01 -2.009e-01 -2.566e-01 -2.158e-01

N = 1 N = 2 N = 3 N = 4
Coef. for lineout expansion 4.518e-07 4.648e-06 1.356e-02 -4.355e-02
Coef. for contour expansion -1.016e-06 -3.952e-07 2.865e-05 4.373e-04
Coef. for avgR expansion -1.165e-01 -3.262e-02 2.216e-02 -6.570e-02

96806 : 3D Hot-spot Reconstruction Report
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Solution for optimization : L̇ = !∇L · !̇P

Steepest Descent Method

M = -2 M = -1 M = 0 M = 1 M = 2
L = 1 -2.145e-01 1.648e-01 -9.003e-02
L = 2 -4.186e-01 -1.542e-01 -2.009e-01 -2.566e-01 -2.158e-01

N = 1 N = 2 N = 3 N = 4
Coef. for lineout expansion 4.518e-07 4.648e-06 1.356e-02 -4.355e-02
Coef. for contour expansion -1.016e-06 -3.952e-07 2.865e-05 4.373e-04
Coef. for avgR expansion -1.165e-01 -3.262e-02 2.216e-02 -6.570e-02

96806 : 3D Hot-spot Reconstruction Report
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Solution for optimization : L̇ = !∇L · !̇P

Steepest Descent Method

M = -2 M = -1 M = 0 M = 1 M = 2
L = 1 -8.332e-02 1.024e-01 5.673e-02
L = 2 -3.685e-01 -1.340e-01 -3.320e-01 -3.023e-01 8.212e-02

N = 1 N = 2 N = 3 N = 4
Coef. for lineout expansion 9.601e-08 1.187e-06 1.212e-02 -4.691e-02
Coef. for contour expansion -2.578e-06 -8.388e-06 -3.750e-05 -1.352e-04
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Solution for optimization : L̇ = !∇L · !̇P

Steepest Descent Method

M = -2 M = -1 M = 0 M = 1 M = 2
L = 1 -8.332e-02 1.024e-01 5.673e-02
L = 2 -3.685e-01 -1.340e-01 -3.320e-01 -3.023e-01 8.212e-02

N = 1 N = 2 N = 3 N = 4
Coef. for lineout expansion 9.601e-08 1.187e-06 1.212e-02 -4.691e-02
Coef. for contour expansion -2.578e-06 -8.388e-06 -3.750e-05 -1.352e-04
Coef. for avgR expansion 1.199e-02 -7.933e-03 2.011e-02 -8.881e-03

90288 : 3D Hot-spot Reconstruction Report

Polar angles : 

GMXI : gated-monochromatic X-ray imager

TRXI : temporal-resolved X-ray Imager

SRTE : spatially-resolved X-ray imager

KBXI : Kirkpatrick-Baez X-ray imager

(θ, ϕ)

GMXI : (96∘,54∘)

TRXI : (45∘,234∘)

SRTE : (101∘,134∘)

KBXI : (106∘,342∘)

Definitions
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TBrysk**
apparent = Tth + M0 ⋅ Var [ ⃗v ⋅ ̂d]

* K. M. Woo et. al., Phys. Plasmas 25, 102710 (2018).

** H. Brysk, Plasma Physics 15 611 (1973); the velocity variance term can be 
obtained by removing the isotropic flow assumption in Brysk’s analysis. 

Since the matrix elements  commute, the velocity-
variance matrix* is Hermitian; hence, it is diagonalizable. 

σi j = σji

v is the flow velocity in the laboratory frame.

d is the line of sight (LOS) unit vector.

M0 is the total nuclear reactant mass.

Tth is the ion thermal temperature.


 is the element for σi j = ⟨(vi − ⟨vi⟩) ⋅ (vj − ⟨vj⟩)⟩ ̂σ = Var[ ⃗v ⋅ ̂d ]

TBrysk
apparent = Tth + M0 ⋅ (σ′￼xx sin2 θ′￼cos2 ϕ′￼+ σ′￼yy sin2 θ′￼sin2 ϕ′￼+ σ′￼zz cos2 θ′￼)

The eigenvalues  are hot-spot residual kinetic energies (RKEHS) along three rotated orthogonal axes.σ′￼

Residual kinetic energies are the driving factor for Ti and hot-spot flow asymmetries

RKEHS = MHSσ′￼xx /2 + MHSσ′￼yy /2 + MHSσ′￼zz /2

Definition

Apparent ion temperatures
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Mode  : ℓ = 1 σ′￼xx = σ′￼yy ≪ σ′￼zz

Ti = Tth + M0 ⋅ (σiso + σ′￼zz cos2 θ′￼)

Mode  : ℓ = 2 σ′￼xx = σ′￼yy ≫ σ′￼zz

Ti = Tth + M0 ⋅ (σiso + Δσ′￼xx sin2 θ′￼)
Δσ′￼xx = σ′￼xx − σiso

0◦ 45◦ 90◦ 135◦ 180◦−1

−0.5

0

0.5

1

1.5

2

(T
ex

p
−

Tfit m
in

)/
δ

Tfit

cos2 θ

0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

0◦ 45◦ 90◦ 135◦ 180◦

θ = cos−1[v̂eff
flow · d̂LOS]

−1

−0.5

0

0.5

1

1.5

2

(T
ex

p
−

Tfit m
in

)/
δ

Tfit

sin2 θ

0.0 0.2 0.4 0.6 0.8 1.0
|v̂eff

flow · v̂aniso
flow |

1

2

3

4

5

Ion-temperature asymmetries in OMEGA experiments are mostly driven by mode 1

Definition : σiso = min[σ′￼xx, σ′￼yy, σ′￼zz]

RKEJet
HS

RKEBubble/Spike
HS RKESpike/Bubble

HS

RKE⊥
HS

Bulk flow
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p
−

T
fi

t
m
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)/

δT
fi

t
(T
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p

−
T

fi
t

m
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Indication of mode ℓ = 2

The presence of quasi-isotropic flows from even-L modes provides additional ion-
temperature asymmetries

−20 −10 0 10 20
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−20
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Z( μ m)

336
253
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86.6
3.41

ρ(g /cm3)
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234
156
77.8
0

v(km /s)

The flow structure in a mode-1 
and mode-2 DEC3D simulation.

See the DEC3D 
hot-spot image 
on the right. 



 

The arithmetic-mean (AM) and harmonic-mean (HM)  are related.ρR
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The v.d term in the mode-1 areal-density model* captures the  asymmetry**ρR

ρRmodel(θ, ϕ, RT) = ρR1D ⋅ [Rα
T − R2α

T − R2β
T × ̂vhead

f low ⋅ ̂dLOS(θ, ϕ)]

Mode-1  Model* : ρR ρR apparent
LOS = ⟨ρR3D⟩AM − ΔρR( ̂vaniso

f low ⋅ ̂dLOS)

RT = Tmax /Tmin, α = − 0.3, β = − 0.47

* K. M. Woo et al., Phys. Plasmas 28, 054503 (2021)

** Z. L. Mohamed et al. Rev. Sci. Instrum. 92, 043546 (2021)

See Jim’s talk in NO04.00009.

⟨ρR3D⟩AM = ρR1DRα
T

⟨ρR⟩HM = ⟨ρR3D⟩2
AM − (ΔρR)2

⟨ρR3D⟩AM = ρR1DRα
T , ⟨ρR3D⟩HM = ρR1DRβ

T

ΔρR = ( ρRmax − ρRmin)/2
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The mode information is quantified by Ti, flows, , and hot-spot shape asymmetriesρR
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• A tomography method is developed to reconstruct the 3-D plasma emissivity.


• Procedures of 3-D analysis are developed by integrating 3-D hot-spot shape asymmetries with nuclear 
measurements including ion-temperature (Ti), flow, and areal-density ( ) asymmetries.


• Residual kinetic energies (RKE’s) are shown to be a driving factor causing implosion asymmetries.

ρR

A platform of three-dimensional (3-D) hot-spot reconstruction procedures has been 
developed to quantify 3-D effects in ICF implosion experiments

See Jim’s talk in NO04.00009.

See Kristen’s talk in ZO04.00007.

Summary/Conclusion

The 3-D analysis will be applied to minimize the low-mode implosion asymmetry in our future work.
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The v.d term in the mode-1 areal-density ( ) model is shown to capture the  
variations in OMEGA experiments

ρR ρR

ρRmodel(RT) = ρR1D ⋅ [Rα
T − R2α

T − R2β
T × ̂vhead

f low ⋅ ̂dLOS(θ, ϕ)]
Mode 1 RhoR Model

CR−1.4IFAR−0.5R0.8
B ×CR−1.9IFAR−0.4R1.6

B
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RMS = 0.05
±8.5 mg/cm2

αf it = − 0.37, γf it = 1.55

α = − 0.3, β = − 0.47

(Rαf it
T − R2αf it

T − R2β
T ̂vf low

aniso ⋅ ̂dLOS)
γf it

1-D kernel to account for 
systematic 1-D coding errors.

3-D kernel to account for 
mode-1 RhoR asymmetry.

RB : beam /target radii
RT : Tmax / Tmin

Appendix
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The 3-D plasma emissivity model is optimized* by minimizing the fitting error 
between its 2-D projections and experimental x-ray images
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Solution for optimization : L̇ = !∇L · !̇P

Steepest Descent Method

M = -2 M = -1 M = 0 M = 1 M = 2
L = 1 -2.119e-01 2.051e-01 -1.421e-01
L = 2 -5.430e-01 -2.740e-01 -2.312e-01 -4.398e-01 -3.269e-01

N = 0 N = 1 N = 2 N = 3 N = 4
Coef. for contour expansion -2.083e-01 -2.089e-02
Coef. for lineout expansion 1.683e-01
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Solution for optimization : L̇ = !∇L · !̇P

Steepest Descent Method

M = -2 M = -1 M = 0 M = 1 M = 2
L = 1 -2.119e-01 2.051e-01 -1.421e-01
L = 2 -5.430e-01 -2.740e-01 -2.312e-01 -4.398e-01 -3.269e-01

N = 0 N = 1 N = 2 N = 3 N = 4
Coef. for contour expansion -2.083e-01 -2.089e-02
Coef. for lineout expansion 1.683e-01

94017 : 3D Hot-spot Reconstruction Report

GMXI : (θ, ϕ) = (96∘,54∘)
fit exp
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Solution for optimization : L̇ = !∇L · !̇P

Steepest Descent Method

M = -2 M = -1 M = 0 M = 1 M = 2
L = 1 -2.119e-01 2.051e-01 -1.421e-01
L = 2 -5.430e-01 -2.740e-01 -2.312e-01 -4.398e-01 -3.269e-01

N = 0 N = 1 N = 2 N = 3 N = 4
Coef. for contour expansion -2.083e-01 -2.089e-02
Coef. for lineout expansion 1.683e-01

94017 : 3D Hot-spot Reconstruction Report
0 5 10 15 20 25 30 35

Pixel (2µm per pixel)

0

5

10

15

20

25

30

35P
ix

el
(2
µ

m
pe

r
pi

xe
l)

GMXI fit

0 5 10 15 20 25 30 35
Pixel (2µm per pixel)

0

5

10

15

20

25

30

35P
ix

el
(2
µ

m
pe

r
pi

xe
l)

KBXI fit

0 5 10 15 20 25 30 35
Pixel (2µm per pixel)

0

5

10

15

20

25

30

35P
ix

el
(2
µ

m
pe

r
pi

xe
l)

TRXI fit

0 5 10 15 20 25 30 35
Pixel (2µm per pixel)

0

5

10

15

20

25

30

35P
ix

el
(2
µ

m
pe

r
pi

xe
l)

SRTE fit

0 5 10 15 20 25 30 35
Pixel (2µm per pixel)

0

5

10

15

20

25

30

35P
ix

el
(2
µ

m
pe

r
pi

xe
l)

GMXI-C

0 5 10 15 20 25 30 35
Pixel (2µm per pixel)

0

5

10

15

20

25

30

35P
ix

el
(2
µ

m
pe

r
pi

xe
l)

KBXI-15

0 5 10 15 20 25 30 35
Pixel (2µm per pixel)

0

5

10

15

20

25

30

35P
ix

el
(2
µ

m
pe

r
pi

xe
l)

TRXI-A1

0 5 10 15 20 25 30 35
Pixel (2µm per pixel)

0

5

10

15

20

25

30

35P
ix

el
(2
µ

m
pe

r
pi

xe
l)

SRTE-C1

0 5 10 15 20 25 30 35 40
No. iteration t

0.06

0.08

0.10

0.12

0.14

L
os

s
fu

nc
ti

on
L

Solution for optimization : L̇ = !∇L · !̇P

Steepest Descent Method

M = -2 M = -1 M = 0 M = 1 M = 2
L = 1 -2.119e-01 2.051e-01 -1.421e-01
L = 2 -5.430e-01 -2.740e-01 -2.312e-01 -4.398e-01 -3.269e-01

N = 0 N = 1 N = 2 N = 3 N = 4
Coef. for contour expansion -2.083e-01 -2.089e-02
Coef. for lineout expansion 1.683e-01

94017 : 3D Hot-spot Reconstruction Report

fit exp

TRXI : (θ, ϕ) = (45∘,234∘)

t = 0 t = 1 t = 20

σ0

Loss function 𝓛

Steepest descent

d𝓛
d t

= ⃗∇ 𝓛 ⋅
d ⃗p
d t

𝓛( ⃗p ) =
1
N

N

∑
i=1

⟨(𝓟LOSi ⋅ I3D( ⃗p ) − Iexp
LOSi)

2
⟩

𝓛

A−1
1,0

Am
ℓ kσn A0

1,0

A1
1,0σ2

σ1

⃗p =

Learning rate ·ε
d ⃗p
dt

= −
⃗∇ 𝓛

| ⃗∇ 𝓛 |
·ε

Parameters P

* Zhenyu Liao et al. arXiv:1805.11917

Evolution 94017

x y

z
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The major axis for mode 1 and prolate mode 2 can be reconstructed using its 
projection measured at two lines of sight

[
p̂1 ⋅ ̂z cos(ξ1) − ̂eϕ,1 ⋅ ̂z
p̂2 ⋅ ̂z sin(ξ2) − ̂eθ,2 ⋅ ̂z] = [

̂eϕ,1 ⋅ ̂x − p̂1 ⋅ ̂x cos(ξ1) ̂eϕ,1 ⋅ ̂y − p̂1 ⋅ ̂y cos(ξ1)
̂eθ,2 ⋅ ̂x − p̂2 ⋅ ̂x sin(ξ2) ̂eθ,2 ⋅ ̂y − p̂2 ⋅ ̂y sin(ξ2)] [tan θ cos ϕ

tan θ sin ϕ]
̂v = sin θ cos ϕ ̂x + sin θ sin ϕ ̂x + cos θ ̂zMajor axis vector :

p̂LOS = cos ξLOS ̂eϕ,LOS + sin ξLOS ̂eθ,LOS

̂eϕ

̂eθ

ξLOS

p̂LOS

Major axis reconstruction

Projection vector : 

Appendix


