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ATLAS at CERN LHC

Muon Detectors Electromagnetic Calorimeters

Detector characteristics

Width: 44m
Diameter: 22m
Weight: 7000t
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Solid-State (Semiconductor) Detectors

» Charged particle passes through
detector, creating electron-hole ¢,

pairs; record current to '
determine particle energy

 For neutrons

« Energy transfer to crystal lattice
can generate primary knock-on
atoms which create electron-hole
pairs

» Detecting reaction products after
incident neutrons interact with a

neutron reactive material like °B
or LiF
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Gallium Nitride and Radiation Hardness

« Some studies looking at GaN
devices under neutron exposure

» Typically, the goal is to study
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Project Overview

» Utilize transient signatures in a solid-state detector as a new
mechanism of particle detection

* Novel approach: record fluctuations in Schottky barrier height of a
gallium nitride (GaN) Schottky diode to identify particle events

« Circuit design: modified bandgap reference circuit that outputs voltage
proportional to work function of GaN

» Hypothesize that the signature of the fluctuations will be different for
different types of particles

* Focus on neutron detection, with comparison to alpha particles

( 5y= Georgia
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Physical Mechanism Hypothesis

 Neutron enters the detector and transfers momentum to a lattice atom

 As the lattice atom oscillates to its neutral position, internal phonon waves
are generated

« These phonon waves induce an in-phase, internal electric field via the
piezoelectric effect

At the metal-semiconductor interface of a Schottky diode, these local
changes in the electric field induce fluctuations in the Schottky barrier
height

« We hypothesize that the Schottky barrier height fluctuations are the source
of the transient signals observed in the circuit output:

Pp(t) = dm(t) — xe(t)
where ¢, is the metal work function and y, is the electron affinity _.,
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Significance and Applications

« New mechanism seeking transient signatures as a method for particle
detection

« Combines analog circuit design with piezoelectric/ultra-wide bandgap
semiconductor materials

« Small footprint

 Potential applications include
« More accurate dosimeter for protection of radiation workers
« Utilization in an urban radiation detection network
* In parallel with other detection techniques like optical radiation detection
* In conjunction with other detectors for nuclear nonproliferation treaty verification

Georgia
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Bandgap Reference (BGR) Circuit

« Goal of bandgap reference circuit: analog circuit whose voltage output
equals that of the bandgap energy of the semiconductor being used

 Output of typical semiconductor devices is heavily temperature-dependent

» BGR circuit produces a fixed output voltage independent of temperature
variations, supply variations, and loading

« Bandgap reference adds components with equal but opposite temperature
coefficients

« Our bandgap reference circuit design provides an output voltage
proportional to the work function of GaN, which serves as a fixed baseline
for observing output fluctuations due to particle events

« Temperature independence important to lend confidence that fluctuations observed
are not due to temperature variations and ensures functionality in different

environments :
' ¢ -L?'j||| , Georgia
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Work Function Reference Circuit

vcC
BE
M5| M8 m11
| ”
. M9
Fl_
M6 i
. Vref
_|_—: + g—
= R1
M7 - & T
|mm
§R4
M3 M4
= !DS
= E— =

Node to measure

reference voltage

Node to measure
voltage drop across D3
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Voltage [V]

LTspice Circuit Stmulations

Work Function Reference Circuit Work Function Reference Circuit - Reference Voltage
s Temperature Simulation in LTspice — Tamparae S milation I LTspire
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Environmental Chamber Temperature Experiments
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Environmental Chamber Temperature Experiments

Experimental Temperature Data Experimental Temperature Data
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Environmental Chamber Temperature Experiments

Experimental Temperature Data
Breadboard Circuit, Three Trials and Average
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Environmental Chamber Temperature Experiments

Experimental Temperature Data with Best Fit Line Experimental Temperature Data with Best Fit Line
B Breadboard Circuit, Reference Voltage (average of 3 trials) B0 Breadboard Circuit, Diode Voltage (average of 3 trials)
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Work Function Reference PCB — First Prototype

Operational Voltage drop
amplifier Reference across irradiated
voltage voltage diode Power supply
Transistor/Schottky
diode exposed to
radiation

(corresponds to D3
on schematic)

Reference
transistors/Schottky
diodes (corresponds
to D1 and D2 on
schematic)

: T . Gr Georgla
PCB manufactured at Georgia Tech Interdisciplinary Design Commons Tech.



Alpha Irradiation Experiment at Sandia

DC power  Am-241 alpha source
Oscilloscope . o
" » Measured activity

Upper work bench 462 X 10_ZIJC1

Amaat » Approximately 1 decay
— per 31.3 ms interacting
with the irradiated
i workbeadk transistor at Tcm

source

l

IFI

Main Transistor  Stand for
prototype adapter Am-241 source
board board

’ ¢ m Georgia
@ Sandia A% Tech
National
Laboratories 20



Alpha Irradiation Experiment at Sandia
Oscilloscope Output — No Source

V, 100 mV/div

- t, 100 ns/div

V across irradiated transistor

.
s sttt ————————————————————tnesses L, 100 TS [TV

| Vref
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Alpha Irradiation Experiment at Sandia
Oscilloscope Output — Am-241 Alpha Source

V, 100 mV/div
i ad {'luﬂa A4 “fhw nund'\vf%fun )’EPUM ADANA AR - t, 100 ns /le
V across irradiated transistor
.
t, 100 ns/div
Vref ....................................................................................................................................................................................................................................................................................................................................................................
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Alpha Irradiation Experiment at Sandia
Frequency Spectra

Frequency spectra for V-diode Background 1
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Normalized cross-correlation coefficient

Alpha Irradiation Experiment at Sandia
Cross-Correlation

Normalized Cross-correlation

V-diode Transient 08 with V-diode Background 1
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Alpha Irradiation Experiment at Sandia
Cross-Correlation
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Neutron Irradiation Experiment at Sandia

| R | DC po;ver|  AmLI neutron source
supply
operwaibieady Measured activity

8.18 x 10*uCi

Multimeter o » Approximately 1 decay
i A—\IHLI source ° °
I (held by hand per 20.4 ns interacting
with the irradiated
Main work bench transistor at Tcm

Main Transistor  Stand from
prototype adapter Am-241 experiment,
board board used to reference
irradiation distance

¢ 5. Georgia

Sandia ) = " Tech
National '
Laboratories 26



Neutron Irradiation Experiment at Sandia
Oscilloscope Output — No Source

V, 100 mV/div

- SRR SH——— e ~ t,100 ns/div

V across irradiated transistor

- “ . . . | t, 100 ns/div

Georgia
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Neutron Irradiation Experiment at Sandia
Oscilloscope Output — AmL1 Neutron Source

V, 100 mV/div

t, 100 ns/div

--------------------------------------------------------------------------------
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[rradiation Experiments at Sandia
Comparing Alpha and Neutron Experiments

_ Alpha Irradiation Neutron Irradiation

Peak-to-peak amplitude ;1L 451 v 302+63.2mV
Diode voltage

Peak-to-peak amplitude
Reference voltage

Decay time Less than 400 ns Greater than 500 ns

62.4 + 39.0 mV 370.2+97.7 mV

Georgia

@ Sandia Gl." Tech

National
Laboratories 29
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Work Function Reference PCB — Second Prototype

Power supply
='~ ~ w.:\ ) “I ‘!‘ . > A _,':;H‘QGIBF
Reference : . .

voltage Transistor/Schottky

diode exposed to
radiation
(corresponds to D3 on
schematic)

Voltage drop
across irradiated
diode

Reference
transistors/Schottky
diodes (corresponds
to D1 and D2 on
schematic)

( o= Georgia
PCB manufactured by JLC PCB AL Tech N



Alpha Irradiation Experiment at Georgia Tech

Fluke 451P-RYR

- Keysight oscilloscope
Gamma Detector ysig p

Alpha source
—— (suspended under
the platform in its case)

Alpha source
= (suspended under
this platform)

Multimeter Irradiated GaN device

p Irradiated GaN device
ower supply

| Prototype circuit board

= Reference GaN devices

 Am-241 alpha source
» Measured activity 0.103 mCi

» Approximately 1 decay per 16.2 ys interacting with the e Georcia
irradiated transistor at Tcm Cr ey
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Alpha Irradiation Experiment at Georgia Tech

Zeroed data: Transient 11
GT RSEL Alpha Irradiation

Diode Voltage Reference Voltage
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Alpha Irradiation at Georgia Tech

Frequency Spectra
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Alpha Irradiation at Georgia Tech
Average Frequency Spectra

Magnitude [dB]
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Alpha Irradiation at Georgia Tech

Cross-Correlation

Normalized Cross-correlation
V-diode Transient 11 with V-ref Transient 1
1 L |
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Alpha Irradiation at Georgia Tech
Cross-Correlation

V-ref Transient 11 V-ref Transient 11 V-ref Transient 11 V-ref Transient 11 V-ref Transient 11
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Neutron Irradiation Experiment at Georgia Tech

Keysight oscilloscope
Neutron survey meter
LAN cable

connected to laptop

Alpha source

Irradiated GaN device (suspended)

Prototype circuit board

and reference GaN devices Trradidted CaN device

Multimeter (not used)

Power supply

» Weak Cf-252 neutron source
Neutron production rate 9.2 x 103 neutrons/second

Approximately 1 decay per 6.7 ms interacting with the Georaia
irradiated transistor at 1Tcm Cir Seor



Neutron Irradiation Experiment at Georgia Tech

Change in Voltage [mV]

Zeroed data: Transient 117
GT RSEL Neutron Irradiation
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Neutron Irradiation Experiment at Georgia Tech

Change in Voltage [mV]

Zeroed transient signal data
GT RSEL Neutron Irradiation
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Zeroed background signal data
GT RSEL Neutron Irradiation

Reference Voltage Diode Voltage Reference Voltage Diode Voltage
20 20 20 20
10
-10
-20 | a) V-ref Background 04 -20 | b) V-diode Background 04 =20 | ¢} V-ref Background 24 -20 |d} V-diode Background 24
-100 -50 o 50 100 -100 -50 o 50 100 -100 -50 0 50 100 -100 -50 ] 50 100
Reference Voltage Dicde Voltage Reference Voltage Diode Voltage
20 20 20 20
10 10 10
OM————— 0 i
-10 -10 -10
-20 |e) V-ref Background 44 -20 |f) V-dicde Background 44 =20 |g) V-ref Background 64 -20 | h) V-diode Background 64
-100 -50 o 50 100 -100 -50 o 50 100 -100 -50 o] 50 100 -100 -50 o 50 100
Reference Voltage Diode Voltage
20 20
10 10
4 | i —" 4
-10 =10
-20 |iy V-ref Background 84 -20 |j) vVdiode Background 84
-100 -50 o] 50 100 -100 -50 o] 50 100
Time [us]

Cr

Georgia
Tech.
40



Neutron Irradiation at Georgia Tech
Frequency Spectra

Frequency spectra: V-ref Transient 117
GT RSEL Neutron Irradiation Frequency spectra: V-ref Background 04
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Neutron Irradiation at Georgia Tech
Frequency Spectra

Frequency spectra: Transient signal data, Reference voltage Frequency spectra: Background signal data, Reference voltage
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Magnitude [dB]

Neutron Irradiation at Georgia Tech
Average Frequency Spectra
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Neutron Irradiation at Georgia Tech

Cross-Correlation

Normalized Cross-correlation
V-ref Transient 117 with V-ref Transient 119
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Neutron Irradiation at Georgia Tech
Cross-Correlation

Normalized cross-correlation coefficients

Normalized cross-correlation coefficients
GT RSEL Neutron Irradiation
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Neutron Irradiation at Georgia Tech

Cross-Correlation

V-ref transient-117 with V-ref transient-111

Normalized cross-correlation coefficients
GT RSEL Neutron Irradiation
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Neutron Irradiation at Georgia Tech
Cross-Correlation after Low Pass Filtering

Normalized cross-correlation coefficient
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Neutron Irradiation at Georgia Tech
Cross-Correlation after Low Pass Filtering

Normalized cross-correlation coefficients after low-pass filter

Normalized cross-correlation coefficients
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Irradiation Experiments at Georgia Tech
Cross-Correlation of Alpha and Neutron Transient Signals

Normalized Cross-correlation
Neutron V-ref Transient 117 with Alpha V-ref Transient 11
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Outline

* Project Background
* Circuit Development

» Work Function Reference Circuit — First Prototype Irradiation at
Sandia

» Work Function Reference Circuit — Second Prototype Irradiation at
Georgia Tech

» Geant4 Modeling
e Conclusion
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Theoretical Modeling with Geant4

« CERN hosts a toolkit that simulates the passage of particles through
matter

» C++ based program with source code available
» Support is available, including guides to create custom simulations

» Experimentally validated across a range of disciplines and
applications




Customizability of Geant4

« Geometry of the system
» Materials involved
« Fundamental particles of interest

» Generation of primary particles of
events

 Tracking of particles through
materials and external
electromagnetic fields

* Physics processes governing particle
interactions

Geant4 Collaboration. Geant4 user’s guide for application developers.

» Response of sensitive detector
components

« Generation of event data
 Storage of events and tracks

* Visualization of detector and particle
trajectories

 Capture for subsequent analysis of
simulation data

6" Geant4
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2000 neutrons, 2.1 MeV energy 2000 neutrons, 1 eV energy
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Geant4 Simulations — Secondary Particles

Number of secondaries generated
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Geant4 Simulations — Emerging Particles

Geant4 Result: Particles emerging after 2000 neutrons
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Geant4 Future Work Methodology

* |dentify inaccuracies with sensitive
g\le(t;eclz\’l[or scoring for bulk GaN and
a

Gate

e Scale simulation for micron

A
et —
* Build the Cree CGH40010F device in

Geant4, with all GaN/AlGaN sections
as physical and logical volumes to
enable tracking in those areas

 Create generalized particle sources
matching those used in the
experiments

* Install G4ACMP and incorporate phonon
and electron-hole pair tracking

E. Bagli et al. Eur. Phys. J. C. 74 (8): 2996. 2014. https://doi.org/10.1140/epjc/s10052-014-2996-y.
R. Agnese. Doctoral Thesis. 2017. https://doi.org/10.2172/1457150.
M. Martinez et al. Phys. Rev. Appl. 11 (6), 064025. 2019. http://dx.doi.org/10.1103/PhysRevApplied.11.064025.

AlGaN

GaN

4H-SiC
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Outline

* Project Background
* Circuit Development

» Work Function Reference Circuit — First Prototype Irradiation at
Sandia

» Work Function Reference Circuit — Second Prototype Irradiation at
Georgia Tech

* Geant4 Modeling
 Conclusion
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summary

* Designed a work function reference circuit that uses GaN
semiconductor devices based on modified analog bandgap reference
circuit designs

« Simulation of the circuit design in LTspice indicates improved
temperature stability
* GaN (S:Chottky—diode—connected HEMT voltage temperature dependence: -2.02
mV/
« Reference voltage temperature dependence: -94.5 yV/°C

« Experimental temperature data using a breadboard version of the
circuit
« GaN Schottky-diode-connected HEMT voltage temperature dependence: -2.8
mV/°C
» Reference voltage temperature dependence: -0.566 mV/C

L N L'" J
““ll" Tech
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Summary

e Irradiation testing of the first prototype indicated...
» Output is low-noise under non-irradiative conditions
 Transient signals are observable
 Qualitative difference in transients observed for neutron and alpha irradiation

* Irradiation testing of the second prototype indicated...
» Transient signals are observed under alpha irradiation

» Quantitative differences in frequency spectra and high normalized cross-
cprrellation values (=0.7) demonstrate high degree of similarity between
signhals

- Transient signals may have been observed under neutron irradiation, though
quantitative analysis of frequency spectra and normalized cross-correlation
do not conclusively confirm neutron observation occurred

- External noise sources present during the neutron experiment are
confounding the neutron data and ongoing efforts seek to filter out these
external sources 7 Georgia
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Summary

» Geant4 simulations
« Extremely customizable simulation space

« Examining bulk GaN and AlGaN materials bombarded with 2000 neutrons of
two energies (2.1 MeV and 1 eV) reveals creation of secondary particles that
need to be accounted for when analyzing experimental data

» Primarily neutrons and gammas have sufficient energy to emerge from the
bulk materials

p o~ BN ¢ eorgia
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Future Work

e Circuit simulation

« Measure the temperature dependence of GaN Schottky-diode-connected
HEMTSs independent of the circuit

* Implement measured temperature dependence in simulation

* Irradiation experiments
» Redesign prototype board layout to minimize errors
 Fabricate a new prototype with new discrete components

» Repeat irradiation tests, utilizing triggering in parallel with BenchVue software
for streamlined data collection

* Implement shielding for the non-irradiated components of the prototype
» Geant4 simulation following planned methodology
¢ 5. Georgia

|| N Tech I
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