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Motivation

Alpine miner at WIPP

Cross-section view of Excavation Damaged Zone (EDZ) around drifts
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Task E Goals

= Understand and predict THMC processes impacting brine availability in salt
* Water response to pressure (Ap), stress (Ac), and temperature (AT)?

* How does EDZ control migration of water (¢, k, relative perm. k,.)?

* How does EDZ evolve with Ap, Ag, and AT?
Q1: Is two-phase flow in EDZ important?

Q2: How to simulate brine pulse after heating?

= WIPP Test Cases:

* Small-Scale Brine Inflow test (1987-1992)
* Ongoing heated Brine Availability Test in Salt (BATS)
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Waste Isolation Pilot Plant (WIPP) Context
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WIPP Small-Scale Brine Inflow Test (1987-1992)

(Beauheim et al., 1997)

0
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= Monitored 17 unheated boreholes
= Weekly brine inflow data
= INTRAVAL study (Beauheim et al., 1997)
= Effects of stratigraphy / orientation / drift
= Considered single-phase brine flow o ——
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Brine Availability Test in Salt (BATS)

East Das Rack
(48" Wide)

Two Arrays: Heated / Unheated E g
Behind packer
* Circulate dry N, ettty
* Quartz lamp heater (750 W)

Samples / Analyses

* (Gas stream (natural / applied tracers and isotopic makeup) Heated
Cement Seals

* Sorel cement + Salt concrete: 3-axis strain & temperature Cross-section of central [HP] borehole
Geophysics '“m\*“m RIS Gyt ot e

e 3x Electrical resistivity tomography (ERT)
* 3x Acoustic emissions (AE)
Phases:
* BATS 1a: first heating cycle (Jan-Mar 2020)

back)
Borehole Clasure
Centralizer Gage
/

traps at
Outflow

Heater Power

* BATS 1b-1c: Tracers (Jan-May 2021) Controler &
e BATS 2: drill new heated array (Oct 2021) \

Valve, Flowmeter &
Pressure Sensors

kY
Radiative Heater Element
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Satellite Observation Borehaole
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January-March 2020 BATS 1a Test Data

Temperature data during BATS 1a
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Brine production data during BATS 1a
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Brine inflow at heater shutdown

BATS 1a test and data summarized in Kuhlman et al. (2020)
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May-Aug 2021 BATS 1b Gas Tracer Test Data

Pressure in Source Borehole
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Gas Tracer Test Responses

Breakthrough to Heated Borehole

elapsed time (hr)

 Unheated pressure response is repeatable

* Pressure maintained at source (D) until heat off

* No tracer breakthrough to heater (HP) until heat off

* Drop in humidity in adjacent borehole (SM) when heat off

 No response in seal (SL) borehole
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Task E Steps

Step 0: Single-process H' and T benchmarks
Step 1: TH' benchmark & H2M/H? initial condition setup
Step 2: TH2M heated brine inflow test case

Step 3: Alternatives (ERT/AE joint inversion, seals, TH2MC, creep)

Table 3. Proposed detailed Task E schedule of steps.

Apr. Nov. Apr. Nov. Apr. Nov. Apr. Nov.
2020 20p1 2022 2023
Step 0
Step 1
Midterm Report — (Nov 2021)
Step 2
Step 3
Papers and Final Report — (Nov 2023)

Infrared heater in BATS HP borehole

H'= single-phase; H2 = two-phase
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Task E Step 0 (Apr. 2020 - Apr. 2021)

(Beauheim et al., 1997)

0. Single-process H' and T benchmarks

a) H?' brine inflow to boreholes (1991 small-scale brine inflow test)

«  Simulate brine inflow to 3 (of 17) boreholes in Finley et al. (1992) dataset
* Brine flow down p gradient (borehole @ 0.1 MPa, far-field @ hydrostatic ~6 MPa)

D) Heat conduction (BATS; Kuhlman et al., 2020)

« Simulate T profile (heating and cooling) during heater test

HT2: TCE (247 left)

»  Heat conduction: 60-cm interval of borehole wall is constant temperature (~100 °C),  _«ol &

heater midpoint is 2.75-m deep into 10-cm borehole, "wll = |
NN -

2030 Mar

C) Estimate model parameter uncertainty and parameter sensitivity for both through time

*  Quantify uncertainty in prediction and measure A prediction with A input parameters (sensitivity)
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Task E Step 1a (Nov. 2020 - Apr. 2021)

1. TH' benchmark & H? initial conditions setup
a) Benchmark TH' brine production to analytical solution (McTigue, 1990)

McTigue (1990)
1

«  Compare numerical models against coupled linear solution (space & time)

L]
A%a0i |

« Halite properties from Table 1, McTigue (1986)

»  Compare with/without model non-linearities (e.g., fluid viscosity f(T))

*  Thermal pressurization response from flat initial pressure

* Two Types of Responses

1. Classical TH response (fluid expansion only)

2. Mechanically coupled THM response (fluid + solid expansion) RADIUS
* McTigue (1986): paper discusses (2) but gives parameters for (1)!

* Different thermal pressurizations predicted, based on conceptual model
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Task E Step 1b (Nov. 2020 - Nov. 2021)

1. TH' benchmark & H? initial conditions setup

(' Howarth & Christian-Frear (1997)

T

D) Parameterize two-phase flow in salt EDZ (few data exist)

Literature capillary pressure data

WIPP
anhydrite

— Recompacting granular salt Fractured <
— anhydrite EDZ at WIPP i

—  Salt “analogues” (tight sandstone or shale) e

w=5x10%m!

5, and §, = 20%
mmbda = 0.7, m = 04118

Pi = .35 MPa; aipha = 0 65 MFa*

Popp et al. (2001)
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Task E Step 1c (Nov. 2020 - Nov. 2021)

Ly, resuwe o Guilinan etal. (2020)
1. TH' benchmark & H? initial conditions setup - -
C) H2brine inflow to in BATS drift (1D radial profile) w/ H2 . . ‘
characterization 30 ¥ears ovears
 DRZto 1 drift radius (kprz > k¢ar) o o1 ors

* Initialize two-phase flow models

—  Pressure distribution (pprz = Pat™M < Pfar) p (liquid pressure)

Bri ¢ f distributi S s i 4 S. (brine saturation)
- rine saturation distribution « > 2
(Se,prz K Se far ) _‘E?Z \ : L
- . ™, .t
* Increased porosity (damage) also desaturates medium _T:l \‘ . L :
. - . -
—  Quickly dry out from fully saturated IC? B i
o |/ )
. : l
—  Slowly evolve from variably saturated IC? Gi/ . L |
> l !
. NEdZ >
. - . a . Heated
* Relative permeability to brine may be lower in DRZ e -
due to radial and | I
tangential | |
IC = initial conditions stress state | T temperature)
EDZ = Excavation Damaged Zone ! | > —
EdZ = Excavation disturbed Zone Drift' EDZ* EdZ * .
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Task E Step 2

BRINE MIGRATION TEST RT ASSE MINE

2. TH?M heated brine inflow test case

g Asse (Rothfuchs et al., 1988)
. . . . . . Sl
a) Predict brine production during increases and decreases in T .
]
E 1.4
5 Avery Island (Krause, 1983) mgom_1a[m .'??é’f:"?ﬂﬁ.?,'} sluangutzenst (Hohlfelder, 1979) E
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* kle(a(T))] Permeability as a function of strain, due to stress, due to thermal expansion
* Slower permeability decrease and thermal expansion during heating (i.e., creation of dam)

* Quick permeability increase and thermal contraction during cooling (i.e., release dam)
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Task E Step 3 (Alternatives)

1. BATS brine / gas tracer tests
2. ERT/AE data to constrain brine inflow estimates

* ERT sensitive to brine saturation, daily ERT tomograms

* AE source locations to confirm changes in ¢, k

3. Predict behavior of BATS seals / GRS lab tests
* GRS laboratory experimental data (WIPP brine & salt)

* BATS strain, T data in cement plugs (Sorel & salt concrete)

4. Additional C processes

* Include water types explicitly in models (fluid inclusions, clay dehydration)
5. Effects of viscoplastic creep on brine production

Based on interest of teams: Chose one/two?
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Summary

» Task E brine inflow test cases
* Unheated: Small-scale brine inflow (1987-1991)
* Heated & Unheated: BATS test (ongoing)

= Task E evolution
* HY/T - TH'- H%/H?M- TH?/TH?M

* Q: Is H? needed to explain brine inflow observations?

Continuous miner at WIPP

* Q:ls AT - Ao - k, ¢ feedback needed to explain brine inflow observations?

* Uncertainty quantification & parameter sensitivity at each step (w/ added complexity)
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Task E Interactions M3 — M4

= Summary of Task E Interactions
e 26-30 Apr 2021: DECOVALEX M3
* 16 Jun 2021: Task E optional #1
* 11 Aug 2021: Task E optional #2
* 29 Sep 2021: Task E optional #3
* 8-12 Nov 2020: DECOVALEX M4

= “Optional” Discussions Meetings are Successful
* <90 minutes each

* Discussion between participants

e Clear up data issues

* Point out errors/inconsistencies in task specification
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ask E (Thursday, Stream 3) Preview

= Teams: DOE, COVRA, GRS, BGR, RWM

= Results and Discussion on Step 1b
* BATS two-phase flow

BATS 1.0 over coring Oct 2021

* Two-phase flow model initialization

= Next steps

* BATS heater and brine production
* BATS gas tracer test

SFWST 19 energy.gov/ne



Thank you!
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