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The observed difference between T, and T, is explained by shock coupling
proportional to mass, and equilibration consistent with hydro theory.

* This is the first direct lab-based experimental measurement of shocks coupling directly
proportional to mass in multi-ion plasmas, verifying a long standing prediction.

* For NIF ignition implosions, during the shock convergence phase the D and T ions are out of
thermal equilibrium which greatly impacts the ion viscosity.

* iFP simulations indicate that this result is robust, even in the highly kinetic regime.
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Outline

* Experimental Platform

* Measured T, and Ty,

* The mass dependence of ion shock coupling

* Impacts on ion viscosity

* Test of the impact of non-Maxwellian distributions

* Comparison to iFP Fokker-Planck
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Thin shell shock driven implosions generate a shock convergence
phase with similar conditions to ignition implosions
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Thin shell shock driven implosions generate a shock convergence
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Thin shell shock driven implosions generate a shock convergence
phase with similar conditions to ignition implosions
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There is separation between the NTOF measured Ty, and Typ,, Which
increases with decreasing fill density
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There is separation between the NTOF measured Ty, and Typ,, Which
increases with decreasing fill density
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The apparent D and T ion temperatures can be inferred from the
measured DTn and DDn temperatures

mTTT + mDTD

T —
DIn mr + mp

mp
Tr = Tprn +— (Tprn — Tppn)
mr

For the NIF data, a higher order
model taking into account
temperature variation is used.

11/9/202 Xabadi et al., Phys. Plasmas 28, 022701 (2021).
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In these implosions the ion-ion equilibration time (7;;) can be long,
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Using hydrodynamic approximations, an expected equilibration trend
has been derived
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An initial temperature ratio of 1.5 is inferred from the data confirming long
standing theory that shocks couple proportional to mass in multi-ion plasmas
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An initial temperature ratio of 1.5 is inferred from the data confirming long
standing theory that shocks couple proportional to mass in multi-ion plasmas
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An initial temperature ratio of 1.5 is inferred from the data confirming long
standing theory that shocks couple proportional to mass in multi-ion plasmas
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An initial temperature ratio of 1.5 is inferred from the data confirming long
standing theory that shocks couple proportional to mass in multi-ion plasmas
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Outline

* Experimental Platform

* Measured T, and Ty,

* The mass dependence of ion shock coupling

* Impacts on ion viscosity

* Test of the impact of non-Maxwellian distributions

* Comparison to iFP Fokker-Planck
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With multiple ion temperatures, calculation of the ion viscosity with
average ion properties is incorrect

T_SKZA']JZ

— - i -1 -1
u=1.01E-15 i BCmTs

Incorrectly modeling the ion viscosity during the shock convergence phase will result in wrong initial

11/9/2021 conditions for the subsequent compression.
S. I. Braginskii, Rev. Plas. Phys. 205-311 (2006).
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With multiple ion temperatures, calculation of the ion viscosity with
average ion properties is incorrect
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With multiple ion temperatures, calculation of the ion viscosity with
average ion properties is incorrect
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Many of these implosions are in a regime where non-Maxwellian
distribution functions are likely
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This data set spans nearly 3 orders of magnitude in collisionality
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To test the impact of non-Maxwellian distribution functions on the inferred
temperature ratio, a series of Monte-Carlo calculations were performed
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The error incurred by assuming the apparent temperature ratio is the mean energy
ratio is less than ~20% for all the distributions tested
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The error incurred by assuming the apparent temperature ratio is the mean energy
ratio is less than ~20% for all the distributions tested
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The implicit Fokker-Planck (iFP) code does an excellent job reproducing
the measured DTn and DDn yields for fill densities >0.5 mg/cc
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iFP is a 1D2V VFP code using nonlinear implicit time-stepping and an adaptative phase-space grid
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W. T. Taitano, et al., Phys. of Plasm. 25(5) 056310 (2018).
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iIFP does an excellent job reproducing the measured DTn and DDn
vields for fill densities >0.5 mg/cc

DTn YOC
- 1.00 0 9 ) 8
2 o DDn YOC ¥
S +
£
7 iFP
JEN:
>
o
©
©0.10
>—
8 +
= LILAC
£
]
o
4
0.01
0 1 2 3 4 5

Initial Gas Fill Density (mg/cc)

iFP does not include a laser package, so the simulations are driven using boundary conditions from

11/9/2021 LILAC hydrodynamic simulations. LILAC overpredicts the yields at all fill densities tested.
W. T. Taitano, et al., Phys. of Plasm. 25(5) 056310 (2018).
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iIFP does an excellent job reproducing the measured DTn and DDn
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iIFP does an excellent job reproducing the measured DTn and DDn
vields for fill densities >0.5 mg/cc
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The hydro code DUED, which includes real ion viscosity, nearly reproduces the measured yields for

11/9/2021 ~4 mg/cc fill density, but fails at densities < 2 mg/cc
W. T. Taitano, et al., Phys. of Plasm. 25(5) 056310 (2018).

44



iIFP does an excellent job reproducing the measured DTn and DDn
vields for fill densities >0.5 mg/cc
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The hydro code DUED, which includes real ion viscosity, nearly reproduces the measured yields for

11/9/2021 ~4 mg/cc fill density, but fails at densities < 2 mg/cc
W. T. Taitano, et al., Phys. of Plasm. 25(5) 056310 (2018).
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iIFP simulation of the 4 mg/cc fill density implosion shows slight kinetic
features in the D and T distribution functions
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These are the bang time distribution functions integrated over the orthogonal velocity coordinate.
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iIFP simulation of the 4 mg/cc fill density implosion shows slight kinetic
features in the D and T distribution functions
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These are the bang time distribution functions integrated over the orthogonal velocity coordinate.
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iIFP simulation of the 4 mg/cc fill density implosion shows slight kinetic
features in the D and T distribution functions

Slight bump
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For clarity line-outs at the radius of maximal DTn emission are shown
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iIFP simulation of the 0.2 mg/cc fill density implosion shows two
distinct ion populations

2.2 um SioO,
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These are the bang time distribution functions integrated over the orthogonal velocity coordinate.
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iIFP simulation of the 0.2 mg/cc fill density implosion shows two
distinct ion populations

2.2 um SioO,

50:50 DT

433 um

Po=0.2 mg/cc
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These are the bang time distribution functions integrated over the orthogonal velocity coordinate.
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iIFP simulation of the 0.2 mg/cc fill density implosion shows two
distinct ion populations

Large bump
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For clarity line-outs at the radius of maximal DTn emission are shown
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The apparent temperature ratio computed from the iFP 1D2V
distribution functions is close to the true mean energy ratio
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Future work

* Understand why hydro theory does a good job predicting the equilibration trend
for highly kinetic conditions

* Design experiments to measure the impacts of thermal decoupling during shock
convergence on the subsequent compression
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The observed difference between T, and T, is explained by shock coupling
proportional to mass, and equilibration consistent with hydro theory.

* This is the first direct lab-based experimental measurement of shocks coupling directly
proportional to mass in multi-ion plasmas, verifying a long standing prediction.

* For NIF ignition implosions, during the shock convergence phase the D and T ions are out of
thermal equilibrium which greatly impacts the ion viscosity.

* iFP simulations indicate that this result is robust, even in the highly kinetic regime.

11/9/2021 54



Questions?
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The Brysk form for the temperature mass weighting is only accurate
for DT implosions when the temperature ratio is not too large

4| [ ]
mTTT -+ mDTD
T'prn = .
mr + mp B 3T
© .
'(% 2 '.:’
O o’
—_ l:I— -'-,"'J
%
i _._},e‘"
Tr = Tprn + Trpn — T ol
T DTn mT( DTn — DD”) o 05 1 15 2 25 3 35 4
TTfTD Input

Figure 4. Black points show the temperature ratios inferred
from Monte Carlo simulated neutron spectra plotted versus
the input temperature ratio. The dashed black line is a ref-
erence showing equality between input and simulated values.
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Species separation was previously observed in D3He gas-filled shock
driven implosions

0 0.5 1
Deuterium Fraction (f,)

These experiments used the same OMEGA platform and consistently inferred suppression

of the D content in the core during nuclear emission.
11/9/2021 8
Rinderknecht et. al. Phys. Rev. Lett. 114, 025001



The level of species separation can be inferred from the combined yields
and ion temperatures taking into account profiles to second order

Ypon
. . . o o
DT — flat reactivity ratio — Uniform model — < fp>=< D1
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From f, the mass concentration of the light species (c) can be computedas ¢ =
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One potential source of species separation is multi-ion diffusion within
the sharp gradients of the shock front

11/9/2021

The diffusion equation can be written as:
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Separation driven by gradients in T, and P is compared to homogenization
driven by classical diffusion to estimate the concentration gradient

The strength of the separation can be estimated as:

i

LS — —*Tlshock = (up —u) * Tshock
Pi
D (kp+ ki + kre + kE) . Ashock
C A.ﬁ‘hm‘.‘.' Ushock

D (kp + kri + kre + kE)

C Ushock

Ls=
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Separation driven by gradients in T, and P is compared to homogenization
driven by classical diffusion to estimate the concentration gradient

The strength of homogenization can be estimated as:

D Ry

C Ushock

Ve
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Separation driven by gradients in T, and P is compared to homogenization
driven by classical diffusion to estimate the concentration gradient
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The inferred level of species separation is correlated with the estimated
value, but consistently lower
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Path forward

e Multi-ion hydro simulations with PHORCE (VT)

* Experiments investigating the impact of disequilibrium in the shock
convergence phase on the subsequent compression phase

* Experiments have been completed, data analysis is ongoing
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Other things
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Previous measurements with the Particle X-ray Temporal Diagnostic
were used to implicate time-resolved multi-ion effects during shock

emissSion
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The PXTD was used to measure the DTn, D3Hep, and DDn bang times
simultaneously on experiments with “hydro equivalent” fill ratios.

11/9/2021

67



The cause of the emission time difference is determined by measuring the
relative emission timing with varying D fraction in hydro equivalent implosions

fD (0.57-0.97)

D:3He
Trace T
.5 mg/cc

Increasing D
fraction
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The cause of the emission time difference is determined by measuring the
relative emission timing with varying D fraction in hydro equivalent implosions

fD (0.57-0.97) N, (0.2-1)

Increasing D Increases the N, making
fraction kinetic effects stronger
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The cause of the emission time difference is determined by measuring the
relative emission timing with varying D fraction in hydro equivalent implosions

fD (0.57-0.97) N, (0.2-1) >K /CR (3-4)

Increasing D Increases the N, making Decreases YK /CR and
fraction kinetic effects stronger species separation
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The cause of the emission time difference is determined by measuring the
relative emission timing with varying D fraction in hydro equivalent implosions

fD (0.57-0.97) N, (0.2-1) >K /CR (3-4) Ty (3-4)

Increasing D Increases the N, making Decreases K /CR and Ty is large and stays
fraction kinetic effects stronger species separation similar
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The cause of the emission time difference is determined by measuring the
relative emission timing with varying D fraction in hydro equivalent implosions

fD (0.57-0.97) N, (0.2-1) >K /CR (3-4) Ty (3-4) Rho (3.5 mg/cc)

Increasing D Increases the N, making Decreases YK /CR and Ty islarge and stays  Rho is held constant to
fraction kinetic effects stronger species separation similar maintain hydro-
equivalence

11/9/2021 72



The cause of the emission time difference is determined by measuring the
relative emission timing with varying D fraction in hydro equivalent implosions

fD (0.57-0.97) N, (0.2-1) >K /CR (3-4) Ty (3-4) Rho (3.5 mg/cc)

Increasing D Increases the N, making Decreases YK /CR and Ty islarge and stays  Rho is held constant to
fraction kinetic effects stronger species separation similar maintain hydro-
equivalence

If the delta bang time increases with fD it is likely kinetic effects, if the bang time decreases with
fD species separation is likely dominant, if it does not change then it could be a hydro effect.
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On these experiments the DDn, DTn, and D3Hep emission histories
were simultaneously measured on PXTD

Example data from shot 98968 Bang Times
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The measured bang time differentials are consistent with a constant
value, indicating that hydrodynamics is most likely responsible
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The D3Hep emission is weighted closer to shock rebound when the
central temperatures are higher, but the heated volume is smaller.
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These iFP simulations show dramatically increasing SiO, mix with
decreasing DT fill density

Ratio of simulated glass ion density to D and T ion density at the peak emission radius
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These iFP simulations show dramatically increasing SiO, mix with

decreasing DT fill density

Ratio of simulated glass ion density to D and T ion density at the peak emission radius
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Similar behavior has been
observed in CEA FPION
simulations of D3He filled
implosions
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The iFP simulated ion density profiles at bang time show that the SiO,
ions dominate the material in the core at low density
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The iFP simulated ion density profiles at bang time show that the SiO,
ions dominate the material in the core at low density

4 mg/cc fill density
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Hans Rinderknecht saw almost
identical D3He yield with and without
D in the initial 0.5 mg/cc gas fill of CD

shell shock driven implosions

11/9/2021
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FIG. 1 (color online). Yields of D’He protons (solid red)
recorded from 30 kJ implosions of deuterated plastic shells filled
with a 50:50 D’He mixture are comparable in magnitude to
implosions of the same shells filled with pure *He. Implosions of
glass shells filled with *He produce yields 3 orders of magnitude
lower, ruling out D,-gas contamination of the targets as an
explanation for this result. The observed D°*He-p yields require
shell-deuterium mix into the *He fuel to be of the order of 10%

the initial *He gas density. PRL 112, 135001 (208114)
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Chikang Li saw that recessing a CD layer in ablatively driven
implosions reduces the yield by an order of magnitude.
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FIG. 1. The structures of two different capsules filled with
4 atm of pure *He gas, and measured spectra of primary D*He
protons from implosions at OMEGA. The ratio of number
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densities (D to C) is 1.56 in the CD layer.
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FIG. 2. D*He proton yields plotted as a function of gas-fill
pressures for implosions of capsules with *He fuel and zero-
(closed dark diamond) and 1 pm-offset (open diamond) CD
layer shells.
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Similar results are seen in FPION simulations of D3He-filled implosions
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FIG. 1. Space-time evolution of the density for the three species
“8i0,,” D, and "He for the high-density (left column) and low-
density (right column) targets.
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Mike Rosenberg also saw decreasing YOC with decreasing fill 107 10™ 10° 10’

density (and therefore increasing Knudsen number). N AR e

FIG. 1. Ratio of measured DD fusion yields to hydrodynamics-simulated
yields (yield over clean, YOC) as a function of the Knudsen number (N)
for an indirect-drive exploding pusher on NIF (red diamond),™ three polar-
direct-drive (PDD)** exploding pushers on NIF,** and direct-drive exploding
pushers on OMEGA (green circles).”" Fusion bumn profile measurements of
the OMEGA experiments are described herein. Filled markers represent
D'He-filled implosions, while open markers denote D.-filled implosions.
Though the drive conditions are quite different, these experiments show a
unified picture of the increasing impact of ion kinetic effects as a function of
increasing Knudsen number for N = 0.1. A band centered around N, = 0.5
shows the approximate Knudsen number at the center of a NIF ignition-
relevant indirect-drive implosion™ or a NIF polar-direct-drive implosion™
immediately after shock convergence, while a band centered around Ny =2
shows the approximate Knudsen number after shock convergence at the cen-
ter of a cryogenic layered implosion on OMEGA.*® This data were origi-
nally presented in Ref. 22. Reproduced with permission from Phys. Plasmas
21, 122712 (2014).
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iIFP consistently overpredicts the DTn and DDn ion temperatures indicating
that some details of the ion distributions may not be properly captured
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iFP temperatures are calculated by simulating the neutron spectra and

using them to infer apparent temperatures.
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The temperature ratio from iFP simulations is not consistent with the
experimentally observed trend
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