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Abstract – The class of noise radar waveform known as random 

frequency modulation (RFM) has been used to enable a variety of 

new sensing capabilities. It was also recently shown in simulation 

that a more compact design spectral template translates to better 

spectral containment, with a trade-off of emerging close-in 

“persistent” sidelobes. Here we take the next step of implementing 

in hardware sets of RFM waveforms designed in this manner to 

assess their loopback behavior and subsequently characterize their 

performance with open-air experimental measurements.  
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I. INTRODUCTION 

While RFM waveforms (also known as FM noise) can be 

traced back to the 1956 patent application of Whiteley and 

Adrian [1] and other work since [2-5], our particular focus is on 

RFM waveforms that employ spectrum shaping, which 

provides multiple practical benefits [6]. These include a) 

managing range sidelobes due to the Fourier relationship 

between waveform autocorrelation and spectral density [7], b) 

controlling out-of-band roll-off to reduce transmitter distortion 

effects [8], and c) possibly incorporating transmit notching to 

reduce radar interference to other spectrum users [9].  

Of course, these attributes/capabilities of waveform 

spectrum shaping can sometimes be in conflict with one 

another, as is the case here. Specifically, it is well known that 

the Fourier transform of a Gaussian shape yields another 

Gaussian. Therefore, if the spectral density is made to conform 

to a Gaussian template, then the associated autocorrelation 

would as well, and consequently possess no sidelobes 

(theoretically at least). While Gaussian spectral roll-off is far 

more compact than the sinc “spectral skirt” realized by 

polyphase codes [10] it is still considerably broader than the 

extreme spectral compactness of a linear FM (LFM) chirp, 

which remains the standard for wideband applications. 

It is worth noting that traditional noise radar (e.g. [11-13]) 

can readily achieve wideband operation, though the key 

difference with wideband LFM operation is that the latter can 

be generated at high-power for long-range applications due to 

its FM structure, while traditional noise radar possesses 

significant amplitude modulation (AM). To facilitate the use of 

noise radar’s high dimensionality for high-power wideband 

operation it therefore becomes necessary to determine how 

RFM can be employed with even greater spectral compactness, 

since a factor of 2 to 4 expansion beyond 3-dB bandwidth to 

account for Gaussian spectral roll-off becomes infeasible as 

bandwidth gets large. 

It was recently shown [14] that the Gaussian template can 

be subsumed into the super-Gaussian framework from optics. 

In so doing, control of spectral containment can be achieved 

with a single selectable parameter. In [14] the super-Gaussian 

template was incorporated into the temporal template error 

(TTE) RFM design framework from [15], with simulated 

results provided to assess the performance trade-space. Here we 

use the pseudo-random optimized (PRO) FM [16] approach to 

illustrate the utility across different methods and also evaluate 

behavior using experimental loopback and open-air 

measurements. 

 

II. PRO-FM OPTIMIZATION REVIEW 

The PRO-FM method for spectrally-shaped RFM waveform 

design relies on an alternating projections optimization process 

[16]. Given a selected power spectral density (PSD) design 

template |𝐺(𝑓)|2 and an independent random initialization for 

the mth waveform (within a set of M) denoted as 𝑝0,𝑚(𝑡), the 

process 

𝑟𝑘+1,𝑚(𝑡) =  𝓕−1{|𝐺(𝑓)| exp (𝑗∠ {𝓕{𝑝𝑘+1,𝑚(𝑡)}})}       (1) 

and 

𝑝𝑘+1,𝑚(𝑡) = 𝑢(𝑡) exp(𝑗∠{𝑟𝑘+1,𝑚(𝑡)})                (2) 

is repeated for some number of iterations K. Here u(t) is the 

rectangular pulse envelope with time support on [0, T], the 

operations 𝓕{ } and 𝓕−1{ } are the Fourier and inverse Fourier 

transforms, and ∠{ } extracts the phase of the argument. 

Since the implementation of (1) and (2) requires 

discretization of the signals involved, and finite time support 

implies theoretically infinite spectral support, an adequate 

degree of “over-sampling” is necessary. It is convenient to 

define the degree of over-sampling relative to 3-dB bandwidth, 

though any such measure could be selected. In discretized form, 

(1) can be computed efficiently using FFTs and IFFTs. 

 

III. SUPER-GAUSSIAN DESIGN TEMPLATE 

In PRO-FM and related spectrum-shaping RFM approaches 

[15-17] the PSD design template |𝐺(𝑓)|2  was chosen to be 

Gaussian-shaped to provide a corresponding Gaussian-shaped 

autocorrelation that has no sidelobes (or at least the closest 

approximation thereof that is achievable by a rectangular pulsed 

FM structure). In reality, for pulse width T and 3-dB bandwidth 

B, the associated time-bandwidth product TB realizes sidelobes 

approaching 20 log10(TB) on a per-pulse basis (from a root 

mean-square (RMS) perspective), with an additional 

10 log10(M) sidelobe suppression achieved due to incoherent 

averaging when performing slow-time processing across a set 

of unique RFM waveforms. 
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While the Gaussian template provides fairly low RFM 

sidelobes, it does so by requiring a roughly 2 to 4 inclusion 

of spectral content beyond the 3-dB bandwidth due to modest 

roll-off (to avoid degradation from aliasing). For bandwidths 

measured in 10s of MHz this factor may be feasible, but for 

bandwidths on the order of 100s of MHz up to GHz such an 

expansion to account for spectral roll-off becomes prohibitive. 

To that end, the super-Gaussian template was recently 

considered in this RFM waveform design context [14]. The 

super-Gaussian function, which originated in the field of optics, 

is described by [18] 
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where   and n are real and positive, A is an arbitrary scaling 

used to set the desired power level, and the function is centered 

at .  For the case where n = 2, the function in (3) simplifies to 

the standard Gaussian template. It can also be analytically 

shown that, in the limit as n approaches infinity, the shape of 

(3) approaches a rectangular function. While being well-

contained spectrally, a rectangular template would obviously 

induce a sinc roll-off in the autocorrelation, just like LFM.  

By adjusting the exponent n, the trade-space between 

achieving lower autocorrelation sidelobes and better spectral 

containment can be explored, as demonstrated in Figs. 1 and 2 

for selected values of n (the autocorrelations in Fig. 2 are 

computed via inverse Fourier transform of the spectral 

templates in Fig. 1). Each case has been peak-normalized to 

provide easy comparison. 

In [14] the value of   in (3) was individually set for each 

value of n so that the spectral templates for different cases all 

cross at the same peak-normalized power level, which 

corresponded to a normalized digital frequency of 0.4 (within 

the 0.5 limits). Doing so permitted comparison of how much 

“usable bandwidth” could be obtained for a fixed sample rate in 

the discretized design process. 

In contrast, here (Fig. 1) we maintain the same 3-dB 

bandwidth, adjusting   as necessary. This perspective 

alternatively necessitates different over-sampling to capture the 

same spectral roll-off level. The corresponding autocorrelation 

responses in Fig. 2 therefore provide essentially the same range 

resolution, but still exhibit the emergence of persistent 

sidelobes close to the mainlobe that are not suppressed through 

slow-time incoherent averaging (as occurs for RFM having 

Gaussian-shaped spectrum [6]). 

Fig. 3 then illustrates a simulated comparison in this context 

via the RMS average of autocorrelations from 5000 unique 

PRO-FM waveforms for each value of n (= 2, 8, 32). A constant 

TB = 472 is maintained, with a factor of 10 over-sampling used 

for optimization (overkill for higher n values, but provides 

consistent comparison). We observe that the Gaussian (n = 2) 

template has no persistent sidelobes and yields the lowest 

sidelobe floor, which unlike Fig. 2 occurs because this result is 

based on actual waveform responses (i.e. perfect template 

matching is not possible). 

 
Fig. 1. Comparison of super-Gaussian spectral templates 

  
Fig. 2. Autocorrelation comparisons of templates in Fig. 1 

 
Fig. 3. RMS autocorrelation for 5000 unique PRO-FM waveforms 

generated using different super-Gaussian values of n 

 

As expected from the template autocorrelations in Fig. 2, the 

n = 8 and 32 cases in Fig. 3 do realize persistent sidelobes.  Like 

the n = 2 case they also reach a sidelobe floor due to the use of 

actual waveforms. We observe this floor is about 3 dB higher 

than that of n = 2, an effect discussed in [14]. This floor region 

is where the incoherent sidelobes begin and therefore further 

suppression is achieved when slow-time processing is 



performed. Of course, the particular normalized delays where 

the floor starts gradually moves outward as more unique 

waveforms are slow-time processed due to the uncovering of 

additional close-in persistent sidelobes. Consequently, there is 

a clear trade-off between spectral containment, overall 

waveform dimensionality (over the entire CPI), and the level of 

sidelobe suppression that can be achieved. 

 

IV. EXPERIMENTAL ANALYSIS 

The set of 5000 unique PRO-FM waveforms used above 

were likewise employed for experimental assessment. The 

particular value of TB = 472 arises from using a pulse width of 

6.67 s and 3-dB bandwidth of 70.7 MHz at a center frequency 

of 3.55 GHz. This arrangement is clearly not in the wideband 

regime but is used here to begin examining the trade-space 

given available test equipment. 

For each value of n = 2, 8 and 32, the corresponding set of 

5000 unique waveforms was generated and captured in a 

loopback configuration using a pulse repetition frequency 

(PRF) of 50 kHz so that some degree of hardware-induced 

distortion characterization could be performed. From these 

measurements the autocorrelations, cross-correlations, and 

spectral densities are then evaluated, from the perspectives of 

both per-waveform (RMS) behavior and after coherent 

combination (slow-time processing). 

Figs. 4, 5 and 6 show loopback autocorrelation results for 

the n = 2, 8, and 32 parameterizations, respectively. We see that 

the RMS peak sidelobe level (PSL) is −32.6 dB for the n = 2 

case, −17.1 dB for the n = 8 case, and −15.4 dB for the n = 32 

case.  Of course, these values are a result of persistent sidelobes 

in the n = 8 and 32 cases (evident from the apparent lower 

mainlobe broadening in Figs. 5 and 6) and “shoulder lobes” on 

the mainlobe for n = 2 caused by hardware effects. If we exclude 

these very close-in components, the PSL values become −39.8 

dB, −36.5 dB, and −36.2 dB for n = 2, 8 and 32, respectively. 

In short, outside of persistent sidelobes there is a modest trade-

off in the incoherent sidelobe floor as n increases. 

Table 1:  PSL of RMS autocorrelations 

 PSL (including 

persistent 

sidelobes) 

PSL (excluding 

persistent 

sidelobes) 

n = 2 −32.6 dB −39.8 dB 

n = 8 −17.1 dB −36.5 dB 

n = 32 −15.4 dB −36.2 dB 

The coherent combination responses in Figs. 4-6 also bear 

consideration. These arise from slow-time coherent combining 

across each set of 5000 unique waveforms after pulse 

compression. All three cases realize 10 log10(5000) = 37 dB of 

sidelobe suppression relative to the single waveform response. 

Moreover, as noted in the previous section, additional persistent 

sidelobes emerge around the mainlobe as the incoherent 

sidelobe floor is driven down (particularly clear in Fig. 6). Thus, 

the key take-away is that a sidelobe level proportional to the 

“aggregate time-bandwidth product” MTB is still achievable 

when designing for better spectral containment, with the key 

trade-off being these persistent sidelobes that from a practical 

perspective can simply be viewed as broadening mainlobe roll-

off.  

 
Fig. 4. Loopback autocorrelation results for 5000 unique       

PRO-FM waveforms generated using n = 2 

 
Fig. 5. Loopback autocorrelation results for 5000 unique       

PRO-FM waveforms generated using n = 8 

 
Fig. 6. Loopback autocorrelation results for 5000 unique       

PRO-FM waveforms generated using n = 32 

 

To evaluate cross-correlation performance among each set 

of RFM waveforms the first waveform in each set was cross-



correlated with the other 4999 waveforms, where the “single 

waveform” (a single result) and the “RMS combination” over 

the set of 4999 responses are shown in Fig. 7 for the n = 8 case. 

The “coherent combination” (i.e. slow-time combining) over 

these 4999 cross-correlation responses is likewise depicted, 

though as we see there is no coherent component since the 

waveforms are dissimilar. The n = 2 and 32 cases realize almost 

identical responses so are not included. Indeed, peak RMS 

cross-correlation values obtained are −28.4 dB, −26.6 dB, and 

−26.1 dB for n = 2, 8, and 32, respectively, which have good 

agreement with previous observations that independent RFM 

cross-correlation is roughly −10 log10(TB = 472) = −26.7 dB.  

Like autocorrelation, we see that higher n introduces a 

modest degradation in cross-correlation, here by 1.8 dB and 

then another 0.5 dB. However, the benefit of incoherent 

responses (aside from their autocorrelation mainlobes) again 

realizes further suppression when slow-time processing, with 

the coherent combination trace the same 10 log10(5000) = 37 

dB lower than the single waveform result. In other words, there 

is likewise a small degradation in waveform separability as n 

increases, but the distinction is essentially negligible for large 

TB and/or M (e.g. like in imaging applications). 

It is also important to note that the 60 dB of separability 

depicted in Fig. 7 does not involve any form of optimization on 

the basis of cross-correlation. Instead, this result arises solely 

from the high dimensionality of these unique waveform sets, 

stemming from the independent random initialization of each 

waveform and likewise occurring for each RFM method and the 

broader category of noise radar in general. Indeed, if we 

compute 10 log10(MTB = 5000472) = 63.7 dB, we again see 

good agreement on the expected order of separability. 

 
Fig. 7. Loopback cross-correlation results for 5000 unique PRO-

FM waveforms generated using n = 8 
 

Figs. 8, 9 and 10 subsequently depict the spectral content of 

each loopback waveform set relative to the particular spectral 

design template. Because spectral content is predominantly a 

transmit perspective, a coherent combining trace is not shown, 

though the single waveform and RMS combinations reveal 

interesting behavior.  

 

 
Fig. 8. Loopback spectral content for 5000 unique PRO-FM 

waveforms generated using n = 2 

 
Fig. 9. Loopback spectral content for 5000 unique PRO-FM 

waveforms generated using n = 8 

 
Fig. 10. Loopback spectral content for 5000 unique PRO-FM 

waveforms generated using n = 32 

 

It is first worth noting that both the design templates and 

RMS results for all three spectra have the same 3-dB bandwidth, 

even though the n = 2 case in Fig. 8 appears broader, which is 

due to the more gradual roll-off. If we determine the percentage 

of power density within this 3-dB bandwidth for the RMS 



responses, it is found to be 75.1%, 97,5%, and 98.5% for n = 2, 

8 and 32, respectively. In other words, higher n provides greater 

spectral concentration of signal power, not a surprising result 

given the design templates. In fact, simulation evaluation using 

RMS responses (again for 5000 unique PRO-FM waveforms in 

each trial) shows in Fig. 11 that values of n above 12 reach a 

saturation point of 98.5% in-band power, with the remaining 

1.5% likely due to enforcement of a rectangular pulse shape. 

 
Fig. 11. Simulation of percent power within 3-dB bandwidth 

versus n for ideal template and RMS response of 5000 PRO-FM 

waveforms 

 

Where the above percentage is a “vertical” assessment of 

template error in terms of power deviation, another useful 

comparison is the point at which the RMS spectrum response in 

each case deviates from the given template by some nominal 

amount (i.e. a “horizontal” assessment). Specifically, let 5% of 

3-dB bandwidth be the threshold for declaring deviation from 

the template, which for the n = 2, 8, and 32 spectra respectively 

translates into −8.3 dB, −14.3 dB, and −18.0 dB relative to the 

peak. From this perspective, the implication is that higher n not 

only supports better spectral containment, it also appears to 

facilitate better template matching.  

However, a discrepancy emerges when we alternatively 

consider the overall percent deviation between each RMS 

spectrum and its template (another “vertical” assessment), 

which yields 4.4%, 6.8%, and 7.8% for n = 2, 8, and 32, instead 

suggesting poorer matching with higher n. These distinctions 

can be reconciled by variations in the passband for each RMS 

spectrum, where 4.3%, 6.7%, and 7.7% error is obtained for 

n = 2, 8 and 32 when only the 3-dB passband is considered. This 

result indicates that the overwhelming majority of error is 

contributed by the passband instead of the roll-off region. 

It is also worth noting that all three RMS spectra reach a 

level that is 48-50 dB below the peak at the edges of the 

displayed normalized frequency interval. However, the n = 8 

and 32 cases in Figs. 9 and 10 do so after first providing tighter 

passband containment, outside of which the roll-off rate appears 

to reaching the limit for RFM waveforms and this hardware 

configuration. Indeed, the final drop at the outer edge of all 

three RMS spectra is likely due to the anti-aliasing filter in the 

real-time spectrum analyzer used here as a receiver, suggesting 

that the “knee” in each trace is the true transmit spectrum that 

we are able to capture, with the n = 2 case about 10 dB higher 

than the other two cases at that point, implying poorer spectral 

containment as expected for n = 2. 

Finally, Fig. 12 shows moving target indication (MTI) 

results for the n = 8 set of PRO-FM waveforms, which 

illuminated a traffic intersection in Lawrence, KS from the roof 

of Nichols Hall on the University of Kansas campus. A -40 dB 

Taylor window was applied to mitigate Doppler sidelobes and 

a simple projection at/around zero-Doppler was used for clutter 

cancellation. 

Multiple movers are clearly visible, with this result 

qualitatively identical to others that have been collected for 

RFM waveforms (e.g. see [15-17]). While our ultimate goal 

here is to extend the utility of RFM waveforms for wideband 

applications, the purpose of this result is simply to show that 

designing for better spectral containment is likewise useful for 

MTI and other narrowband applications and does indeed 

perform as expected for real radar functions. 

 

 
Fig. 12. Open-air range-Doppler response from 5000 unique 

PRO-FM waveforms generated using n = 8  

 

V. CONCLUSIONS 

The super-Gaussian function has been demonstrated 

experimentally to provide a useful spectral design template for 

random FM waveforms. Increasing the exponential shape 

parameter n greater than 2 (Gaussian) yields increasingly tighter 

spectral containment, which is necessary for extension to 

wideband operation due to the required inclusion of roll-off to 

minimize waveform distortion. The trade-offs incurred for 

better containment include the emergence of persistent range 

sidelobes close to the mainlobe (though these may be viewed as 

broadened mainlobe roll-off), a marginal increase in the 

incoherent sidelobe floor, and a marginal degradation to cross-

correlation separability. However, higher n also appears to 

provide a sharper roll-off outside the design passband spectrum, 

thereby suggesting more amenable hardware implementation 

for wideband operation. 
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