
A Testing Strategy that Supports Scientific Software Sustainability

James M. Willenbring - jmwille@sandia.gov
Sandia National Laboratories*, North Dakota State University

1. The Challenge of Testing a Scientific Software Ecosystem

Testing scientific software packages is challenging. Many test suites that were not designed with
modern systems in mind, and therefore are fragile. Some packages have system-level tests, but
lack unit and integration testing. Several scientific software projects have insufficient testing of
any kind. These kinds of problems are not new and are broadly recognized.

More recently, it has become clear that while testing a scientific software package is difficult,
testing an ecosystem of scientific software is far more complicated. Achieving a single state
where all of the packages in the ecosystem can coexist (for example, two packages do not
require different versions of the same dependency) is challenging. Maintaining this state in the
face of new development is much harder. There are two fundamental ways that new
development can be dealt with.

The first option is to test release versions of each package. The advantages to this approach
are that the software is generally not changing quickly, and release versions tend to be fairly
stable. One disadvantage of this approach is that changes come in large batches and it can be
time consuming to identify which change led to a failure. After a problem is identified, fixes might
be complicated because significant development may have occurred since the change that
caused the failure. A second disadvantage of this approach is developers or users may want to
use a pre-release version of one or more packages.

The second option is to test development versions of each scientific software package. This
approach allows for the flexibility of testing changes individually or in small batches, but requires
more complicated communication patterns, policies, and workflows to execute effectively. If one
development version changes in a way that breaks another, should the test be allowed to fail, or
should the version not be updated until all builds and tests pass? What if a test is failing on only
one platform? What if a change to one package reveals a bug in another? What if the team
behind one package fails to respond to bug reports? These questions are representative of the
many decisions that must be made in calibrating the orchestration of testing for an entire
scientific software ecosystem.

2. Designing a Testing Strategy

The ultimate solution includes both release and strategic development testing. While creating a
complete strategy for testing is complicated, defining the policies, workflows, and funding model

*Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC.,
a wholly owned subsidiary of Honeywell International, Inc., for the US Department of Energy’s National Nuclear Security Administration under contract
DE-NA-0003525. SAND2021-XXXX C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily
represent the views of the U.S. Department of Energy or the United States Government.

SAND2021-14650CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



to support the strategy is even more challenging. However, until the testing is in place, it is hard
to evaluate policies and workflows. Over the past few years, a lot of progress has been made
towards improving the stability and sustainability of the scientific software ecosystem via better
testing. At the ecosystem level, the Extreme-Scale Scientific Software Stack (E4S) is leading the
way with a growing validation test suite that includes sanity tests for dozens of scientific
software packages [1]. The most recent release includes 91 scientific software packages [2].
The current model for E4S is to test release versions of packages together, and new versions
are incorporated as they are released and tested. The development of E4S and its infrastructure
has been transformational, yet much more can be done to find breakages in compatibility
sooner than package release time.

Two ECP Software Development Kits (SDKs), those in the Math Libraries (called the xSDK [3])
and Data and Visualization areas, have stood up significant testing at the SDK level, which are
subsets of the software packages comprising E4S. While testing development versions of the
entire E4S right now is not practical, testing very small subsets is showing promise. Case in
point, the xSDK previously tried to stand up testing for development versions of all of the
packages comprising the xSDK, and that wasn’t sustainable - the workflows and communication
patterns necessary to deal with the errors efficiently are currently infeasible. However,
attempting smaller subsets of software has been more successful. Using these small cases as
building blocks for improved communication, workflows, and funding models it may be possible
to extend this kind of testing to the full SDK level.

It may not make sense to try to extend the development version testing the E4S level. It
depends on whether or not the increased stability and sustainability achieved at the SDK level is
sufficient to promote development version workflows where needed at the E4S level. Note that
using the development version of everything at the scientific software ecosystem level is likely
not necessary. For example, an application may want to evaluate a change to a linear solver or
a development tool, but not necessarily at the same time.

3. Conclusion

Improving the testing of the scientific software ecosystem gives users greater confidence in
using scientific software packages, and makes the ecosystem and its components more
maintainable for scientific software developers. Great strides have been made in recent years
with E4S and the math libraries and data and visualization SDKs, but more work is necessary to
improve testing robustness and efficiency and to determine more optimal workflows and
policies. Fortunately, we are now in a position to learn from and build on these efforts.

References

[1] E4S 2021.11 Release Notes. https://e4s.io/talks/E4S_21.11.pdf.
[2] E4S Validation Test Suite. https://github.com/E4S-Project/testsuite.
[3] xSDK Homepage. https://xsdk.info/.

https://e4s.io/talks/E4S_21.11.pdf
https://github.com/E4S-Project/testsuite
https://xsdk.info/

