Sandia
National
Laboratories

Exceptional service in the national interest

CONSTRUCTING CONTAINERS FOR
EXASCALE COMPUTING

RED HAT @ SC21

PRESENTED BY

UNCLASSIFIED UNLIMITED RELEASE

SAND2021-XXXX C

Sandia National Laboratories is a multimission laboratory managed and operated by National .'r:-:{'" 5l ks
Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell i EHERGY
International Inc. for the U.S. Department of Energy’s National Nuclear Security N ‘m
islalmultimission laboratoryimanagediand echnologvl&|EnaineerinalSolutionsloflSandia JLLC alwhollyiowned s R R e e o T b e Ly LT A 2 3 VA s
sub5|d|ar offHoneywellfinternational Inc. iforftheju.S JDepartmentioflEnergy'sfNationaljNucleaSecurityJAdministrationjunderdcontractiDE-| NA0003525

P/HPC AND CLOUD CONVERGENCE?

“| can’t run my national security workloads in the cloud”
“The cloud is still not up to the same performance as leadership-HPC”

“They don’t support MPI”
“| couldn’t find the sbatch command”

Many emerging “HPC” workloads being developed today target cloud deployments
> Deep learning frameworks and models
o Distributed memory apps outside of HPC, using whole new models
> Most/all of these tools can & are being deployed using containers

Cloud usage models are far more adaptable
o |tis a service model, but you can deploy your own resource management system too

> Failover & service guarantees
> Deploy any software you want

Yet the need for leadership-class supercomputing has not decreased

Does the Exascale era provide us with an opportunity to increase HPC flexibility & interoperability?

/

#

/

//TRENDS ARE NON-INTERSECTING

HPC Camp

MPI Applications

\
C,.
§9°
> 6"(0(0
= Batch j \\e
3 jobs 2C
X Cluster provisioning \o(e Cloud Infrastructure
Ty ‘oe Service Orchestration
xO
863
‘\3
. 68
'\I\
<&
s\

Al/ML Frameworks

Enterprise Camp

Scale

//ECP SUPERCONTAINERS

'/ Joint DOE effort - LANL, LBNL, LLNL, Sandia, U. of Oregon

Ensure container runtimes will be scalable, interoperable, and well integrated across DOE
o Enable container deployments from laptops to Exascale

o Assist Exascale applications and facilities leverage containers most efficiently

Three-fold approach
o Scalable R&D activities
o Collaboration with related ST and AD projects
o Training, Education, and Support

Activities conducted in the context of interoperability
> Portable solutions

o Optimized E4S container images for each machine type
o Containerized ECP that runs on Astra, A21, El-Capitan, ...

U

o Work for multiple container implementations SUPERCONTAINERS

o Not picking a “winning” container runtime

Py
o Multiple DOE facilities at multiple scales E (C\ I:
=

EXASCALE COMPUTING PROJECT

// DOCKER DOES NOT FIT HPC
74
o

Docker is not a good fit for HPC

o Docker privileges functionally equivalent to root-level access
> A no-go for HPC’s shared resource models
> No good way to “fix” this within the docker runtime itself

o Based on client/daemon architecture
o Great for the cloud/services world, but terrible for HPC

o Daemons are unpredictable and can be source of significant noise
> “The Case of the Missing Supercomputer Performance” @ LANL circa 2003

Building with Docker on your laptop/workstation is fine
o Assuming you own that machine
o But is your laptop’s hardware anything like your supercomputer?

/.
HPC CONTAINER RUNTIMES TODAY
o

/ " o Several different container runtime options in HPC

s

Shifter Singularity Charliecloud Sarus

.:‘ CSJ /K

SHIFTER Charliecloud

SARUS (not official logo)

All these HPC container runtimes are usable in HPC today

Each runtime offers different designs and OS mechanisms
- Storage & mgmt of images
— User, PID, Mount namespaces
- Security models
- Image signing, validation, registries, etc

/ CONTAINER RUNTIMES SUPPORT ON DIFFERENT
(PRE)EXASCALE SYSTEMS

(§) ALCF /@) LLNL
4 \sj — Theta: Singularity s

— Aurora: Singularity

— Sierra/Lassen: Singularity (trial)
— Linux clusters: Singularity
— El Capitan: Singularity & Podman

O LANL

Charliecloud — Trinity: Charliecloud

— Linux clusters: Charliecloud
— Crossroads: Charliecloud

fs\ OLCF

— Summit: Singularity (trial)
— Frontier: Singularity

<
.‘h NERSC rs.\ Sandia
SHIFTER — Cori: Shifter \J — Astra: Singularity, Charliecloud, & Podman

_ Perlmutter: Shifter & Podman Linux clusters: Shifter & Singularity

Charliecloud

Many sites are rolling out container runtimes for users.

We are developing resources to facilitate consistent, performant deployment across sites.

But what about building containers for HPC??

//ATSE: ADVANCED TRI-LAB SOFTWARE ENVIRONMENT
e

y

"« ATSE is a collaboration with HPE, OpenHPC, and ARM arm

Many pieces to the software stack puzzle

HPE’s HPC Software Stack

 HPE Cluster Manager
« HPE MPI (+ XPMEM)

Arm
 Arm HPC Compilers
 Arm Math Libraries
 Arm Allinea Tools

Open source tools - OpenHPC
e Slurm, OpenMPI, etc.

Mellanox-OFED & HPC-X
RedHat 7.x for aarch64 — TOSS

Sysadmin
Tools

—1

Hewlett Packard
Enterprise

A& & A&ALAAALASLSS

Math Routines

OSS

)
= .
= o Q 7))
€| 2 o= Sol O o
| 2 £ D 02| © E

o O w
= 5 oL © Qo n
s | g Sl e (52| 2 z
C
S ° UCX =
O

MOFED

Userspace

/PODMAN FOR UN-PRIVILEGED CONTAINER BUILDS

Cannot build a container for Astra from my laptop salloc -N 2048 && mpirun -np $NP singularity

Need to build containers directly on the supercomputer exec atse-astra-1.2.4.sif /app
> Doing so requires root level privs

o root in HPC is bad, Docker is root equivalent

Leverage user namespaces for _building_ containers singularity build atse-astra-1.2.4.sif
docker://gitlab.doe.gov/atse/astra:1.2.4
Podman and Buildah provide container builds while maintaining us@r-leverpermrssiors

o Podman is CLI equivalent to Docker
o User namespaces

o Set uid/gid mappers

o TBD Overlay & FUSE for mount

podman push gitlab.doe.gov/atse/astra:1.2.4

Ongoing Collaboration with
RedHat & Singularity folks

Container Runtimes
Debuggers
GHMU Compiler
Toolchain
Open Source
Libraries
10 Libraries

MOFED
Userspace

podman build -t “gitlab.doe.gov/atse/astra:1.2.4” .

Pedretti, Younge, et. al, Chronicles of Astra: Challenges and Lessons from the First Petascale Arm Supercomputer, Supercomputing 2022

P/SPARC DEMONSTRATION WITH CONTAINERS

Containers also useful for quickly testing PE changes

10000

SPARC containerized build & deployment
« Container image build with Podman
« Container on Astra with Singularity

- Native
 Up to 2048 nodes - - Container
« Largest non-x86 container deployment B
« Testing HIFIRE-1 Experiment (MacLean et al. £
2008)
« Unable to determine any significant overhead by E .
running containers
« Confirm previous assertion from LANL (Torrez et
al. 2019)
« Can use multiple containers to compare
performance in build variations .
128 (7168) 256 (14336) 512 (28572) 1024 (57344)
Nodes Cores Native (s) Container (s) Percent Diff Nodes (cores)
S S e e * Near-native performance using a container
512 28672 2702 2651 -1.9% « Performance difference within app variation at scale
oy eyt . Ly :)
e 15114;3 o oo +~?:‘;’q_{ « Above chart show container built identical to native but

with new compiler optimizations
Container testing new optimizations for TX2 CPUs ‘

P/CONTAINERS FOR SOFTWARE TESTING & DEBUGGING

Astra ATSE programming environment release consists of:
o TOSS base operating system + Mellanox InfiniBand stack

o {2 compilers} * {3 mpi implementations} * {~25 libraries} = 150 packages
o Each release packaged as a container for testing and archival purposes

TETYEY FYTTTTEY

Astra ATSE Astra ATSE Astra ATSE Astra ATSE

1.2.0 1.2.1 1.2.2 1.2.3

Test release in
container first

Container Container Container Container
Then roll out release ‘*"’RA
on system natively

{ iﬁ‘?_}.iﬁ c i‘ﬂ.RH [if’”_fﬂ
ATSE Container use cases:

> Release testing: Enables full applications to be built and run at scale (2048+ nodes) before rolling out natively
> Rollback debug: If issues are identified, ability to easily go back to a prior software release and test

o Cross-system synchronization: Move full user-level software environments between systems. In one instance,
this allowed an Astra InfiniBand library bug to be debugged off platform on another Arm cluster.

//CONTAINER PERFORMANCE PORTABILITY CONTINUUM

Portability Performance

RepPoducibility is possible

> Every How do we strike the right balance?
o Traceability is possible via build manuscripts

> No image modifications

Performant container images can run at near-
native performance compared to natively build

Performance can suffer — no optimizations L
applications

o Can’t build for AVX512 and run on Haswell
> Unable to leverage latest GPU drivers

Requires targeted builds for custom hardware
— Specialized interconnect optimizations
— Vendor-proprietary software

Host libraries are mounted into containers
— Load system MPI library
— Match accelerator libs to host driver

Not portable across multiple systems ‘

#

//CONTAINERIZED CONTINUOUS INTEGRATION

/ As a developer | want to generate container builds from code pull requests so that containers
/ are used to test new code on target HPC machines.

Gitlab

Git Repo v
LY
ry
(. |

[
Contirfuous Integration

[. Build l Test I Deploy

: | 1
b !
\ i 1
. i 1
| i 1
H i 1
! i i
1 i 1
. i 1
! i !
| | 1
. 1 1
! i I
| 1 1
! | 1
| | 1
H 1 1
! 1 B 1
1 1 1
. 1 1
! i - I
| | 1
. 1 1
! I |
| 1 1
. 1 1
| | 1
| 1 1
! | |
| P
|
=

Spack Binary Mirror Heterogeneous Build Farm

Internal Network

//PODMAN — IN — PODMAN

74

4 *Many DOE codes use Gitlab for developing HPC
applications

*Need to leverage Continuous Development and
Continuous Integration capabilities

* Build — test — deploy HPC apps
* Includes automatic building container images

*Gitlab CI has runners, but expect elevated privileges
« Can’t enable on HPC systems!

*Solution:
« Setup the gitlab runner in a container

* Run Rootless Podman to have gitlab-runner think it has
root privs

* Gitlab-runner then auto-starts a container build process
within the first container!

» Push resulting container to Gitlab container registry (or
sitewide registry)

-Simplified container build & deploy infrastructure

GitLab

ontainer registry

P/ENABLING PODMAN TO SCALE

*Podman (and buildah) have proven tools for building HPCcontainers

*But we still use HPC container runtimes (Shifter, Singularity, ...) for running at scale

*ECP Supercontianers team collaborating with Red Hat's Podman team to enable scalable launch
with Podman

* Investigate container distribution modes
* Interoperability between other container image types
* Integration with HPC shared filesystems (eg: Lustre)

*One production container implementation to build, run, and scale on Supercomputers & Clouds

UVI:I"VII:VV rUN CINADLIINGG CAAOUALL

ONTAINERS

/ Select production container technology with wider (cloudier) market
o Help community move beyond Docker

- Podman & Buildah best target to date
o Standardize around a tech target and product

Focus HPC container runtimes on R&D activities /a
> Solve the unique problems to HPC for HPC first \SJ
Charliecloud

> Prove out new & innovative approaches at scale SHIFTER
“HPC-ify” cloud-based production container runtime with HPC

Podman
o Enable scalable launch & integration with job schedulers

itf
o Integrate the proven R&D as new capabilities

o Demonstrate next-gen Al workloads with new container deployments on HPC SUPERCONTAINERS

"4

Bring HPC developers up to date with modern DevOps
o CI pipelines which produce container images that run on leadership-class supercomputers

kubernetes g

Re-investigate resource management solutions for HPC
> Do we still need to batch everything?

Sandia
National
Laboratories

We are hiring! ajyoung@sandia.gov

P/EMERGING WORKLOADS ON HPC WITH CONTAINERS

Extreme-scale Scientific Software Stack (E4S)

o Container image contains everything and the kitchen-sink
° Includes all ECP software activities

o Lightweight base images now available

Support merging AI/ML/DL frameworks on HPC
o Containers may be useful to adapt ML software to HPC

> Already supported and heavily utilized in industry

Working with DOE app teams to deploy custom ML tools in containers

Investigating scalability challenges and opportunities

PYTHRCH

Credit: Sameer Shende (U. Oregon)

/

//SPACK ENVIRONMENTS HELP WITH BUILDING CONTAINERS

/
We recently started providing base images with SpaCkpreinstaIIed.

Very easy to build a container with some Spack packages in it:

#

Base image with Spack
in PATH

Copy in spack.yaml

spack-docker-demo/ FROM spack/centos:7

Dockerfile - WORKDIR /build
COPY spack.yaml .

spackyaml RUN spack install Then run spack ingtal
8 Build With podman build spack:
ERfagd) PO ' specs:
> ~ hdf5 @1.8.16 . .
r Run with Singularity - openmpi fabrics=libfabric List of packages to install,
S - nalu with constraints
\J (or some other tool)

Credit: Todd Gamblin (LLNL) ‘

Currently under development

//CONTAINERIZED Cl PIPELINE

/

#

/

As a developer1-want 1o-generate-container-builds-from-code-pull requests so that containers .
are used to tiat new code 0 Gitlab N |

Git Repo v
LY
I
[|

- . | \
d Contirfuous Integration . ' |
Build " Test I Deploy o Air Gapped Network g

Spack Binary Mirror Heterogeneous Build Farm

Internal Network

P /CONTAINER TAKEAWAYS (TUPPERWARE?)

Use Deeker Podman to build manifests of full apps

Developers specify base OS, configuration, TPLs, compiler installs, etc
Use base or intermediate container images (eg: TOSS RPMs in a container)
Leverage container registry services for storing images
Import/flatten OCI images into Singularity & run on HPC resources
Also works for Charliecloud and Shifter

Can Podman also be used for scalable launch in the future?

Containers have demonstrated minimal overhead for HPC apps

Enabling On-prem unprivileged containers builds
More to come with Podman & Buildah for HPC

HPC Container Advantages
Simplify deployment to analysts (just run this container image)

Simplify new developer uptake (just develop FROM my base container image)

— \

Decouple development from software release cycle issues

Reproducibility has a new hope?)
k"‘"‘

Supercontainers for Exascale
Preparing to enable containers at Exascale
— - . EXASCALE COMPUTING PROJECT
Simplify HPC application deployment via modern DevOps

Support next generation Al & ML apps

SUPERCONTAINERS

//THANKS!

74

/

ajyoung@sandia.gov

ATSE PROVIDED A FOCAL POINT FOR DEVELOPMENT

Curated HPC software stack
> Provides base set of compilers and MPI implementations known to work well together

> Didn’t want users to have to build entire third-party library (TPL) stack themselves for Arm

Labor intensive to assemble and test
> Leveraged OpenHPC recipes to speed development, extremely helpful

o Complicated by specific version requirements, parch optimizations, static library support

ATSE continuing to evolve

> Moving to Spack-based build process to improve development speed + flexibility
o Improving container packaging and deployment

o Shifting towards Vanguard-Il

Effort to standardize programming environment components

[ATSE 1.2.5 Recipes Available @ https://doi.org/10.5281/zenodo0.4006668 }

https://doi.org/10.5281/zenodo.4006668

CONCLUSION

Astra the first Petascale supercomputer based on 64-bit Arm processors
> First Vanguard Advanced Prototype platform for DOE/NNSA

> Now running production applications for NNSA mission

Several technology gaps were identified and addressed

o Software stack enablement, Linux bugs at scale, thermal management considerations, power management
capabilities, parallel filesystem support, and enabllng advanced container support.

> Pushed fixes back into community
> Focus on Arm compiler maturity

Several lessons learned applicable to any first-of-a-kind Supercomputer
> First DOE Exascale platforms

o Future Vanguard I+ platforms
> RISC-V and other custom designs

Acknowledgements:

Computer Systems & Technology Integration group (9320)
Extreme Scale Computing group (1420)

IT Infrastructure Services group (10770)

NNSA Tri-lab collaborators (LANL and LLNL)

Industry Partners: HPE, Mellanox, Red Hat, Arm, and Marvell

Arm is now a viable production HPC technology for the largest-scale

supercomputers
See Fugaku - #1 Top500

POSITION 2: ... AND SO IS THE CLOUD

The hyperscalers are finally paying attention to HPC ‘

> “The physical network topology does affect performance; particularly important is the
performance of MPI Allreduce, grouped by splitting the mesh by a subset of the dimensions,
which can be very efficient [5] [6] if each such group is physically connected.” — Shazeer et al |
Google Brain, Mesh-TensorFlow: Deep Learning for Supercomputers.

> As learning techniques grow in scale, HPC becomes more important.

HPC cannot compete with the hyperscalers
o Let’s stop trying and start integrating

o That doesn’t mean adopting Cloud as-is

o That doesn’t dissolving HPC either

> The closer HPC and cloud paradigms get, the better we all are
> Encourage open source infrastructure
> Collaborative partnerships

> Avoid boutique solutions without sacrificing performance

,/REPRODUCIBILITY IN HPC

#

» Reproducibility is a cornerstone of quality science!

o Consistent results across studies aimed at answering the
same scientific question

o Critically important in conducting computational science today

/

« DOE/NNSA must extend the lifecycle without underground testing

* Rely on modeling and simulation apps to perform this task
o incorporate a multitude of physics and engineering models

o Executed on leadership-class supercomputers

* Long-term studies take years
o Any particular simulation/model may not seem important at the time

o Later analysis may prove to demonstrate value in an old simulation
> Need to reproduce & reevaluate runs many months or years later!

« Can containers help or hinder?

of Success

// ECP SUPERCONTAINERS
/

F Joint DOE effort - Sandia, LANL, LBNL, LLNL, U. of Oregon

Ensure container runtimes will be scalable, interoperable, and well integrated across DOE
o Enable container deployments from laptops to Exascale

o Assist Exascale applications and facilities leverage containers most efficiently

/

Three-fold approach
o Scalable R&D activities

S
) : : \
o Collaboration with related ST and AD projects \ I)
> Training, Education, and Support E\(C)

EXASCALE COMPUTING PROJECT

Activities conducted in the context of interoperability

o Portable solutions
o Optimized E4S container images for each machine type
o Containerized ECP that runs on Astra, A21, El-Capitan, ...

o Work for multiple container implementations "

> Not picking a “winning” container runtime

o Multiple DOE facilities at multiple scales

SUPERCONTAINERS

//I\/IOTIVATION FOR CONTAINERS IN HPC

/

» Containerized computing is being adopted across HPC landscape

#

/

* Many potential benefits

> Prescriptive deployment “

> Modern DevOps F‘
o Portability of containers

o Reproduce containerized workloads later *
> Flexible software ecosystem SUPERCONTAINERS

« Several potential tools and container runtimes available today
> Scale from your workstation to a supercomputer

» Eases barrier of entry for complex or emerging software ecosystems

//PORTABILITY & REPRODUCIBILITY PROBLEMS

/
74 Containers promise the potential to improve flexibility for developers
o Support of user-defined software stacks

o Potential impact in portability and reproducibility

« Current implementations fall short of delivering on promises
o System must still match the host micro-arch
o System must be capable of exploiting specialized hardware in HPC
> High speed, low latency interconnects
o Specialized instructions & extensions
o Advanced GPUs and accelerators
o Require runtimes to leverage host libraries in containers for performance

v

/
- COMPETING GOALS

Achieving “ldeal” Reproducibility may impact
performance and portability and vice versa

ZONTAINER FERFORMANCE FORITADILLTY
ONTINUUM

Portability Performance

How do we strike the right balance?

» Portable container images can be moved form Performant container images can run at near-
one resource deployment to another with ease native performance compared to natively build

licati
« Reproducibility is possible apptications

— Everything (minus kernel) is self-contained
— Traceability is possible via build manuscripts
— No image modifications

Requires targeted builds for custom hardware
— Specialized interconnect optimizations
— Vendor-proprietary software

e Performance can suffer - no optimizations
— Can’t build for AVX512 and run on Haswell
— Unable to leverage latest GPU drivers

Host libraries are mounted into containers
— Load system MPI library
— Match accelerator libs to host driver

Not portable across multiple systems ‘

//STATE OF THE PRACTICE IN CONTAINERIZED HPC

/
/ *« System-specific libraries are needed within a given HPC container image
« Combine bind mounts and dynamic linking to inject optimized libraries

o From the host into the container runtime environment

o Assert libraries are optimally configured to drive HPC hardware

o "Container Bypass” mechanism

- Example: MPICH-based implementations
> Rely on ABI compatibility
o Build from generic MPICH on container
o Swap in CrayMPI at runtime
o Force MPI apps to use optimal MPI
o 2 methods

o Replace libmpi.so directly
o Overlay/bind mount and change LD_LIBRARY_PATH

o Demonstrated with Shifter at full system scale on Cori

,/OPENI\/IPI USAGE IN CONTAINERS

/ » Container developer has 2 options
o custom-build OpenHPC to fit HPC spec

> |B versions, MOFED userspace drivers, PMIX, etc
> Requires detailed knowledge of target system
> Not portable

o Generic OpenMPI build and use container bypass for OpenMPI

> OpenMPI ABI incompatibilities across sub-versions!
o OpenMPI uses rraTH -> many library dependencies have to be handled

o Custom bind-mounts can be unweildy
o Userspace container drivers must match host drivers (MOFED)

* Current container usage model on Astra
o Works & scales >2000 nodes

o Cumbersome for custom containers

/

i

"/ SUPERCOMPUTER
/

Astra ideal test environment for Podman container build
experiments

o 18t Arm-based Supercomputer on Top500 (Nov17)
o 5000+ Marvel ThunderX2 processors (aarch64 armv8)
o Significant need for container builds on Arm architecture

o Astra a prototype system => increased flexibility for R&D

Building Advanced Tri-lab Software Environment (ATSE) and
HPC apps => in a container

o Built directly on Astra login nodes with Podman
> Now using Spack
o Pushed OCI images to site Gitlab container registry

o Sin%ularity to run at scale => can use any HPC container runtime
(with some relativity)

Demonstrated first on-platform container build, but prototype has
limitations

o RHEL7 missing several features
o Overlay, FUSE, NFS client features

o Collaborating with Red Hat to productionize on RHELS8

/STATE OF PRACTICE: PODMAN ON THE ASTRA

salloc -N 2048 && mpirun -np SNP
V'V:\NV\NW . WYY .
singularity exec atse-astra-1.2.4.sif /app

singularity build atse-astra-1.2.4.sif
docker://agitlab.doe.gov/atse/astra:1.2.4

OCI Image Registry

podman push gitlab.doe.gov/atse/astra:1.2.4
NAAAAAAAAS T NAARAARAAAAAAAAANAAAANAN WA

podman build -t “gitlab.doe.gov/atse/astra:1.2.4" .

//CONSIDERATIONS

g « HPC applications need to use specialized interconnects & libraries not found or optimized
for in base OS packages.

« Typical container solution requires mapping in libraries which can cause host-to-container
incompatibilities.

» There are differing methodologies in container runtimes for incorporating GPUs and
accelerators.

» Users may not know if a given container image can be ported to a different HPC system.

* If portability is possible, users may not know what performance implications exist when
running a container on a different HPC system.

//THE CONTAINER BYPASS PROBLEM

#

* The Open Container Initiative (OCI) spec can help standardize some aspects
/ 5 . .
o But not well fit for HPC as-is.

 HPC container runtimes cannot easily determine what libraries are needed

* Problem: host libraries can have conflicting dependencies with what's in the container
$ srun —n | shifter /app/hello

lfapp/ hello: /1ib/x86_64—linux—gnu/
libm.so.6: wversion ‘GLIBC 2.23° not found

(required by /opt/udilmage/modules/mpich/
lib64 /dep/libquadmath.so0.0)

o Glibc mismatch error found on upgraded Cray system
o Host: CLE7, SLES15, glibc 2.23 vs Container: Centos6, glibc 2.17

> Host library mounted in the container not forward compatible with container’s glibc

* Problem is not theoretical, it's real. And likely to occur again with interconnects, system
updates, driver changes, ...

/

- PROPOSED SOLUTIONS

What do we do to avoid mismatches between host and container libraries?

Some potential options:

1. Custom Image Labels

2. Backwards Compatible Libraries
3. A container compatibility layer

4. System-level Virtualization

//1. CUSTOM IMAGE LABELS

Leverage OCIl-compatible image LABELs
o Insert directly in Dockerfile

o Could reproduce in Singularity defs
o Essentially embedding metadata into spec

Labels specify expectations from the host

o HPC container runtime intercepts labels, makes
appropriate library insertion

o Specify MPI version, Glibc expectation, etc

Implemented prototype solution in Shifter

Potential pitfalls:
o Still requires container bypass

o Requires extra work from developer

V4

FROM centos:7 SHIFTER

LABEL org.supercontainers.mpi=mpich
LABEL org.supercontainers. glibc=2.17

RUN yum —y update && \
yum —y install gcc make gcc—gfortran \
gcc—c++ wget curl

RUN B=mpich.org/static /downloads && V=3.2 && \
wget $SB/SV/mpich—$V. tar.gz && \
tar xf mpich—$V.tar.gz && \
cd mpich—$V && \
./ configure && \
make && \
make 1nstall

ADD helloworld.c /src/helloworld .c

RUN mpicc —o /bin/ hello /src/helloworld.c

Label Values

Comment

{mpich,openmpi }
{cuda,opencl,rocm, etc}
Semantic version: XX.YY.Z

org.supercontainers.mpi
org.supercontainers.gpu
org.supercontainers.glibc

Required MPI support, ABI compatibility
Required GPU library support
Specific version of GLIBC

//2. BACKWARDS COMPATIBLE LIBRARIES & SOURCE CODE

#

* Why can’t we just build everything in a container in the first
place?
o Target hardware may not be known in advance

o May not be possible to create base container image with key
software

> Vendor proprietary, closed source, export control restrictions, etc...

/

» Require vendors to provide backwards compatible libraries
o Build MPIX multiple times, with multiple versions

o Additional build complexity for vendors

* Require vendors to provide direct source code
o Intractable — ask Cray for CrayMPI source ;)

//3. A CONTAINER COMPATIBILITY LAYER

/

* Construct a lower-level library for HPC container runtimes

o Could leverage custom labels like #1
o Make directed decisions on how to bind-mount and Lb_PreLOAD, resolve glibc issues

#

/

* Create a common place for vendors to integrate solutions

o Instead of building many different solutions for each device/interconnect/accelerator, HW providers
implement generic solution.

« Similar approaches exist
° libnvidia-container takes similar approach, but vendor-specific.

o Container Network Interface (CNI)
o But not general enough for HPC

» Acceptable solution requires community-wide collaboration
o From hardware vendors, container runtime developers, system integrators, etc etc

//4. SYSTEM-LEVEL VIRTUALIZATION

#

* If reproducibility is paramount, we should leverage ISA virtualization
o Virtual machines & hypervisors
o Similar to cloud implementations, multiple levels of abstraction
o Containers atop virtual machines atop HPC hardware

/

* Linux kernel & host environment to match container regs with HPC hardware

« Control kernel config, drivers, to run container images only
o Disable arbitrary VM models, no user control

o Users only control container images, run in userspace
> No root access

« Concerns
o Significant infrastructure investment?

o Can domain scientists, used to HPC tuning, handle this much abstraction?
> Acceptable performance in HPC with hypervisors?

//OPEN DISCUSSION
7/
/

Containers are able to enable new mechanisms in portability and reproducibility
o Reproducibility is of critical importance for conducting quality science

o Performance is paramount in HPC
Containerization in HPC has to fix container bypass issues to deliver

We've outlined and started investigating several potential solutions
o Will more metadata _really fix things?

What do you think is the right path forward for the HPC community?

s

SUPERCONTAINERS

Sandia
National
Laboratories

We are hiring! ajyoung@sandia.gov

