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Abstract—We consider the problem of decentralized control
of reactive power provisioned by distributed energy resources
for voltage support in the distribution grid. We assume that the
reactance matrix of the grid is unknown and potentially time-
varying. We present conditions for stability of the system when
the reactive power at each inverter is set using a potentially
heterogeneous droop curve. These conditions utilize energy dis-
sipation requirements and can be naturally satisfied even when
the reactance matrix is unknown by using an adaptive controller
and when the reactance matrix is time-varying.

Index Terms—Decentralized control, dissipativity, energy stor-
age, power distribution systems, volt/VAr control.

I. INTRODUCTION

As the incidence of distributed energy resources (DERS),
such as residential photovoltaic (PV) grids, has increased in the
distribution grid, new challenges and opportunities have arisen.
A major challenge is that due to rapid fluctuations in voltages
and supply due to the presence of DERs, standard techniques,
such as switching capacitor banks or controlling on-load tap
changers, are no longer sufficient for guaranteeing that power
quality specifications are met. The opportunity arises from the
fact that the inverters used by DERs to share their power with
the distribution network (DN) can easily achieve prescribed
reactive output powers. Thus, they provide a new control knob
to stabilize the voltage and meet power quality constraints
through controlling the reactive/active power flows.

Indeed, several control algorithms to this end have now been
proposed. Rather than centralized algorithms with a single
decision point that computes and prescribes set points for each
inverter, local or distributed algorithms are expected to be more
scalable and robust [1], [2] [3]. Distributed controllers require
neighboring inverters to communicate with each other, while
local algorithms do not require any information exchange [4]
[5], [6].Given the lack of communication infrastructure at
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the moment, local controllers are preferred over distributed
approaches. Local Volt/VAR droop curves implemented at
each inverter are an example of such controllers and have been
extensively studied [7]-[14].

A known problem with these controllers is that multiple
local controllers when connected to the distribution network
can result in stability loss [15]. This problem manifests itself
as oscillations in the voltage or reactive power in the network
in such a way that the power quality constraints are not
met. This problem has been considered in previous work.
As some representative examples, a continuous time approach
was proposed in [16]; however, as [17] argues, a discrete
time formulation is more appropriate for the problem. Some
works have considered a small signal analysis by considering
only the linear region of the droop curves [7], [14], [18].
A reverse engineering based optimization framework was
proposed in [19]; however, assuming the same droop curve
at every inverter. An algorithm that utilizes a first-order filter
along with a droop curve was proposed in [17]. An interesting
observation in these works is that the stability conditions are
a function of the reactance matrix of the distribution network.
If the matrix is unknown, looser sufficient conditions can be
derived based on some property such as spectral radius or norm
of the matrix. However, these conditions can be conservative,
especially when the reactance matrix may be varying over time
due to factors such as changing topology of the DN.

In this paper, we present a dissipativity-based approach to
guarantee stability of a DN with multiple inverters and local
voltage control. We consider a discrete-time formulation, allow
for heterogeneous droop curves, and present conditions for
stability with saturation regions included in the droop curves at
the inverters. The stability proof requires the knowledge of the
reactance matrix to design the droop curves. For the case when
the reactance matrix is unknown but constant, we present an
adaptive controller building on extremum seeking optimization
that does not require this knowledge. One advantage of our
dissipativity-based approach is that it allows us to derive
stability conditions even in the case when the reactance matrix
is time-varying. These properties may become increasingly
important as DER penetration increases.

We begin by defining the notation and the problem in
Section II. We present our dissipativity based controller in
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Section III-A. For the case when the reactance matrix is con-
stant but unknown, we present an extremum seeking approach
in Section III-B to converge to the correct controller. We show
how stability can be guaranteed when energy dissipation does
not hold at every time step due to a time-varying reactance
matrix in Section III-C. Some numerical case studies are
presented in Section IV.

II. PROBLEM FORMULATION

Consider a radial distribution network with n + 1 buses
numbered as 0, 1, ---, n. Without loss of generality, bus 0 is
the substation bus assumed to be at a fixed voltage. Define the
set of buses by N/ £ {0,1,...,n}. Denote the set of lines
connecting the buses by £ with the line (7, j) € £ connecting
buses ¢ and j with 7,5 € . For each bus i € A/, denote the
complex voltage at this bus by v;, the real power injection by
p; and the reactive power injection by ¢; (with injection in
either case denoted by a positive value and consumption by a
negative sign). Denote the stacked vectors of these quantities
at all the buses by v for the complex voltages, p for the real
power injections, and q for the reactive power injections.

In a distribution grid, the voltage magnitude v can be
observed and the reactive power injections ¢ can be controlled.
We follow the development of [17] to describe the dynamics
of the system. Specifically, we consider a single-phase grid
and assume that the dynamics of the grid are considered in
a discrete-time fashion with the discretization time 7% that is
sufficiently large so that the power system dynamics (grid,
load, and inverter dynamics) reach a steady state between
the discrete time steps. In other words, if the reactive power
injections ¢g(k) are specified at time step k, then the actual
injections will reach these values at time step k+1. Further, the
corresponding voltages (given by the power flow equations)
have also reached a steady state at time step &+ 1. Finally, we
assume that the voltages are obtained through a linearization
of the nonlinear power flow equations at 1pu.

If we denote the prescribed values of the reactive power
injections at iteration k by the control input u(k), and assume
that the voltages v(k) can be observed, then the above discus-
sion can be summarized in the system model of the form

. kD) =ulk) "

y(k) = v(k),

with the voltage v(k) and reactive power ¢(k) satisfying
v(k) = Xq(k) + v, where X is a positive definite matrix that
characterizes the reactance of the network and v is a vector
that depends on the real power injections and the resistances in
the network and is not controllable. Note that X is a constant
matrix; however, the precise value of X is often unknown. This
linearized model is widely accepted, see, e.g., [17], [19]-[22].

The control objective is to design the control input u(k)
so that the voltage v(k) locally asymptotically stabilizes to a
desired set point v*. The control input u(k) should be a causal
function of the output y(0),--- ,y(k). Further, it should be a
local controller in the sense that each input u; (k) depends only
on the local outputs (or voltages) at bus ¢. Finally, the control
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Figure 1. Typical droop controller.

input u(k) must satisfy the physical limits of the reactive
power that can be supplied or absorbed by the inverter, so
that U(k) € [qmina qmax]-

For ¥;, denote the set of all feasible operating points by

C={(q,v) ER® xR"|v=Xq+7}. (2)

Let (¢*,v*) € C denote the desired operating point of the
system X; corresponding to the voltage set point v* and the
reactive power v* = X ¢* +0,. with ¢* € [¢min, ¢max]- Finally,
denote the incremental quantities Ag(k) = q(k)—g¢*, Au(k) =
u(k) —u*, and Av(k) = v(k) — v*.

III. DISSIPATIVITY BASED CONTROLLER

We begin by presenting a dissipativity property for the
linearized system X;. We provide the basic definitions of
dissipativity in the Appendix and refer the reader to books
such as [23] for more information. Using that, we design a
new dissipativity-based controller to ensure that the voltage
set point is asymptotically stable. The dissipativity analysis of
the system 3; is slightly complicated by the fact that the input
u(k) is related to g(k+1) and hence the output y(k+1) at time
k+1. We use the well known tool of scattering transformations
used in the theory of dissipativity of time-delay systems [24].
Specifically, we use the scattering transform defined by

v(k) = Av(k) + X Au(k),
w(k) = —Av(k) + XAu(k).

(3a)
(3b)

We can then prove the following result.

Lemma 1: The linearized system 3J; is passive with respect
to the input (k) and output w(k) irrespective of how u(k) is
designed.

Proof: Tt follows readily using the storage function
S(k) = |[|[XAq(k)||3 and noting that S(k + 1) — S(k) =
v(k)Tw(k). [ |
We emphasize that the dissipativity above has been proven
with respect to a ‘dummy’ input v(k) and output w(k) and
holds irrespective of the controller used to design u(k).

A. Control design

We now show that the dissipativity property proved above
can be utilized to design a controller that stabilizes the
system around the desired set point. Specifically, consider the
following controller inspired by the popular droop controllers
and shown in Fig. 1:

Gmax 'U(k) <
uk) = u* — K (v(k) —v*) v <ovk)<v, @
Qmin U(k) > Up,



where for the system not to have a trivial equilibrium in the
saturated regime, we assume that the parameters v; and vy, are
chosen to satisfy

Uh, Z)(Qmax‘i'l7 Zvl (5)
v < X¢min + 0 < vp. (6)

These relations can be interpreted as imposing constraints on
the allowed voltage range as a function of the reactive power
capacity of the DERs so that stability can still be guaranteed.
We can show the following result.

Theorem 2: Consider the system 3; with the controller (4).
Let K be a diagonal matrix that satisfies the condition

K:=(I+XK)""(XK-1I)<0 (7

in the sense that K 4+ K7 is negative-definite. Then:
(i) The closed loop system is dissipative with respect to the
supply-rate w(w) 1= w ' Kw.
(i1) The closed loop system is asymptotically stabilized to the

desired operating point (g*, v*).

Proof: If the initial condition v(0) satisfies v(0) < vy,
then the controller (4) implies that w(0) = gmax. The state
q(1) = u(0) = gmax, which, in turn, implies from (5) that v; <
v(1) < vy. Similarly, if v(0) > vy, v; < v(1) < v. Thus, for
asymptotic behavior of the system, we can assume without loss
of generality that the initial condition of the system satisfies
vy < v(0) < vy, and the control input is given by

u(k) = u* — K (v(k) — v*). (8)

To prove part (i), we begin by simplifying (3) using the
controller (8) to write

v(k) = (I — XK)Av(k)

w(k) = - + XK)Av(k). ®
Further, we can simplify (7) to write
XK=(I+K)(I-K)" (10)
We can use (10) to rewrite (9) as
v(k) = Kw(k). (11)
Using Lemma 1 and (11), we have
S(k+1)—Sk) =v(k) wk) =wk) Kwk). (12)

This concludes the proof of part (i).

For part (ii), we note that since K < 0, (12) implies:

o If w(w) =0, then w(k) = 0. From (11), we then obtain
v(k) = 0. Thus, the relation (3) yields v(k) = v* and
consequently ¢(k) = ¢*.

o If w(w) # 0, then S(k + 1) < S(k). Since X > 0,
S(k) > 0, with S(k) = 0 if and only if Ag(k) =0, or
in other words, ¢(k) = ¢* and v(k) = v*.

These two observations imply that the system X; with (4) is
asymptotically stabilized to the operating point (¢*,v*). H

Theorem 2 proves the stability of a controller inspired by
the droop controller, under some conditions on the range of
the linear portion of the controller (given by (5) and (6)) and
restrictions on the slope of the linear portion of the controller
with respect to the matrix X of the distribution grid.
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Figure 2. Proposed algorithm for identifying a* (k).

B. Adaptive Controller

Although the controller (4) is sufficient to stabilize the
system 3, it requires the knowledge of the desired set point
w*, which, in turn, requires the value of the matrix X.
Assuming the knowledge of X in a distribution grid with
DERs that are not under the direct control of the operator
can be restrictive. We now propose an adaptive controller that
does not require any knowledge of u*.

Following the theory of extremum seeking controllers
(ESCs) [25] the controller implemented at time k is of the
form:

u(k) = u*(k) — K (v(k) —v*), (13)

where u*(k) € R™ denotes the current estimate of the
unknown desired reactive power u*. To update u*(k), we
follow the design in Figure 2. Since u* corresponds to the
desired set point ¢* of the reactive power, we define a cost
function J(u*(k)) associated with any choice of u*(k) as

J(ur(k)) = | Xu(k) + 0 — v*|[3. (14)
Then, the estimate is updated as
wi(k+1) = 0;(k + 1) + a; cos(w; (k + 1)) (15)

0i(k + 1) = 0;(k) — via; cos(w;k) (J(u(k)) — (1 + h)g((llz)))

G(k) = —h¢(k — 1) + J(u*(k - 1)), (17)

where ((k) is a scalar and the subscript ¢ indicates the i-th
vector entry. The signal a; cos(w;k) is a dither signal with a
small amplitude a; and frequency w; = aim, with 0 < o < 1.
~; is the adaptation gain. The highpass filter Z}ll is designed
with 0 < h < 1 and a cutoff frequency well below w;.

The ESC is a gradient based controller and thus any con-
vergence result is necessarily local. Thus, we assume that the
the system >; remains in the linear range of the controller (4).

Theorem 3: Consider the system Y; in closed loop with
the controller of the form (13) such that v; < v(k) < vy at
every step. Let the parameter u*(k) in the controller be chosen
according to the equations (15)-(17). Then, it holds that the
parameter u* (k) locally exponentially converges to an O(a;)
neighborhood of the correct value u*.

Proof: The proof follows that of [25, Theorem 2] by
defining Fy(z) = F;(z) = 1 and noting that the condition
in [25, Theorem 2] on the positive realness is met if 0 < i < 1.
A detailed proof is omitted for space constraints. [ ]

C. Time-varying reactance Matrix

The condition (7) guarantees stability with the controller (4)
for the system ;. In a distribution grid with multiple DERs
that are not under the control of the operator, the value of X



may be time-varying. In this case, while we may satisfy (7)
for a nominal value of X, this relation may be violated at
the time steps when X deviates from this value. The stability
proof in Theorem 2 (as in other works in the literature) will
be violated in this case. In this section, we show how our
dissipativity based proof can be extended to this case.

Specifically, we assume that the relation (7) is satisfied for
a nominal value Xy of X. However, X can also take values
from the set { X1, -+, X, }, such that (7) is not guaranteed for
X;. We obtain below a sufficient condition on the frequency
with which X = X, should be ensured for stability. Assume
that the matrix K is designed such that

Ko = (I + XoK) " (XoK — 1) >0, (18)

so that Ky + Kép is positive definite, while the matrices

Ki=(I+X,K)""(X,K~-1), i={1,---,n} (19)

may not satisfy this constraint. Denote

. wk)TKw(k)
— =)\ 2
min (R T w(k) i (20)
)\min = ._Ilnin )\z (21)
If at time k£, X; was the correct matrix, we have
S(k+1) — S(k) = —w(k) " Kjw(k). (22)

For notational ease, denote the matrices active at time k by
X (k) and K (k), with the smallest eigenvalue A(k). Adding
the relations (22) for every N steps, we obtain

N-1
Sk+N)=S(k) > = > wk+i) wlk+i)A(k+i). (23)

=0

Thus, a sufficient condition for S(k + N) < S(k) is that
- Zf:ol A(k + 1) < 0. The most conservative case is when
X was active for exactly m steps out of IV and all other \;’s
are negative for ¢ = 1,--- ,n and equal to Ap,;,. In this case,
this condition can be rewritten as

—mAg — (N — m)Amin < 0. (24)

Thus, we can state the following result.

Theorem 4: Consider the system X; with the controller (4),
where the matrix K is designed to satisfy (7) for a nominal
matrix Xo. Let X take matrices from a set {Xo, -, X,
such that the quantities Ay and A, can be defined as in (20)
and (21) respectively. A sufficient condition for the stability
of the closed loop system is for the operator to ensure that for
every block of N steps, the nominal matrix X is active at
least m times such that (24) is satisfied.

Proof: If (24) is satisfied for every N steps, we can
consider the equivalent system evolving at times kN, for
k=0,1,--- . This system is dissipative with the same storage
function as in Theorem 2. The rest of the proof mirrors that
of Theorem 2. [ ]

Figure 3. IEEE 13-bus test feeder. Buses 680 and 675 have ESS.
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Figure 4. Oscillation introduced by the volt/VAr droop controller.

IV. CASE STUDY

The voltage controller was validated in a simulation imple-
mented in OpenDSS with a timestep of 1 second over 24 hours.
A normally open switch (SW2) was added between buses 633
and 692. Halfway through the simulation SW1 opens and SW2
closes, which changes the reactance of the system. Two three-
phase 600 kW/600kWh energy storage systems (ESS) were
added to the unbalanced IEEE 13-bus test feeder’s buses 680
and 675, as shown in Fig. 3. These ESS provide volt/VAr
regulation to the feeder, so that voltage fluctuations caused by
time-varying loads are mitigated.

The voltage-reactive power controller settings were chosen
within the range of allowable settings of standard IEEE 1547-
2018. Similarly to what is shown in the motivational example
of [17], an oscillation in the output of the volt/VAr droop
controller is found, shown in Fig. 4. The controllers saturate
at every time step and introduce an oscillation in power flows
and voltage of the distribution feeder. The detail plot in Fig.
4 provides a clearer idea of how those oscillations occur.

The proposed controller (8) was designed using K =
diag{10000, 1000}, which resulted in K < 0. The parameters
of the adaptive controller were chosen as a; = 0.1, w; = 7/2,
v; = 0.027, h = 0.99 . The controller stabilizes the voltages,
with the power injections also shown in Fig. 5.

The ESC provides the desired controller outputs, ©v* shown
in Fig. 5. Following a brief transient, when these controllers
obtain a stable u*, which provides the first term at the right
hand side of (8). When added to the second term of the same
equation, we obtain the controller outputs u*. We notice that
those act to counter the voltage fluctuations in the feeder,
providing good voltage regulation by maintaining voltage very
close to the target of 1pu. It is also important to highlight
that the parameters chosen plus the actuation of the adaptive
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Figure 5. ESS voltages and power injections from the proposed controller.

controller avoid saturation of the actuator, i.e., the reactive
power absorption capability of the two ESS units.

V. CONCLUSION

We provided a dissipativity based adaptive controller for
decentralized control of reactive power from DERs in the
distribution grid, where the reactance matrix of the grid is un-
known and may even be time-varying. The controller effective-
ness was demonstrated through simulations. The effectiveness
of the controller is currently limited by the saturation of the
actuators. Therefore, more ESS capacity would be necessary
to further reduce voltage fluctuations. Future work includes
extending this approach to distributed control of DERs.

APPENDIX

Consider the discrete-time nonlinear state-space system

z(k+1) = f(z(k), u(k))
y(k) = h(z(k), u(k))

Let the nonlinear functions f and % be real analytic about the
equilibrium point for (25), (x = 0,u = 0). x, u, and y are the
state, input, and output vectors, respectively.

Definition (dissipativity [23]): (25) is dissipative with re-
spect to the supply rate w(u(k),y(k)), if there exists a non-
negative storage function S(x) satisfying S(0) = 0 such that

S(x(k +1)) = S(x(k)) < w(u(k),y(k)).

(25)

(26)

In particular, we call the system passive if w(u(k),y(k)) is of
the form u " (k)y(k).
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