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Abstract—Variable energy resources (VERs) like wind and
solar are the future of electricity generation as we gradually
phase out fossil fuel due to environmental concerns. Nations
across the globe are also making significant strides in integrating
VERs into their power grids as we strive toward a greener
future. However, integration of VERs leads to several challenges
due to their variable nature and low inertia characteristics. In
this paper, we discuss the hurdles faced by the power grid
due to high penetration of wind power generation and how
energy storage system (ESSs) can be used at the grid-level to
overcome these hurdles. We propose a new planning strategy
using which ESSs can be sized appropriately to provide inertial
support as well as aid in variability mitigation, thus minimizing
load curtailment. A probabilistic framework is developed for
this purpose, which takes into consideration the outage of
generators and the replacement of conventional units with wind
farms. Wind speed is modeled using an autoregressive moving
average technique. The efficacy of the proposed methodology is
demonstrated on the WSCC 9-bus test system.

Index Terms—energy storage, frequency stability, inertial sup-
port, variability mitigation, wind power generation

I. INTRODUCTION

The penetration of wind energy into the power grid is
ever-increasing, with the U.S. adding a record 14.2 GW of
wind turbine capacity in 2020 [1] alone, despite the ongoing
pandemic. Replacing fossil fuel powered electricity generation
by wind energy is also crucial for achieving the goals set
by the Paris Climate Accords, and this entails increasing the
global cumulative installed capacity of onshore wind power to
about 1800 GW by 2030 and 5000 GW by 2050 [2]. However,
integrating this massive amount of wind energy into the power
grid might lead to stability and reliability issues due to the low
inertia and intermittent characteristics of wind.

The extensive replacement of conventional synchronous
generators with wind farms is decreasing the overall system in-
ertia and thus degrading the frequency response of the system
[3]. In addition, the variable and intermittent nature of wind
power also negatively affects the reliability of the system, thus
leading to greater load curtailment [4]. Energy storage systems
(ESS) can provide effective solutions to the aforementioned
problems. These devices are well suited for providing multiple
services to the power grid due to their flexibility in operation,

high ramp rates, and decreasing costs [5]. Studies in the past
have proposed approaches to utilize ESS to solve this problems
individually. Hu et al. in [6] explicitly showed how installation
of ESS mitigates the variability of wind power and improves
system reliability by performing reliability evaluation of a
wind integrated system. Mitra [7] developed a probabilistic
method for determining the size of an ESS to achieve a pre-
specified reliability target. The sizing of ESSs for providing
virtual inertia has been studied in [8]–[10]. Reference [8]
proposes a sizing methodology by considering the contribution
of the ESS in terms of inertial constant and droop, while
[9] proposes an optimal planning strategy for ESS providing
inertial support to the grid by utilizing the rate of change of
frequency and frequency nadir of the system.

This work adds to the prior art by proposing a planning
strategy for sizing ESS to provide inertial support as well as
aid in variability mitigation of wind-integrated systems. These
are the two most common hurdles faced while integrating
wind resources to the power grid and the existing literature do
not address these issues jointly. In this work, a probabilistic
framework is developed for sizing ESS to assist the wind-
integrated system in solving these problems. The quantity of
storage required for variability mitigation of wind power is
determined by setting a reliability target and minimizing the
load curtailment. A Monte Carlo simulation (MCS) technique
is used for this purpose. The same algorithm also produces an
estimate of the system inertia at each time period, considering
the outage of power system equipment and replacement of
conventional generation with wind. This estimate of system
inertia helps in determining the storage quantity required
for inertial support. A few case studies are performed to
demonstrate the efficacy of the proposed methodology.

The rest of the the paper is organized as follows. Section II
describes the approach used for sizing the ESS for variability
mitigation of wind and minimizing the load curtailment.
Section III discusses the methods used for estimating system
inertia and hence determining the size of ESS required for
inertial support. Section IV summarizes wind farm modeling
while Section V demonstrates some case studies and presents
their results. Section VI provides some concluding remarks.
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II. SIZING FOR VARIABILITY MITIGATION

First, sizing of the ESS for variability mitigation is dis-
cussed. Integration of wind energy introduces uncertainty into
the grid due to its variable nature, thus increasing the chances
of load curtailment. In this work, a probabilistic approach is
used to determine the power and energy capacity of the ESS
required to minimize this load curtailment. The goal of this
approach is to determine the size of an ESS required to achieve
a predetermined reliability target in a wind-integrated system.

A. Power Capacity

The power capacity of the ESS can be determined from
the load curtailment of the system, which is affected by the
variability of wind. The load curtailment at each time period
can be obtained by modeling the components of the system
as Markov chains and performing Monte Carlo simulation.
Sequential simulation is used in this work to preserve the
autocorrelation of the hourly wind speed model, which a non-
sequential simulation might not be able to capture. The power
system is represented by its components, which consist of
conventional generators, wind turbine generators, transmission
lines, and loads. Markov chains are used to model the compo-
nents as two-state units, with the states being up and down. The
MCS utilized to determine the load curtailment is implemented
using the following steps [11].
1) Input failure rate and duration data for all components of

the system.
2) Initialize all components in their up state.
3) Draw a random number for each component and calculate

the time to the next event. The time to the next event for
component i, Ti, is evaluated as follow.

Ti = − 1

λi
ln(Ui) (1)

where Ui is a uniformly distributed random number and
λi is the failure rate at the up state and the repair rate at
the down state of the ith component. Of these times, select
the minimum time, Tmin(k). Tmin(k) denotes the time to
the most imminent event, i.e., after Tmin(k), component k
changes its state.

4) At each hour, check the component capacities and if they
are adequate to satisfy the load then no curtailment occurs.
However, load curtailment may be required in case of a
contingency. In such a scenario, load curtailment is min-
imized by using an optimization framework and dispatch
is rescheduled. More details pertaining to the optimization
framework can be found be [11].

5) Reliability indices are accumulated, until a predetermined
convergence criterion is met.

The process described above results in producing the en-
tire probability distribution of hourly load curtailment in the
system. Hence, the proposed approach offers the flexibility
of sizing the ESS based on the risk the system operator is
willing to undertake. In this work, the ESS is sized based on
the mean value of load curtailment, which implies that the ESS

will have a power capacity of PL units if the mean hourly load
curtailment is PL units.

B. Energy Capacity

Let us assume that the availability of a wind-integrated
system is A0, and we need to increase its availability to
A1 using storage. Let us define a metric which we call
unavailability reduction ratio, α, as follows.

α =
1−A1

1−A0
(2)

where A1 > A0. More details on how α is calculated for a
wind-integrated system can be found in [12].

From section II-A, it is clear that the ESS needs to support
a load of size PL to increase system availability from A0 to
A1 for a certain amount of time, which we assume to be tA.
The following relationship can be used to find a solution for
tA [7]. Z ∞

tA

fR(r)dr = α (3)

Equation (3) presents the basic expression that quantifies
the ESS energy capacity required to improve the system
availability from A0 to A1. However, in a practical world,
ESS are not perfectly reliable, and that should be considered
in the model. Let us assume that the ESS has an availability
As. Then, the ESS must possess an energy capacity that allows
it to supply a load PL for time ts, where ts is expressed as
follows.

ts =
tA
As

(4)

Hence, the power capacity of the ESS should be at least PL

and its energy capacity should be at least PLts for improving
the system availability from A0 to A1.

III. SIZING FOR INERTIAL SUPPORT

Frequency response plays a vital role in overall system
dynamic performance. An imbalance in real power leads to
frequency deviation from the nominal values and might result
in load shedding. The swing equation, which dictates the
behavior of system frequency in response to a change is load,
can be expressed as follows [13].

2H

fs

df

dt
=

Pm − Pe

Seq
=

∆P

Seq
(5)

where H is the equivalent system inertia, fs is the nominal
frequency, df

dt is the RoCoF, Pm and Pe are the mechanical
power input and the electrical power output, and Seq is the
rated power of the system, respectively.

A. Maximum Frequency Deviation

A generalized load frequency control (LFC) model for a
multi-machine system is utilized in this work [14] to deter-
mine the maximum allowable frequency deviation. This model
has been shown to be fairly accurate for most applications,
particularly at grid-scale where the dynamic contributions of
inverters are not significant at today’s renewable penetration



levels. The equation for frequency deviation can be developed
from this LFC model [15] and is shown in (6). A summary of
the notations used in equations (6)–(14) is given as follows.

H = equivalent inertia constant;
D = load damping constant;
Ki = LFC controller of machine i;
Ri = equivalent regulation constant of machine i
Fi = fraction of turbine power generated by

high pressure (HP) unit of machine i;
Ti = governor time constant of machine i;
∆f = frequency deviation;
∆PL = disturbance;
m = total no. of machines in the system

∆f(s) =
∆PL

s

D + 2Hs+
Pm

i=1
Ki(1+FiTRs)
Ri(1+TRs)

(6)

The governor time constants of all machines are assumed to be
identical (Ti = TR, ∀ i ∈ m) , since the maximum frequency
deviation has a low sensitivity to this quantity [14]. Applying
inverse Laplace transformation, the expression for frequency
deviation in the time domain is obtained as follows.

∆f(t) =
∆PL

2HTRω2
n

�
1− 1p

1− ζ2
e−ζωnt cos (ωn

p
1− ζ2t

−ϕ)

�
+

∆PL

2Hωn

p
1− ζ2

e−ζωnt sin (ωn

p
1− ζ2t)

�
(7)

where

FR =

mX
i=1

KiFi

Ri
(8)

RR =

mX
i=1

Ki

Ri
(9)

ωn =

r
1

2HTR
(D +RR) (10)

ζ =
1

2

2H + TR(D + FR)p
2HTR(D +RR)

(11)

ϕ = tan−1

�
ζp

1− ζ2

�
(12)

The maximum frequency deviation is obtained by equating the
derivative of ∆f(t) in (7) to zero and is expressed as follows.

∆fmax =
∆PL

RR +D

�
1 + e−ζωntmax

r
TR(RR − FR)

2H

�
(13)

where

tmax =
1

ωn

p
1− ζ2

tan−1

�
ωn

p
1− ζ2

ζωn − 1/TR

�
(14)

B. Power Capacity of the ESS

Let the minimum inertia level required to maintain fre-
quency within some pre-specified limits at time t be Hmin

t for
a particular disturbance event, and let the system equivalent
inertia be Hsys

t . If Hsys
t < Hmin

t , then an ESS may be deployed,
which can inject active power into the system at a sufficiently
high rate to maintain frequency stability. Hence, the inertia that
the ESS needs to provide in such an event, can be defined as
follows.

HESS
t = Hmin

t −Hsys
t (15)

Now, the relationship between HESS
t , and the real power injec-

tion required by the ESS for maintaining frequency stability,
qintt , can be derived from (5) as follows [8].

HESS
t = qint

t

fs
2

�df
dt

�−1

(16)

This implies that the ESS should maintain a reserve of active
power equal to qint

t for time period t in order to satisfy the
frequency stability constraint. The RoCof for this work has
been assumed to be equal to 0.5 Hz/s [8].

The energy capacity of the ESS required for this application
can be determined from the time period for which it needs to
support the application. In general, inertial support is required
for a few seconds before the primary frequency response of the
system is activated. This time period is adjusted with ts while
calculating the total energy capacity of ESS and is further
explained in section V-C.

IV. MODELING OF WIND POWER OUTPUT

This work focuses on improving the reliability of wind-rich
systems and hence the modeling of wind power is an important
aspect of the proposed framework.

A. Modeling of Wind Speed

Wind speed at a certain geographic location varies randomly
with time. Hence, accurate models are needed to capture the
various properties of wind speed. In this work, autoregressive
moving average (ARMA) models are used to represent and
forecast wind speed data. In statistical time series analysis,
ARMA models can provide a description of a stationary
stochastic process using observations from previous time steps.
ARMA techniques have been widely used by researchers to
model wind speed due to its accuracy [16]. An ARMA model
is a combination of an autoregressive (AR) model and a
moving average (MA) model. The AR model predicts the
value of a variable using the observations of the previous time
steps while the MA model uses the residuals of the previous
forecasts. The number of previous observations used by the
AR and MA models decide the parameters p and q of the
ARMA model, respectively. In general, the value of a variable
y at time t can be forecasted using an ARMA(p, q) model as
follows.

(17)yt = ϕ1yt−1 + ϕ2yt−2 + ...+ ϕpyt−p + ϵt

+ θ1ϵt−1 + θ2ϵt−2 + ...+ θqϵt−q



where ϕi and θj are the parameters of the AR and MA models
respectively; ϵ is an independently and identically distributed
(IID) white noise process and ϵ ∼ N(0, σ). The forecasted
wind speed at time t, FWt can then be obtained as a function
of yt.

FWt = f(yt) (18)

The relationship between wind speed and wind power output
is obtained from [17].
B. Wind Speed Data

Wind speed data for Albuquerque, NM, is collected from
the National Renewable Energy Laboratory’s (NREL’s) Wind
Prospector [18]. Three years of wind speed data, ranging
from January 1, 2010, to December 31, 2012, is used to
generate the ARMA model for this location. An AR model,
a special case of an ARMA model, is used to model wind
speed data at different locations. AR models are preferred for
their simplicity and ease of interpretation and an AR model
of appropriate order can be used to replace ARMA models
without loss of accuracy [16]. The AR(8) model used to
forecast wind speed data for Albuquerque is shown in (19).
The accuracy of the AR model is- demonstrated by Figure 1,
which shows the plots of the observed and the simulated wind
speeds of Albuquerque.

(19)
yt = 0.7906yt−1 + 0.0.0318yt−2 − 0.0262yt−3

+ 0.0003yt−4 − 0.0184yt−5 − 0.0174yt−6

− 0.0031yt−7 − 0.0082yt−8 + ϵt

where ϵt ∼ N(0, 1.113).
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Fig. 1. Observed vs. predicted wind speed for Albuquerque for an example
day.

V. CASE STUDIES AND RESULTS

This section describes the test system and test cases, and
discusses the results.

A. Test System

The efficacy of the proposed methodology is demonstrated
using the Western System Coordinating Council (WSCC) 9-
bus test system [19]. A single line diagram of the test system
is shown in Fig. 2 and the generator data is provided in Table

I. Two case studies are designed to test the efficacy of the
proposed methodology as outlined in section V-B. In these
case studies, the original system is modified by replacing part
of the conventional generation with wind farms.
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Fig. 2. Single line diagram of the WSCC 9-bus test system

TABLE I
GENERATOR DATA FOR THE TEST SYSTEM

Gen. Bus Capacity Inertia
No. No. (MW) (s)
1 1 250 23.4
2 2 300 6.4
3 3 270 3.01

B. Case Studies

The following case studies are performed to evaluate the
ESS size required to achieve a pre-determined reliability target
and maintain frequency within some pre-specified limits in
case of a disturbance. In each case, a load disturbance of 0.1
p.u. is considered. The inertia contribution from each turbine is
assumed to be 0.025 s and the maximum frequency deviation
is considered to be 0.015 Hz [4].

• Case I: Generator 3 of the test system is replaced by a wind
farm of capacity 48 MW. This size is chosen as it makes up
about 8% of the installed capacity in the system, the current
share of wind power in the U.S. The wind farm is assumed
to consist of 6 identical wind turbines of capacity 8 MW
each.

• Case II: Generator 3 of the test system is replaced by a wind
farm of capacity 144 MW. This size is chosen as it makes
up about 20% of the installed capacity in the system, the
target wind power share in the U.S by 2030 [20]. The wind
farm is assumed to consist of 18 identical wind turbines of
capacity 8 MW each.



TABLE II
ESS SIZES FOR THE CASE STUDIES

Case r̄ α ts PL E[Hsys] Hmin HESS Pint Ptot
No. (h) (h) (MW) (s) (s) (s) (MW) (MW)

I 7.04 0.32 8 18.48 29.12 67.96 38.84 64.73 83.21
II 6.69 0.17 12 17.30 29.14 66.10 36.96 61.60 78.90

C. Results

Table II shows the results of the case studies. Here, PL is
calculated as the mean load curtailment of the system for a
calendar day. Pint, which is calculated from qint

t , denotes the
storage quantity required for inertial support and Ptot denotes
the total power capacity of the ESS required for serving both
the applications. The energy capacity of the ESS is equal to
Ptot × ts. The value of ts has been rounded off to the nearest
integer value greater than itself. This increment in the energy
capacity of the ESS also ensures enough room for it to provide
inertial support to the grid for a few seconds before primary
frequency control is activated. Results show that the ESS size
required in Case II is smaller than that in Case I, as the total
generation of the system is greater in Case II, although serving
the same load as in Case I.

VI. CONCLUSION

This paper proposed a new planning approach for mitigating
the negative effects of integrating wind energy into the power
grid using an ESS. In the proposed approach, the ESS is sized
appropriately to provide inertial support and also minimize
load curtailment of the system in the face of the low-inertia
and variable characteristics of wind. A probabilistic method
is developed for this purpose, which considers the failure of
equipment leading to loss of load and low-inertia events in
the system. An efficient MCS algorithm is used, which is
capable of estimating the load curtailment and the inertia of
the system in a single run, thus saving time and computational
effort. A number of case studies are performed to demonstrate
the ESS sizes required for maintaining frequency stability and
achieving a predetermined reliability target under different
wind penetration levels. The methodology developed and
presented in this work can be utilized for planning of new
ESS facilities or for more efficient utilization of existing ESS
facilities integrated with wind generation.
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