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Assumptions:

* Scattering does not are primary peak shape : Mean & variance are dependent
* Secondary, tertiary & break-up reactions are negligible

only on ion velocity distributions
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Recent measurements of (E,,) and (E%) — (En)2

Bl101.00003 — E. P. Hartouni

G007.00007 — A. S. Moore ]’ NIF Cryogenic DT

GO07.00010 — O. M. Mannion- OMEGA Exploding Pusher DD & DT /
Can we calculate ion velocity distributions from these measurements? Mean: (E )
n Variance:
* No unique solution since we do not measure He* /He* spectra 2\ _ 2
(ER) — (En)

* Measurementsare time & space integrated = we seek “burn-averaged” distributions

* Theoryis mature if we assume Maxwellians, e.g. Munro Nuc. Fusion [2016]

* Recent measurements do not agree with Maxwellian theory, indicating non-Maxwellian distributions




Primary spectra & Reactivity Weighting oneim <% CIT'S

Cross-section
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Reactivity definition: (ov) = fvraflfzd?’vl'dsz: Ve — net momentum of collision
\\ K — energy of collision
Distribution functions
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Reactivity weighting: (E,,) = o) cm m, + m,
1 2
Reaction kinematics: E, =FQ,vem K, 1) =5 12
Shift of (Ey,) : AE = a(K)+ B(vZ,) + -

a,f3 ,y — functions of particle masses

Scaled (EZ) — (E,,)*: T, = y{(v2,) + -
Observed (E,) and (E}) — (Ey,)? are dependent on {K) and (véy,)
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AE — T, Parameter Space iondon > CAF'S

Large <K>
A
low <v_ 2>
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Head-on collisions
Low <K>
AE = a(K) + B{vén) large <v_ 2>
o— &

Iy = V(vczm)

Beam-target collisions




AE — T, for Maxwellian obeion 9 CIFS
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* Maxwellianis defined by a single parameter (temperatureT) sz X exp (_ 7 vz)

* Varying T defines a locus of pointsin AE — T space

» T = T fora Maxwellian

Large <K>
A
low <v_ 2>
.—» 4—‘
Low <K>
AE = a(K) + B{vén) large <v_ 2>
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Ts = y(vém)




AE — T, for Maxwellian with flow k=" Cil'S
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* Fluid velocity increases (v5,,) but not (K) f12 X exp (_ W (v — ‘Uf) )
* Points shifted right/below Maxwellian locus in AE — T space

Large <K>
A )
low <v__2> Hydrodynamic models can
cm only access right/below
o— —49 Maxwellian locus
Low <K>
AE = a(K) + B(vZ,) large <v_ 2>
o— e

Iy = V(vczm)




AE — T, for Maxwellian with flow k=" Cil'S
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* Fluid velocity increases (v5,,) but not (K) fi12 X exp (_ e (v —_ vf) )
Points shifted right/below Maxwellian locus in AE — T space 2T

A Hydrodynamic models can
only access right/below
Maxwellian locus
Low <K>
AE = a(K) + B{vi,) large <v_ 2> | Some NIF & OMEGA

. ‘_> measurements are above

Maxwellian locus

Iy = V(vczm)
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Energy Decomposition of Maxwellian

* The energy decomposition of a Maxwellian occupies a broad regionin AE — T space

* Region has upper and lower bounds

* These bounds exist for any isotropic distribution in velocity space
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Energy decomposition of a
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Region above red curves only accessed by anisotropic, non-Maxwellian distribution functions
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¢ OMEGA Exploding Pushers: D NIF Cryogenic:
DD spectra imply non-Maxwellian distributions, DT spectra imply non-Maxwellian distributions
ion kinetic simulations (iFP) match these spectra including some anisotropic
G0O07.00010 — O. M. Mannion B101.00003 - E. P. Hartouni

GO007.00007 — A. S. Moore
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» AE — T space of primary neutron spectra can characterize ion velocity distributions
* Measurementson NIF & OMEGA show direct evidence of non-Maxwellian distributions

* NIF data shows evidence of anisotropic velocity distributions
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