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Abstract — The class of noise radar waveform known as random
frequency modulation (RFM) has been used to enable a variety of
new sensing capabilities. It was also recently shown in simulation
that a more compact design spectral template translates to better
spectral containment, with a trade-off of emerging close-in
“persistent” sidelobes. Here we take the next step of implementing
in hardware sets of RFM waveforms designed in this manner to
assess their loopback behavior and subsequently characterize their
performance with open-air experimental measurements.
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I. INTRODUCTION

While RFM waveforms (also known as FM noise) can be
traced back to the 1956 patent application of Whiteley and
Adrian [1] and other work since [2-5], our particular focus is on
RFM waveforms that employ spectrum shaping, which
provides multiple practical benefits [6]. These include a)
managing range sidelobes due to the Fourier relationship
between waveform autocorrelation and spectral density [7], &)
controlling out-of-band roll-off to reduce transmitter distortion
effects [8], and ¢) possibly incorporating transmit notching to
reduce radar interference to other spectrum users [9].

Of course, these attributes/capabilities of waveform
spectrum shaping can sometimes be in conflict with one
another, as is the case here. Specifically, it is well known that
the Fourier transform of a Gaussian shape yields another
Gaussian. Therefore, if the spectral density is made to conform
to a Gaussian template, then the associated autocorrelation
would as well, and consequently possess no sidelobes
(theoretically at least). While Gaussian spectral roll-off is far
more compact than the sinc “spectral skirt” realized by
polyphase codes [10] it is still considerably broader than the
extreme spectral compactness of a linear FM (LFM) chirp,
which remains the standard for wideband applications.

It is worth noting that traditional noise radar (e.g. [11-13])
can readily achieve wideband operation, though the key
difference with wideband LFM operation is that the latter can
be generated at high-power for long-range applications due to
its FM structure, while traditional noise radar possesses
significant amplitude modulation (AM). To facilitate the use of
noise radar’s high dimensionality for high-power wideband
operation it therefore becomes necessary to determine how
RFM can be employed with even greater spectral compactness,
since a factor of 2x to 4x expansion beyond 3-dB bandwidth to
account for Gaussian spectral roll-off becomes infeasible as
bandwidth gets large.

It was recently shown [14] that the Gaussian template can
be subsumed into the super-Gaussian framework from optics.

In so doing, control of spectral containment can be achieved
with a single selectable parameter. In [14] the super-Gaussian
template was incorporated into the temporal template error
(TTE) RFM design framework from [15], with simulated
results provided to assess the performance trade-space. Here we
use the pseudo-random optimized (PRO) FM [16] approach to
illustrate the utility across different methods and also evaluate
behavior using experimental loopback and open-air
measurements.

II. PRO-FM OPTIMIZATION REVIEW
The PRO-FM method for spectrally-shaped RFM waveform
design relies on an alternating projections optimization process
[16]. Given a selected power spectral density (PSD) design
template |G (f)|? and an independent random initialization for
the mth waveform (within a set of M) denoted as pg ,,,(t), the
process
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and

Prrrm(t) = u(®) exp(j£{rism(D}) 2)
is repeated for some number of iterations K. Here u(f) is the
rectangular pulse envelope with time support on [0, 7], the
operations F{-} and F~1{.} are the Fourier and inverse Fourier
transforms, and £{- } extracts the phase of the argument.

Since the implementation of (1) and (2) requires
discretization of the signals involved, and finite time support
implies theoretically infinite spectral support, an adequate
degree of “over-sampling” is necessary. It is convenient to
define the degree of over-sampling relative to 3-dB bandwidth,
though any such measure could be selected. In discretized form,
(1) can be computed efficiently using FFTs and IFFTs.

ITII. SUPER-GAUSSIAN DESIGN TEMPLATE

In PRO-FM and related spectrum-shaping RFM approaches
[15-17] the PSD design template |G(f)|*> was chosen to be
Gaussian-shaped to provide a corresponding Gaussian-shaped
autocorrelation that has no sidelobes (or at least the closest
approximation thereof that is achievable by a rectangular pulsed
FM structure). In reality, for pulse width 7 and 3-dB bandwidth
B, the associated time-bandwidth product 7B realizes sidelobes
approaching 20 logio(7B) on a per-pulse basis (from a root
mean-square (RMS) perspective), with an additional
10 logio(M) sidelobe suppression achieved due to incoherent
averaging when performing slow-time processing across a set
of unique RFM waveforms.
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While the Gaussian template provides fairly low RFM
sidelobes, it does so by requiring a roughly 2x to 4x inclusion
of spectral content beyond the 3-dB bandwidth due to modest
roll-off (to avoid degradation from aliasing). For bandwidths
measured in 10s of MHz this factor may be feasible, but for
bandwidths on the order of 100s of MHz up to GHz such an
expansion to account for spectral roll-off becomes prohibitive.

To that end, the super-Gaussian template was recently
considered in this RFM waveform design context [14]. The
super-Gaussian function, which originated in the field of optics,
is described by [18]

f(x)=4 exp{—l ‘HU 3)
2| o

where o and n are real and positive, 4 is an arbitrary scaling
used to set the desired power level, and the function is centered
at . For the case where n = 2, the function in (3) simplifies to
the standard Gaussian template. It can also be analytically
shown that, in the limit as » approaches infinity, the shape of
(3) approaches a rectangular function. While being well-
contained spectrally, a rectangular template would obviously
induce a sinc roll-off in the autocorrelation, just like LFM.

By adjusting the exponent n, the trade-space between
achieving lower autocorrelation sidelobes and better spectral
containment can be explored, as demonstrated in Figs. 1 and 2
for selected values of n (the autocorrelations in Fig. 2 are
computed via inverse Fourier transform of the spectral
templates in Fig. 1). Each case has been peak-normalized to
provide easy comparison.

In [14] the value of & in (3) was individually set for each
value of n so that the spectral templates for different cases all
cross at the same peak-normalized power level, which
corresponded to a normalized digital frequency of £0.4 (within
the £0.5 limits). Doing so permitted comparison of how much
“usable bandwidth” could be obtained for a fixed sample rate in
the discretized design process.

In contrast, here (Fig. 1) we maintain the same 3-dB
bandwidth, adjusting o as necessary. This perspective
alternatively necessitates different over-sampling to capture the
same spectral roll-off level. The corresponding autocorrelation
responses in Fig. 2 therefore provide essentially the same range
resolution, but still exhibit the emergence of persistent
sidelobes close to the mainlobe that are not suppressed through
slow-time incoherent averaging (as occurs for RFM having
Gaussian-shaped spectrum [6]).

Fig. 3 then illustrates a simulated comparison in this context
via the RMS average of autocorrelations from 5000 unique
PRO-FM waveforms for each value of n (= 2, 8, 32). A constant
TB =472 is maintained, with a factor of 10 over-sampling used
for optimization (overkill for higher »n values, but provides
consistent comparison). We observe that the Gaussian (n = 2)
template has no persistent sidelobes and yields the lowest
sidelobe floor, which unlike Fig. 2 occurs because this result is
based on actual waveform responses (i.e. perfect template
matching is not possible).
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Fig. 3. RMS autocorrelation for 5000 unique PRO-FM waveforms
generated using different super-Gaussian values of n

As expected from the template autocorrelations in Fig. 2, the
n =8 and 32 cases in Fig. 3 do realize persistent sidelobes. Like
the n = 2 case they also reach a sidelobe floor due to the use of
actual waveforms. We observe this floor is about 3 dB higher
than that of n = 2, an effect discussed in [14]. This floor region
is where the incoherent sidelobes begin and therefore further
suppression is achieved when slow-time processing is



performed. Of course, the particular normalized delays where
the floor starts gradually moves outward as more unique
waveforms are slow-time processed due to the uncovering of
additional close-in persistent sidelobes. Consequently, there is
a clear trade-off between spectral containment, overall
waveform dimensionality (over the entire CPI), and the level of
sidelobe suppression that can be achieved.

IV. EXPERIMENTAL ANALYSIS

The set of 5000 unique PRO-FM waveforms used above
were likewise employed for experimental assessment. The
particular value of 7B = 472 arises from using a pulse width of
6.67 ps and 3-dB bandwidth of 70.7 MHz at a center frequency
of 3.55 GHz. This arrangement is clearly not in the wideband
regime but is used here to begin examining the trade-space
given available test equipment.

For each value of n = 2, 8 and 32, the corresponding set of
5000 unique waveforms was generated and captured in a
loopback configuration using a pulse repetition frequency
(PRF) of 50 kHz so that some degree of hardware-induced
distortion characterization could be performed. From these
measurements the autocorrelations, cross-correlations, and
spectral densities are then evaluated, from the perspectives of
both per-waveform (RMS) behavior and after coherent
combination (slow-time processing).

Figs. 4, 5 and 6 show loopback autocorrelation results for
the n =2, 8, and 32 parameterizations, respectively. We see that
the RMS peak sidelobe level (PSL) is —32.6 dB for the n = 2
case, —17.1 dB for the n = 8 case, and —15.4 dB for the n = 32
case. Of course, these values are a result of persistent sidelobes
in the n = 8 and 32 cases (evident from the apparent lower
mainlobe broadening in Figs. 5 and 6) and “shoulder lobes” on
the mainlobe for n =2 caused by hardware effects. If we exclude
these very close-in components, the PSL values become —39.8
dB, —36.5 dB, and —36.2 dB for n = 2, 8 and 32, respectively.
In short, outside of persistent sidelobes there is a modest trade-
off in the incoherent sidelobe floor as » increases.

Table 1: PSL of RMS autocorrelations

PSL (including | PSL (excluding
persistent persistent
sidelobes) sidelobes)

n=2 -32.6 dB -39.8 dB
n=_8§ —-17.1dB -36.5dB
n=32 -15.4dB -36.2dB

The coherent combination responses in Figs. 4-6 also bear
consideration. These arise from slow-time coherent combining
across each set of 5000 unique waveforms after pulse
compression. All three cases realize 10 logio(5000) =37 dB of
sidelobe suppression relative to the single waveform response.
Moreover, as noted in the previous section, additional persistent
sidelobes emerge around the mainlobe as the incoherent
sidelobe floor is driven down (particularly clear in Fig. 6). Thus,
the key take-away is that a sidelobe level proportional to the
“aggregate time-bandwidth product” MTB is still achievable
when designing for better spectral containment, with the key
trade-off being these persistent sidelobes that from a practical

perspective can simply be viewed as broadening mainlobe roll-
off.
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Fig. 6. Loopback autocorrelation results for 5000 unique
PRO-FM waveforms generated using n = 32

To evaluate cross-correlation performance among each set
of RFM waveforms the first waveform in each set was cross-



correlated with the other 4999 waveforms, where the “single
waveform” (a single result) and the “RMS combination” over
the set of 4999 responses are shown in Fig. 7 for the n = 8 case.
The “coherent combination” (i.e. slow-time combining) over
these 4999 cross-correlation responses is likewise depicted,
though as we see there is no coherent component since the
waveforms are dissimilar. The n =2 and 32 cases realize almost
identical responses so are not included. Indeed, peak RMS
cross-correlation values obtained are —28.4 dB, —26.6 dB, and
—26.1 dB for n = 2, 8, and 32, respectively, which have good
agreement with previous observations that independent RFM
cross-correlation is roughly —10 logio(7B = 472) = -26.7 dB.

Like autocorrelation, we see that higher » introduces a
modest degradation in cross-correlation, here by 1.8 dB and
then another 0.5 dB. However, the benefit of incoherent
responses (aside from their autocorrelation mainlobes) again
realizes further suppression when slow-time processing, with
the coherent combination trace the same 10 logio(5000) =37
dB lower than the single waveform result. In other words, there
is likewise a small degradation in waveform separability as n
increases, but the distinction is essentially negligible for large
TB and/or M (e.g. like in imaging applications).

It is also important to note that the 60 dB of separability
depicted in Fig. 7 does not involve any form of optimization on
the basis of cross-correlation. Instead, this result arises solely
from the high dimensionality of these unique waveform sets,
stemming from the independent random initialization of each
waveform and likewise occurring for each RFM method and the
broader category of noise radar in general. Indeed, if we
compute 10 logio(MTB = 5000x472) = 63.7 dB, we again see
good agreement on the expected order of separability.
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Fig. 7. Loopback cross-correlation results for 5000 unique PRO-
FM waveforms generated using n =8

Figs. 8, 9 and 10 subsequently depict the spectral content of
each loopback waveform set relative to the particular spectral
design template. Because spectral content is predominantly a
transmit perspective, a coherent combining trace is not shown,
though the single waveform and RMS combinations reveal
interesting behavior.
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It is first worth noting that both the design templates and
RMS results for all three spectra have the same 3-dB bandwidth,
even though the n = 2 case in Fig. 8 appears broader, which is
due to the more gradual roll-off. If we determine the percentage
of power density within this 3-dB bandwidth for the RMS



responses, it is found to be 75.1%, 97,5%, and 98.5% for n =2,
8 and 32, respectively. In other words, higher #n provides greater
spectral concentration of signal power, not a surprising result
given the design templates. In fact, simulation evaluation using
RMS responses (again for 5000 unique PRO-FM waveforms in
each trial) shows in Fig. 11 that values of n above 12 reach a
saturation point of 98.5% in-band power, with the remaining
1.5% likely due to enforcement of a rectangular pulse shape.
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Fig. 11. Simulation of percent power within 3-dB bandwidth
versus n for ideal template and RMS response of 5000 PRO-FM
waveforms

Where the above percentage is a “vertical” assessment of
template error in terms of power deviation, another useful
comparison is the point at which the RMS spectrum response in
each case deviates from the given template by some nominal
amount (i.e. a “horizontal” assessment). Specifically, let 5% of
3-dB bandwidth be the threshold for declaring deviation from
the template, which for the n =2, 8, and 32 spectra respectively
translates into —8.3 dB, —14.3 dB, and —18.0 dB relative to the
peak. From this perspective, the implication is that higher n not
only supports better spectral containment, it also appears to
facilitate better template matching.

However, a discrepancy emerges when we alternatively
consider the overall percent deviation between each RMS
spectrum and its template (another “vertical” assessment),
which yields 4.4%, 6.8%, and 7.8% for n =2, 8, and 32, instead
suggesting poorer matching with higher n. These distinctions
can be reconciled by variations in the passband for each RMS
spectrum, where 4.3%, 6.7%, and 7.7% error is obtained for
n =2, 8 and 32 when only the 3-dB passband is considered. This
result indicates that the overwhelming majority of error is
contributed by the passband instead of the roll-off region.

It is also worth noting that all three RMS spectra reach a
level that is 48-50 dB below the peak at the edges of the
displayed normalized frequency interval. However, the n = §
and 32 cases in Figs. 9 and 10 do so after first providing tighter
passband containment, outside of which the roll-off rate appears
to reaching the limit for RFM waveforms and this hardware
configuration. Indeed, the final drop at the outer edge of all
three RMS spectra is likely due to the anti-aliasing filter in the
real-time spectrum analyzer used here as a receiver, suggesting

that the “knee” in each trace is the true transmit spectrum that
we are able to capture, with the n = 2 case about 10 dB higher
than the other two cases at that point, implying poorer spectral
containment as expected for n = 2.

Finally, Fig. 12 shows moving target indication (MTI)
results for the n = 8 set of PRO-FM waveforms, which
illuminated a traffic intersection in Lawrence, KS from the roof
of Nichols Hall on the University of Kansas campus. A -40 dB
Taylor window was applied to mitigate Doppler sidelobes and
a simple projection at/around zero-Doppler was used for clutter
cancellation.

Multiple movers are clearly visible, with this result
qualitatively identical to others that have been collected for
RFM waveforms (e.g. see [15-17]). While our ultimate goal
here is to extend the utility of RFM waveforms for wideband
applications, the purpose of this result is simply to show that
designing for better spectral containment is likewise useful for
MTI and other narrowband applications and does indeed
perform as expected for real radar functions.
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Fig. 12. Open-air range-Doppler response from 5000 unique
PRO-FM waveforms generated using n = 8

V. CONCLUSIONS

The super-Gaussian function has been demonstrated
experimentally to provide a useful spectral design template for
random FM waveforms. Increasing the exponential shape
parameter n greater than 2 (Gaussian) yields increasingly tighter
spectral containment, which is necessary for extension to
wideband operation due to the required inclusion of roll-off to
minimize waveform distortion. The trade-offs incurred for
better containment include the emergence of persistent range
sidelobes close to the mainlobe (though these may be viewed as
broadened mainlobe roll-off), a marginal increase in the
incoherent sidelobe floor, and a marginal degradation to cross-
correlation separability. However, higher n also appears to
provide a sharper roll-off outside the design passband spectrum,
thereby suggesting more amenable hardware implementation
for wideband operation.



(1]

[

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES
T.B. Whiteley, D.J. Adrian, “Random FM autocorrelation fuze system,”
U.S. Patent #4,220,952, issued 2 Sept. 1980, filed 17 Feb. 1956.

L. Guosui, G. Hong, Z. Xiaohua, S. Weimin, “The present and future of
random signal radars,” IEEE Aerospace & Electronic Systems Mag., vol.
12, no. 10, pp. 35-40, Oct. 1997.

S.R.J. Axelsson, “Noise radar using random phase and frequency
modulation,” IEEE Trans. Geoscience & Remote Sensing, vol. 42, no. 11,
pp- 2370-2384, Nov. 2004.

L. Pralon, B. Pompeo, J.M. Fortes, “Stochastic analysis of random
frequency modulated waveforms for noise radar systems,” [EEE
Trans. Aerospace & Electronic Systems, vol. 51, no. 2, pp. 1447-
1461, Apr. 2015.

G. Beltrao, L. Pralon, A. Barreto, M. Alace-Kerahroodi, B. Shankar,
“Subpulse processing for unambiguous doppler estimation in pulse
doppler noise radars,” to appear in IEEE Trans. Aerospace & Electronic
Systems.

S.D. Blunt, et al., "Principles & applications of random FM radar
waveform design," IEEE Aerospace & Electronic Systems Mag., vol. 35,
no. 10, pp. 20-28, Oct. 2020.

S.D. Blunt, E.L. Mokole, "An overview of radar waveform diversity,"
IEEE Aerospace & Electronic Systems Mag., vol. 31, no. 11, pp. 2-42,
Nov. 2016.

S.D. Blunt, M. Cook, J. Jakabosky, J. de Graaf, E. Perrins, "Polyphase-
coded FM (PCFM) radar waveforms, part I: implementation," IEEE
Trans. Aerospace & Electronic Systems, vol. 50, no. 3, pp. 2218-2229,
July 2014.

B. Ravenscroft, J.W. Owen, J. Jakabosky, S.D. Blunt, A.F. Martone, K.D.
Sherbondy, "Experimental demonstration and analysis of cognitive
spectrum sensing & notching," IET Radar, Sonar & Navigation, vol. 12,
no. 12, pp. 1466-1475, Dec. 2018.

N. Levanon, E. Mozeson, Radar Signals, Wiley-IEEE Press, 2004.

X. Xu, RM. Narayanan, “Range sidelobe suppression technique for
coherent ultra wide-band random noise radar imaging,” [EEE Trans.
Antennas & Propagation, vol. 49, no. 12, pp. 1836-1842, Dec. 2001.

S.R.J. Axelsson, “Random noise radar/sodar with ultrawideband
waveforms,” IEEE Trans. Geoscience & Remote Sensing, vol. 45, no. 5,
pp- 1099-1114, May 2007.

M. Malanowski, K. Kulpa, “Detection of moving targets with continuous-
wave noise radar: theory and measurements,” IEEE Trans. Geoscience &
Remote Science, vol. 50, no. 9, pp. 3502-3509, Sept. 2012.

C.A. Mohr, S.D. Blunt, “Designing random FM radar waveforms with
compact spectrum,” IEEE Intl. Conf. Acoustics, Speech & Signal
Processing, Toronto, Canada, June 2021.

C.A. Mohr, S.D. Blunt, "FM noise waveforms optimized according to a
temporal template error (TTE) metric," JEEE Radar Conf., Boston, MA,
Apr. 2019.

J. Jakabosky, S.D. Blunt, B. Himed, "Spectral-shape optimized FM noise
radar for pulse agility," IEEE Radar Conf., Philadelphia, PA, May 2016.

C.A. Mohr, P.M. McCormick, S.D. Blunt, C. Mott, "Spectrally-efficient
FM noise radar waveforms optimized in the logarithmic domain," /EEE
Radar Conf., Oklahoma City, OK, Apr. 2018.

A. Parent, M. Morin, P. Lavigne, “Propagation of super-Gaussian field

distributions,” Optical and Quantum Electronics, vol. 24, no. 9, pp.
S1071-S1079, 1992.



