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Abstract—Traffic congestion leads to severe problems espe-
cially in urban traffic networks. It increases the chance of
accidents, energy waste, and social costs. In order to address
these problems, an adaptive linear quadratic regulator (LQR)
approach is developed for traffic signal control at multiple
intersections in an urban area. The proposed method controls
the green time of the traffic signals to reduce traffic congestion
and smooth traffic flow. Real-world data from vision-based
traffic sensors are used to build the traffic network model,
which mimics the real-world traffic behavior. In addition,
the proposed control utilizes recursive least square parameter
estimation, which is capable of tracking dynamic changes in
traffic conditions. Simulation of Urban MObility (SUMO) is
used to analyze the efficacy of the proposed method. Results
of the simulation show that the proposed method outperforms
pretimed control in various aspects.

Index Terms—Traffic signal control, GRIDSMART camera,
adaptive LQR control, recursive least square, model predictive
control (MPC), SUMO simulation

I. INTRODUCTION

As the mass production of vehicles became a reality in the
early 20th century, there has been a continuous increase in
vehicle numbers throughout the United States. The number
of vehicles registered in the United States was 279.1 million
in 2018 [1]]. At the same time, the number of people living
in urban areas have also increased. Among the 7.7 billion
people living on Earth as of 2019, more than half live in
urban areas. As of 2050, the proportion of people living in
urban areas is expected to reach about two-thirds of the total
population [2f], [3]] in the world. As a result, the increase
in vehicle ownership, population, and urbanization has led
to significant occurrences in traffic congestion, pollution and
waste of energy.
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Traffic congestion during rush hours in mega cities sig-
nificantly impacts commute time of city people [4]]. Also
it leads to a huge increase in social cost and pollution.
There have been many research works which demonstrated
the social cost and pollution caused by traffic congestion in
urban areas [5]-[8]. Social cost includes travel time costs,
excess use of fuel, vehicle operating costs and increase
in operating costs by industry and total revenue loss by
industry [9]. It is estimated that the annual social cost of
congestion from all commute trips in United States will be
about 29 billion dollars [10]]. This requires smarter control
of traffic operation systems so that traffic flows in urban
areas can be made as smooth as possible. Indeed, there have
been different approaches to reduce the traffic congestion in
urban areas. For example, in [11] the authors proposed a
method for a dynamic ride-sharing based on “shareability
index” to solve large-scale congestion problems. In [12], the
authors have demonstrated that controlling the speed limit
can reduce bottleneck locations which cause severe traffic
congestion at freeways. In [13[], Kazi et al. suggested that a
reservation-based smart parking system can reduce the traffic
congestion as it helps drivers to find the nearest parking
area. Finally, Ahmad et al. [14]] analyzed the effectiveness of
an earliest-deadline-based scheduling that reduces the traffic
delay caused by priority vehicles.

Among many approaches, the most practical and im-
plementable solution for reducing traffic congestion is to
optimally control traffic signals at intersections. With the
recent improvements on reinforcement learning technologies,
reinforcement learning based traffic signal control has been
developed [15]-[21]. Also, traffic signal control has been
proposed which utilizes the data from vehicle to everything
(V2X) communication. For example in [22], Kumar et al.
demonstrated the autonomous traffic signal control system for
smart cities which utilize Internet of Things (IoT) technology.
In order to overcome the disadvantages of pretimed opera-
tion, traffic responsive control such as actuated and adaptive
traffic signal control have been developed. Adaptive traffic
signal control methods, whose parameters are adjusted in
response to traffic conditions, are more capable of properly
responding to changes in traffic conditions. By doing so,
traffic congestion can be alleviated and its throughput in the
controlled area increases [23[[-[25].

In this regard, a novel real-time adaptive traffic signal
control for multiple intersections in urban areas is developed
in this work. The contribution of this paper is twofold:



Fig. 1. The fisheye view of a GRIDSMART camera. The sensor detects
vehicles as they arrive at the intersection. It estimates each vehicle’s speed
and it tracks vehicles as they move through the intersection to determine
their turn directions.

modeling and control.

In the modeling phase, a store-and-forward based model
is developed to fit the real-world traffic data in a state-
space representation using the well-known recursive least
square estimation algorithm. During the modeling phase,
intersections in downtown Chattanooga, Tennessee, United
States, are considered. To build a model which reflects the
real-world operation of the intersections, the actual signal
timing plan (i.e., minimum and maximum green times, cycle
length, offset between intersections, and phase specifications)
which is currently used is considered. Real-world traffic data
is collected from vision-based traffic sensors, namely the
GRIDSMART cameras (Fig. [T). These data are used to fit the
model, where the novelty also lies in the use of GRIDSMART
camera data to build a traffic flow model.

From a control perspective, an adaptive linear quadratic
regulator (LQR) controller is used to optimally control each
traffic phase’s split at each intersection, where traffic phase
in transportation engineering is defined as the green, change,
and clearance intervals in a cycle assigned to specified
movement(s) of traffic. The proposed controller calculates
the optimal split of each phase from the updated system
parameters.

Finally, the Simulation of Urban MObility (SUMO) en-
vironment, which imitates the real-world traffic flow of
intersections in downtown Chattanooga, Tennessee, United
States, is utilized to analyze the efficacy of the proposed
method.

II. SYSTEM MODELING

In this paper, we used store-and-forward modeling for
the urban traffic network system illustrated in [26]. The
traffic network can be represented as a directed graph where
intersections are considered as nodes and the approaches (or
links) are considered as edges, as shown in Fig. [2| In this
context, approach z includes several lanes and the vehicles
pass through approach z from intersection M to N. Note
that the sampling time 7" is a common multiple of cycle
time C' for each intersection. For such systems, g, refers
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Fig. 2. An urban road links
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Fig. 3. Stages in intersection

to the inflows to the approach z from upstream intersection
M. u, refers to the outflows from approach z to downstream
intersection N. s, is the exit flow and d, is the demand flow.
By the conservative law of traffic flow, it can be obtained that

2. (k+1) = 2. (k) + T]g. (k) — s (k) + d (k) —u. (k)], (1)

where (k) denotes the number of vehicles at time step k.
The exit flow can be modeled as

s:(K) = t2.00: (k) + B (), @)
where ¢, o denotes the exit rate from inflow ¢.(k) and #%°

denotes the average exit rate from current state x,(k) with
Mz0 € (0,1). Thus can be reformulated as

2ok +1) = (1= o) (k) + T(1 = £..0)q= (k) + do (k) — u (k)] (3)

Assuming that there exists a nominal control strategy
such that

(1—te0)g) +dY —ul =0 4)

holds, the traffic flow dynamics can be further reformulated
as

22 (k +1) =(1 - e 0)as (k) + TI(L — t..0)Aq. (k)
+ Ad. (k) — Au, (k)]

where Ag.(k) = q.(k) — ¢, Ad.(k) = d.(k) — dY¥ and
Au (k) = uz (k) —ul¥.

Considering an intersection with two stages as depicted in
Fig. 3] each stage includes the green, yellow, and red times.
The outflow can be controlled via the duration of the green
time in the stage. Yellow time and red time can be regarded
as fixed constants. Note that stage in Fig. [3] corresponds
to traffic phase in transportation engineering terminology.
Duration of stage 4 at intersection j can be denoted as g; ;
and the constraint on cycle time is given by

> i =C forj=1,2,..N ®
i€ F

®)



where F); stands for the set of available stages for intersection
7, N is the number of intersections in the network, and the
green time is constrained by

9j,i,min < 9j,i < 9j,i,max, fOI'j = 13 25 ) N andi€ Fj

(N

where g; i min and g;; mae are the minimum and maximum
green times for stage ¢ in intersection j, respectively.

As a result, the outflow (k) can be written as

S,
us(k) = 5 ; gni(k) @®)
where v, denotes the stages when approach z has right of
way. Similarly, inflow ¢, (k) can be expressed as

Su(Xigu,, 91.1(K))
qz(k) = ZwEIM tw;zuﬂ7(k) = ZwEIM twvz+w (9)

where [, stands for the approaching links for intersection
M and ¢, . is the turning rate from approach w to approach
z. From (8) and (9), it can be obtained that

xz<k7 + 1) = (]- - ,LLz,O)xz(k) + T[(]- - tz,O)
Z twﬁzsw(Ziecz:w Agﬂfﬂ(k)_'_

(10)

weln
SZ(Zinz AQN,i(k))
& ]
where control input Ag;; = gj; — g]»\fi denotes the control
difference with the nominal control g;;. Considering all the
approaches in the network, the system has a multiple-input
and multiple-output (MIMO) state-space representation as
follows,

x(k+1) = Ax(k) + BAg(k) + TAd(k) (11)

where x(k), Ag(k), Ad(k) are the number of vehicles,
control inputs, and demand disturbance for the approaches
in the network, respectively. Matrix A is a diagonal matrix
with diagonal elements being 1 — 1, o and matrix B includes
the connection of intersections, turning rates and saturation
flows.

Using (6), the dimension of control inputs can be de-
creased. For the nominal control gJZ-VJ, we should have the
following constraint

> gli=¢C, (12)
iGF]‘
and we also have
> Agji=0forj=1,2,..N, (13)

icF;
Thus, one control input at each intersection can be dis-

carded. For example, if the intersection has only two control
inputs Agy 1 and Agy 2, and Ag; 1 + Agi2 = 0. Then,

b1 b2 A ba1 — b11
bar  boo [Agij = |ba2 —b21| Agr2 (14)
b31 b3z ’ b3z — b31

where Ag; 1 has been replaced by —Ag; 2. For convenience,
we will still use as the model where B and Ag(k) refer
to the matrix and control with reduced dimensions.

III. CONTROLLER DESIGN

A. The Recursive Least Squares Estimation

The online estimation of A and B matrices based on the
real-time data is shown below. Assuming that the disturbance
TAd(k) is bounded with ||TAd(k)||< @, then the recursive
least squares method with forgetting factor A can be em-
ployed here to identify the unknown parameters. In order
to formulate the standard form of recursive least squares,
assume that z(k) € R™ and by vectorizing both sides of
(11), it can be obtained that

z(k+1) = ([z(k)" ® L,]vec([A B)) + Td(k)  (15)

Using the property of Kronecker product, we have
vec(AXB) = (BT ® A)vec(X).

Denote yx11 = x(k + 1), ¥F = [z(k)T wk)T] @ I,,
6 = vec([A B]) and wy, = Td(k). The algorithm can be
summarized as follows:

o Step 0: Initialize forgetting factor 0 < A < 1, positive
definite matrices P_; and 7_q, initial estimate éo and
iteration steps K. Let k£ = 0 and repeat: X

o Step 1: Op1 = O + Poo19.Dy (Y1 — 7 0) with
Dy = AT + ¢} Pty

o Step 2: Py = A\"Y(I — P13 Dy, F ) Pes

e Step 3: k:=k+ 1; If k£ > K, set output as the current
estimate 0y, otherwise go to step 1.

To ensure good estimation, the following persistent excitation
conditions [28] should be satisfied for the data to be used.
This condition says that for some S € N>, for all j € N>,
the following inequality should be satisfied

j+S
0<al <> ¢up] <BI< oo

1=y

(16)

where «, [ are positive constants. This ensures that the
estimation error will satisfy

k/2

10k — 6] < 71)\k/2||é0—9|\+72)\k/2@+73m

w (17)
where 6 is the true parameter, 1, 72, and y3 are non-negative
constants with ~3 proportional to 1/a. As k tends to go
infinity, the estimation error can be dramatically decreased
by increasing « through collecting rich enough data [29].
Finally, matrices A and B can be extracted through 0. Initial
parameters P_q, T ; and éo are known and ék is updated
by the following optimization problem:

k
1 - - 1 s R
axgmin 5[0 = Oull5- 145 > Ay — 0l
k -1 i1 -1
(18)
where P_; and T_; refer to the confidence on the initial

estimation and new estimation, respectively. These values can
be chosen offline from the historical data.



B. Linear Quadratic Regulator
The following LQR problem is considered:

> ca(k)"Qu(k) +ulk)"u(k)
k=0
s.t. x(k+1) = Ax(k) + Bu(k)

min
U, UT 5

19)

where u(k) = Ag(k); € is a positive constant that can be
adjusted; () is a positive definite matrix whose diagonal
elements are 1/2, 4, as in [27]. The goal of LQR control
is to reduce the quadratic cost function which can be done
by optimizing the state or input. Besides, it is evident that
the eigenvalues of A are within the unit circle of complex
plane and (A, B) is stabilizable pair accordingly. This fact
can be validated from the fact that when u(k) = 0 for
i = 1,2,...,x2(k) does not go to infinity as k increases.
Therefore, there exists a unique real symmetric and positive
definite matrix P satisfying the following algebraic Riccati
Equation (ARE)

P=ATPA—- ATPB(BTPB+1)"'BTPA +eQ (20)
This leads to the following optimal control law,

u*(k) = —(B"PB + I)"'BT PAx(k) 1)
for the linear quadratic regulator problem [30]. In addition,
it turns out that € can be adjusted such that the constraints
can be strictly satisfied as follows.

Proposition 1. Assuming that the nominal signal plan
satisfies

9j,i,min < gj\,[i < 9j,i,max (22)
for j = 1,2,...,N and i € v(j), then given the initial state
x(0), there exists a sufficient small €* such that when 0 <
€ < €*, the optimal control law satisfies the constraints
forj=1,2,...,N.

Proof: Since (A, B) is stabilizable, control law will
stabilize the undisturbed system [30], and the original system
is input-to-state stable regarding TAd(k) as the input
[31]. Thus there exist positive constants 5, and (5 such that
[lz(k)||< B1]|x(0)||+P2w for k = 1,2,...,N. A positive
constraint o can be defined as follows,
min

N N
j:L.__,Nﬂ,@(j)[|gj,i = Gjiminl; |95,i,maz — Gj,]  (23)

o =
and we need to guarantee |[u*(k)||co< a or [[u*(k)||< a.
It is known that lim.,o P(¢) = 0 [32], combining with
the boundedness of xz(k), when o = TATITET G 2
there exists €* > 0 such that when € < €*, || P(e i

0)[[+B2w)”
< o and
[l (R)[[< [[(BTPB + 1)~ BIIIPIA|= (k)] (24)
< IBIIIPIIA[[lz(k)[|< o
for each k = 1,2, ..., which completes the proof.

In the proposed algorithm, coefficient € is adjusted to make
sure constraints are satisfied.

C. Model Predictive Control

A finite horizon constrained optimization problem is for-
mulated to obtain a desired controller by explicitly consider-
ing the constraints (7). The problem to be solved is therefore
as follows,

K
> w(k)"Qu(k) + u(k)" Ru(k)
k=0
st. z(k+1) = Azx(k) + Bu(k)
gj,i,min S gj,i S gj,i,maza
for j =1,2,...,N and i € F(j)

(25)

where K is the planning horizon and ) and R are two
real symmetric and positive definite matrices. Considering
K states, we have

x(1) A B 0 .. 0 u(0)

T 2 u

S I B U O | B B 0
[l?(k) A‘K AK;lB AK;ZB B u(k; 1)

denoted as X = Axy + BU, and the cost function
JU)= XTIk @ Q)X +UT(Ix ® R)U
= UT(BTQKB + RK)U + 2UTBTQK/_1£L'() + g({,Co)
27
where Qr = I, ® Q and R = I ® R, and the Hessian
matrix is

V2J(U) = BYQiB+ Ry > 0 (28)

Thus, J(U) is a convex function over the decision variable
U, and the constraints can be rewritten as GU < h
with appropriate matrices G and h, which defines a convex
feasible set.

IV. SIMULATION RESULTS

SUMO simulations were conducted to validate our pro-
posed control methods [33]]. As shown in Fig. 11 inter-
sections in downtown Chattanooga (Tennessee, the United
States) are considered. Among the 11 intersections, 8 inter-
sections have 2 stages, 2 intersections have 3 stages and the
remaining 1 intersection has 4 stages. This implies the control
input to be u(k) € R'3. Besides, there are 38 links in the
intersections which means that x(k) € R38 accordingly.

One month of historical data (which were collected by
the GRIDSMART cameras) of morning rush hours, (i.e.,
weekdays, 7:00-9:00 AM) including the signal timing plan,
vehicle counts and vehicle speeds are used to establish and
calibrate the SUMO simulation model. Each intersection’s
index, name, location (from North to South) and existing
pretimed signal plan are shown in Table [l and used as the
nominal control input.

After a few iterations, the testing error converges to a small
value and the variation of parameters does not change a lot as
displayed in Fig. [5] and Fig. [6| which show the mean absolute
percentage error (MAPE) compared with other approaches
including linear regression and a well-tuned neural network
(1 hidden layer with 340 neurons). In Table [lI} the recursive
least squares estimation does not outperform linear regression
method since the latter has considered all the data for
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Fig. 4. Traffic network in downtown Chattanooga, Tennessee, United States

TABLE I
INTERSECTIONS AND PRETIMED SIGNAL PLANS

Intersection Configuration
index / name Cycle time (sec) | Number of stage | Each stage’s time (sec)
1/ Georgia Avenue & E 4™ Street 140 4 36, 57, 15, 32
2/ Lindsay Street & E 4" Street 140 2 96, 44
3/ Houston Street & E 4™ Street 140 2 115, 25
4/ Georgia Avenue & E 6™ Street 70 2 28, 42
5 / Georgia Avenue & McCallie Avenue 140 3 55, 34, 51
6 / Lindsay Street & McCallie Avenue 140 2 99, 41
7 / Houston Street & McCallie Avenue 140 2 102, 38
8 / Georgia Avenue & E 8™ Street 70 2 28, 42
9 / Georgia Avenue & E.M.L King Blvd 140 3 47, 36, 57
10 / Lindsay Street & E.M.L King Blvd 140 2 98, 42
11 / Houston Street & E.M.L King Blvd 140 2 107, 33

*Order of intersections begins from North to South

prediction and recursive least squares gives more weights on
recent data.

The following three indices are measured to compare the
performance of controllers: sum of the number of vehicles at
each sampling time, sum of waiting time for all vehicles at
each sampling time, sum of the number of stopping vehicles
at each sampling time. Simulation is carried out for 7200
(sec) where 9539 vehicles are put into the network during
this time. 15% of nominal control’s splits are set as the bound
in (7). Once the control input exceeds the bound, it is set as
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Fig. 6. Variation of parameters

the corresponding bound values. The result for different e is
shown in Table [T} It can be seen that the proposed adaptive
LQR controller outperforms the MPC controller with K = 3
and the pretimed controller as given in Table [[V] In addition,
the adaptive LQR control outperforms pretimed control in
that the number of the vehicles at links, waiting time, and
the number of stops is reduced by 5.51%, 20.82%, 12.72%,
respectively. Also, simulation is carried out for 7200 (sec) and
the results are shown in Table [V]and [V It can be concluded
that the proposed algorithm is not sensitive to the selection
of random seeds and outperforms the pretimed controller.

V. CONCLUSION

This paper proposed a novel store-and-forward based
traffic network modeling and designed an adaptive LQR
traffic signal control for multiple intersections in urban
traffic networks. The traffic model was developed using
the recursive least square estimation which updates system
parameters for every iteration. Once the modeling process
is performed, an LQR controller is designed that provides
optimal control input (i,e., green time of next cycle) to reduce
the traffic congestion within the controlled area. SUMO
simulation using GRIDSMART real-time data are carried out
to demonstrate the capacity of the proposed method, and
desired results have been obtained.

TABLE II
MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) FOR DIFFERENT
APPROACHES
MAPE Approaches
(%) RLS Linear regression | Neural network
Mean value 19.39 17.46 21.05
Maximum value | 39.28 31.38 45.74
TABLE III
IMPACT OF CONSTANT (€) ON THE PERFORMANCE INDICES
Performance Different values of c (e)
index 0.33 0.5 0.65 1 2
#Violation 0 0 0 1 10
#Vehicles 4839 4809 4807 4812 4832
#Stops 3454 3407 3387 3324 3374
Waiting time (sec) | 94752 | 93228 | 91747 | 88659 | 90375




TABLE IV
PERFORMANCE COMPARISON FOR THREE DIFFERENT METHODS

Type of Performance index
control #Vehs | Waiting time (sec) | #Stops
Adaptive LQR 4677 78402 3107
MPC (K = 3) 4877 94464 3460
Pretimed control 4950 99020 3560
TABLE V

SENSITIVITY OF ADAPTIVE LQR CONTROL

Statistics Performance index
value #Vehs | Waiting time (sec) | #Stops
Mean 4707 81026 3154
Standard deviation | 28.36 1302 32.25

TABLE VI

SENSITIVITY OF PRETIMED CONTROL

Statistics Performance index
value #Vehs | Waiting time (sec) | #Stops
Mean 4951 99197 3557
Standard deviation 13.80 650 16.47
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