

Diagnosing Ion Distributions using Primary Neutron Spectra

Brian D Appelbe¹, A C Crilly¹, J P Chittenden¹, E P Hartouni², A S Moore², O M Mannion⁶, C J Forrest³, S P Regan³, E M Campbell³, W T Taitano⁴, M Gatu Johnson⁵

¹ Imperial College London , ² Lawrence Livermore National Laboratory, ³ Laboratory for Laser Energetics,
⁴ Los Alamos National Laboratory, ⁵ MIT PSFC, ⁶ Sandia National Laboratories

bappelbe@ic.ac.uk

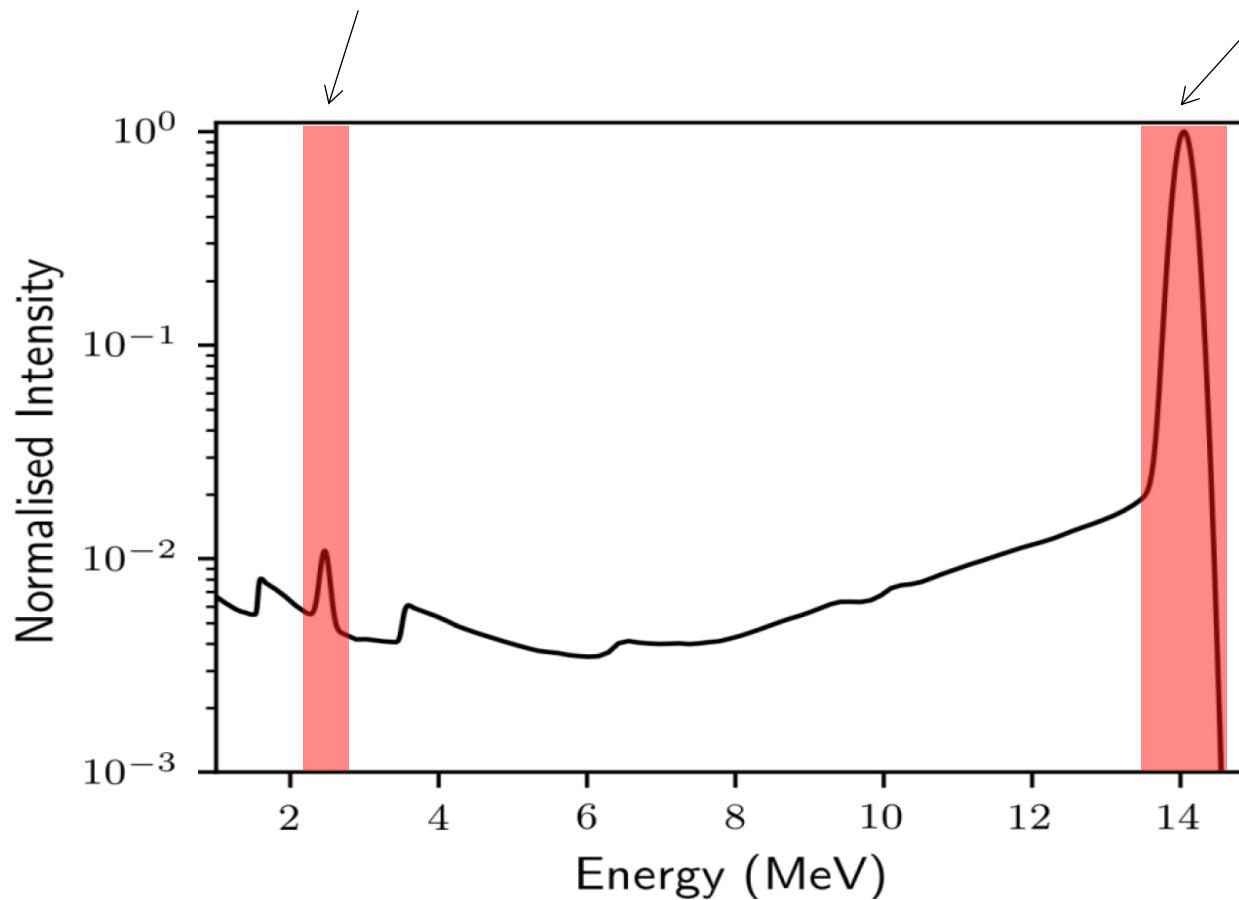
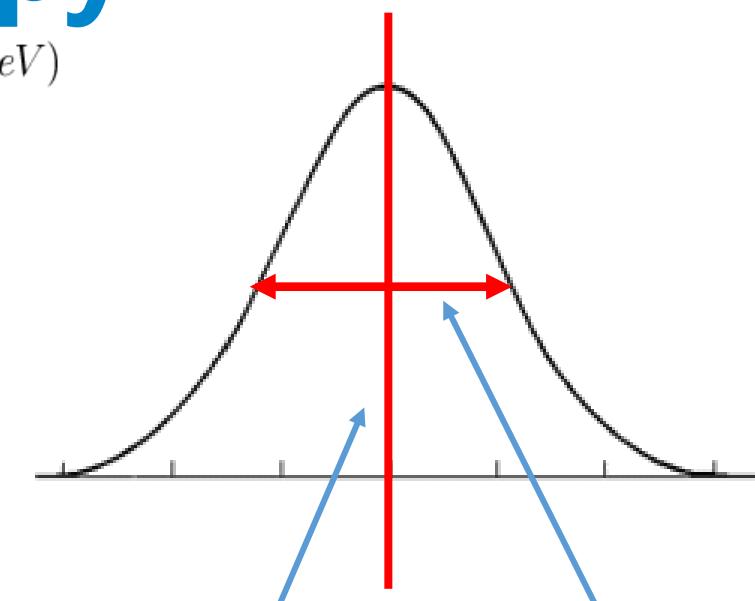
Related talks:

BI01.00003 – E. P. Hartouni - *Monday A.M.*

GO07.00007 – A. S. Moore – *This session*

GO07.00010 – O. M. Mannion – *This session*

Primary Neutron Spectroscopy



Mean: $\langle E_n \rangle$

Variance:
 $\langle E_n^2 \rangle - \langle E_n \rangle^2$

Assumptions:

- Scattering does not affect primary peak shape
- Secondary, tertiary & break-up reactions are negligible



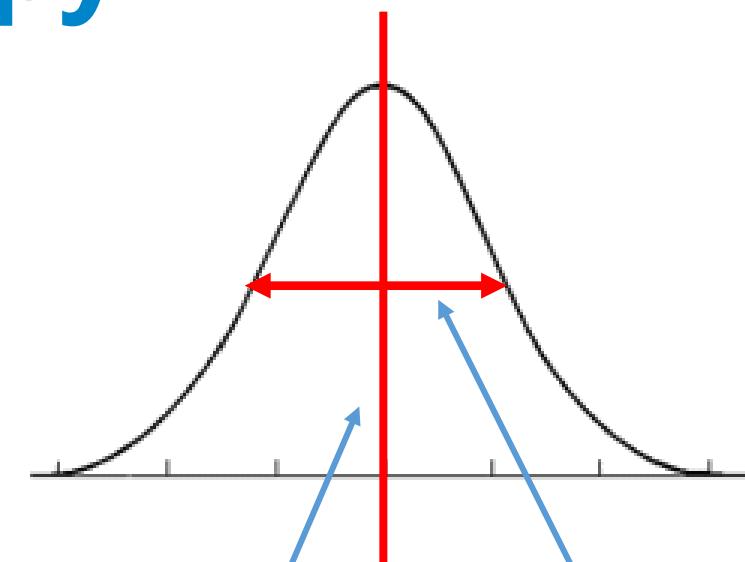
Mean & variance are dependent only on ion velocity distributions

Primary Neutron Spectroscopy

Recent measurements of $\langle E_n \rangle$ and $\langle E_n^2 \rangle - \langle E_n \rangle^2$

BI01.00003 – E. P. Hartouni
GO07.00007 – A. S. Moore } NIF Cryogenic DT

GO07.00010 – O. M. Mannion - OMEGA Exploding Pusher DD & DT



Can we calculate ion velocity distributions from these measurements?

- No unique solution since we do not measure He^3/He^4 spectra
- Measurements are time & space integrated \Rightarrow we seek “burn-averaged” distributions
- Theory is mature if we assume Maxwellians, e.g. Munro *Nuc. Fusion* [2016]
- *Recent measurements do not agree with Maxwellian theory, indicating non-Maxwellian distributions*

Mean: $\langle E_n \rangle$

Variance:
 $\langle E_n^2 \rangle - \langle E_n \rangle^2$

Primary spectra & Reactivity Weighting

Reactivity definition:

$$\langle \sigma v \rangle = \int v_r \sigma f_1 f_2 d^3 \vec{v}_1 d^3 \vec{v}_2$$

Cross-section
Distribution functions

\vec{v}_{cm} – net momentum of collision
 K – energy of collision

Reactivity weighting:

$$\langle E_n \rangle = \frac{\int E_n v_r \sigma f_1 f_2 d^3 \vec{v}_1 d^3 \vec{v}_2}{\langle \sigma v \rangle}$$

$$\vec{v}_{cm} = \frac{m_1 \vec{v}_1 + m_2 \vec{v}_2}{m_1 + m_2}$$

Reaction kinematics:

$$E_n = F(Q, v_{cm}, K, \mu)$$

$$\langle \cdot \rangle = \frac{1}{2} \langle \cdot \rangle_{12} \langle \cdot \rangle^2$$

Shift of $\langle E_n \rangle$:

$$\Delta E = \alpha \langle K \rangle + \beta \langle v_{cm}^2 \rangle + \dots$$

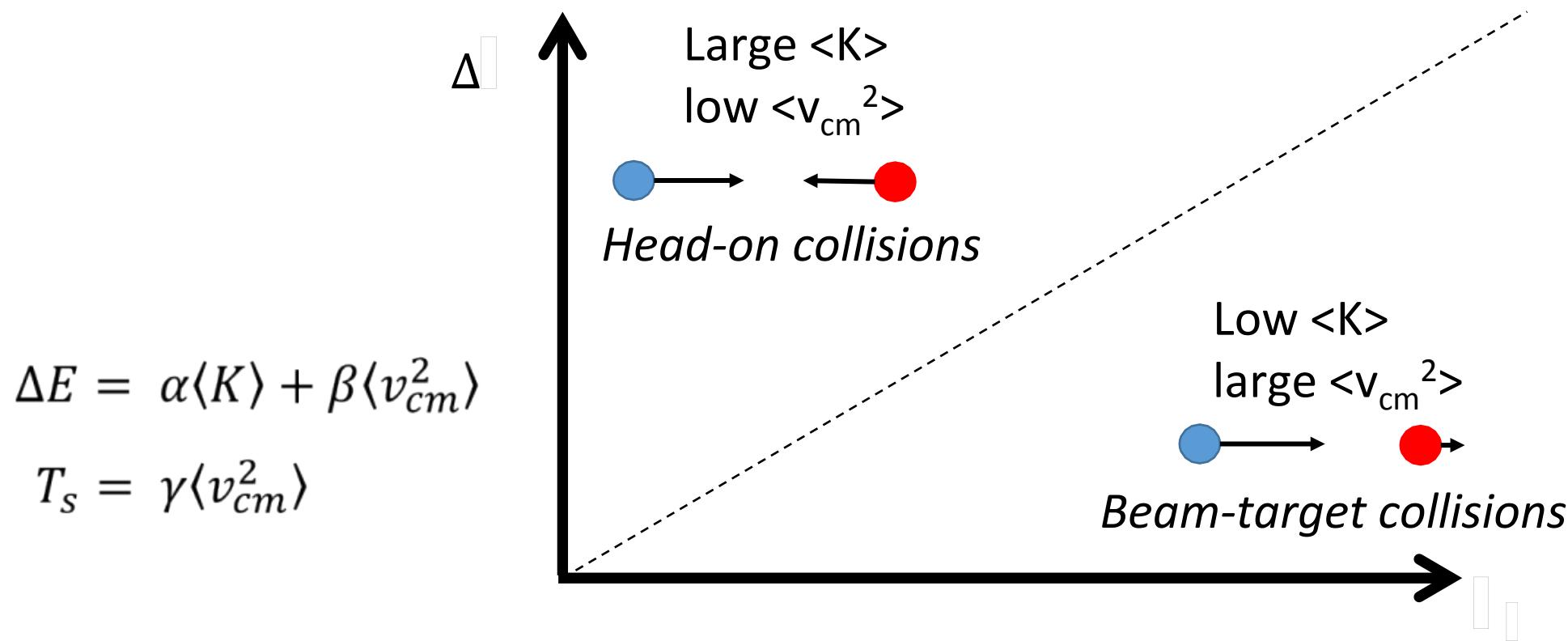
α, β, γ – functions of particle masses

Scaled $\langle E_n^2 \rangle - \langle E_n \rangle^2$:

$$T_s = \gamma \langle v_{cm}^2 \rangle + \dots$$

Observed $\langle E_n \rangle$ and $\langle E_n^2 \rangle - \langle E_n \rangle^2$ are dependent on $\langle K \rangle$ and $\langle v_{cm}^2 \rangle$

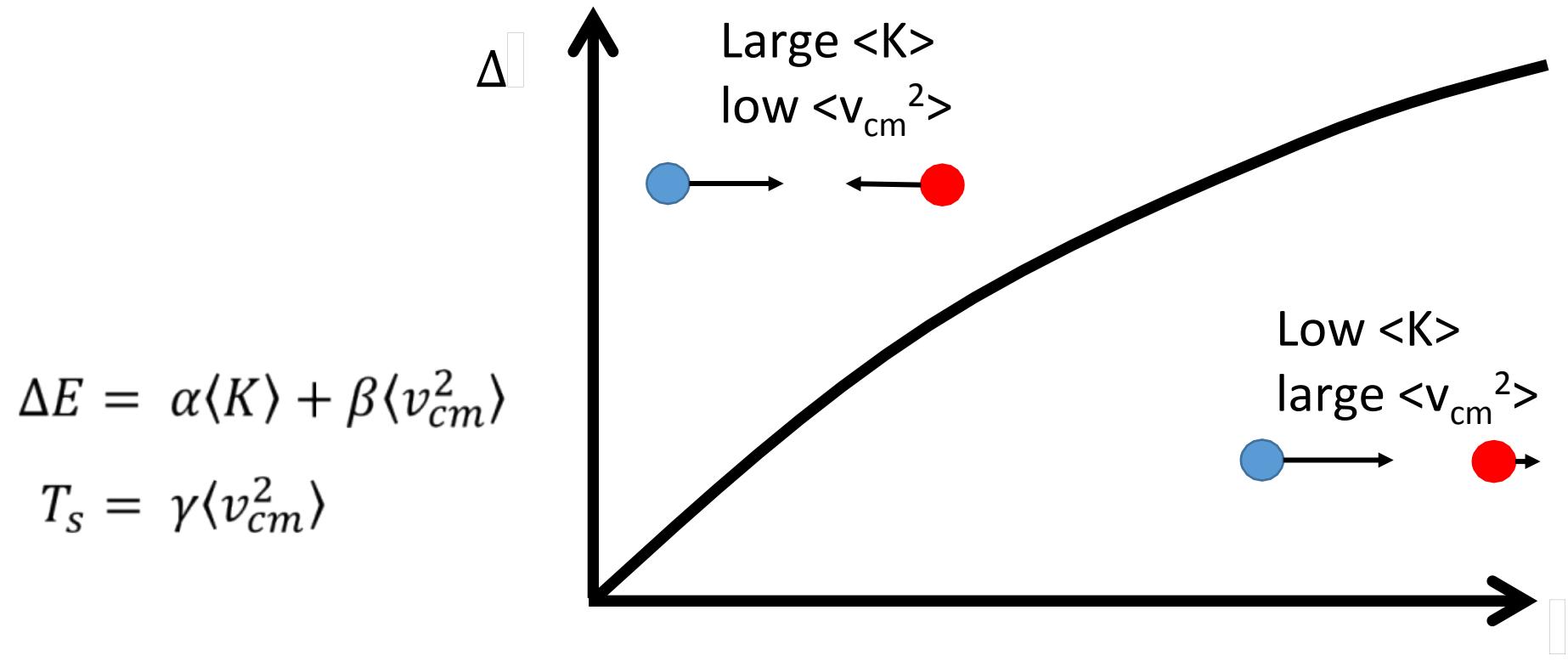
ΔE – T_s Parameter Space



$\Delta E - T_s$ for Maxwellian

- Maxwellian is defined by a single parameter (temperature T)
- Varying T defines a locus of points in $\Delta E - T_s$ space
- $T = T_s$ for a Maxwellian

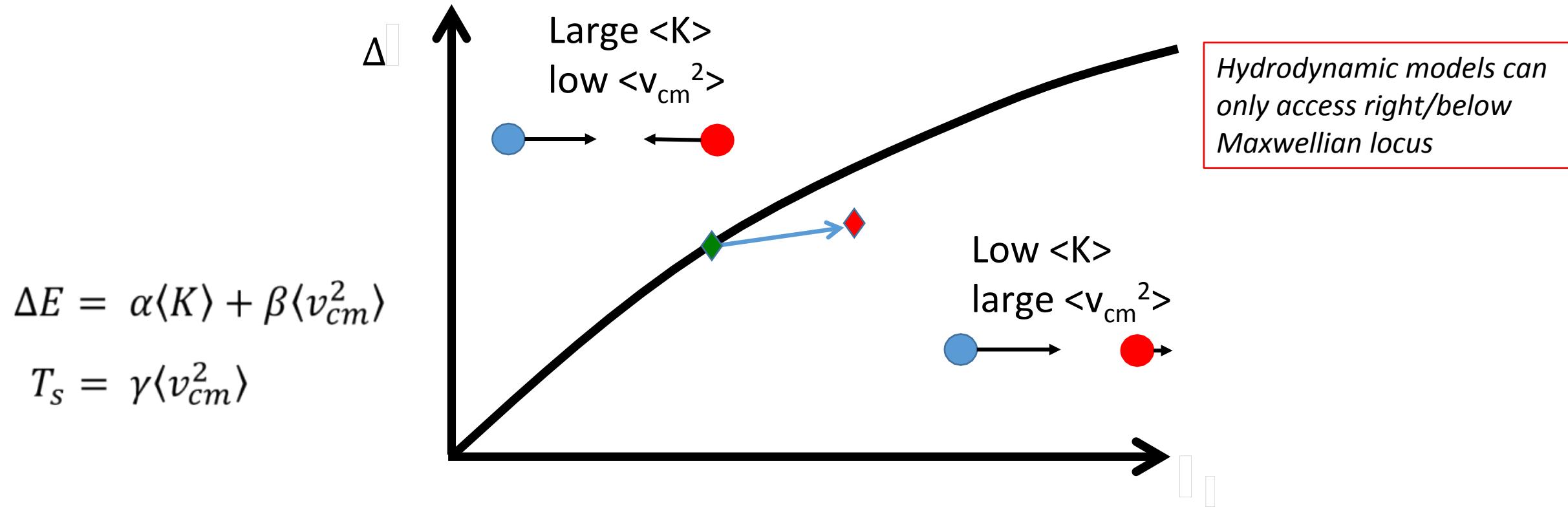
$$f_{1,2} \propto \exp\left(-\frac{m_{1,2}}{2T} v^2\right)$$



$\Delta E - T_s$ for Maxwellian with flow

- Fluid velocity increases $\langle v_{cm}^2 \rangle$ but not $\langle K \rangle$
- Points shifted right/below Maxwellian locus in $\Delta E - T_s$ space

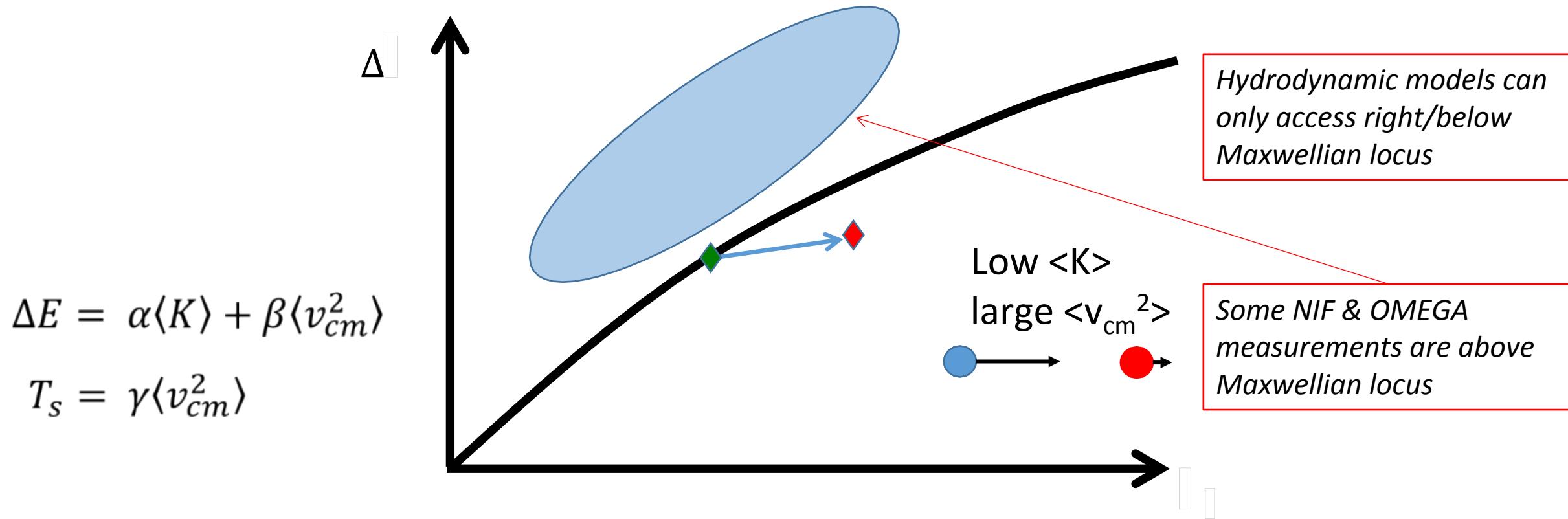
$$f_{1,2} \propto \exp\left(-\frac{m_{1,2}}{2T}(\vec{v} - \vec{v}_f)^2\right)$$



$\Delta E - T_s$ for Maxwellian with flow

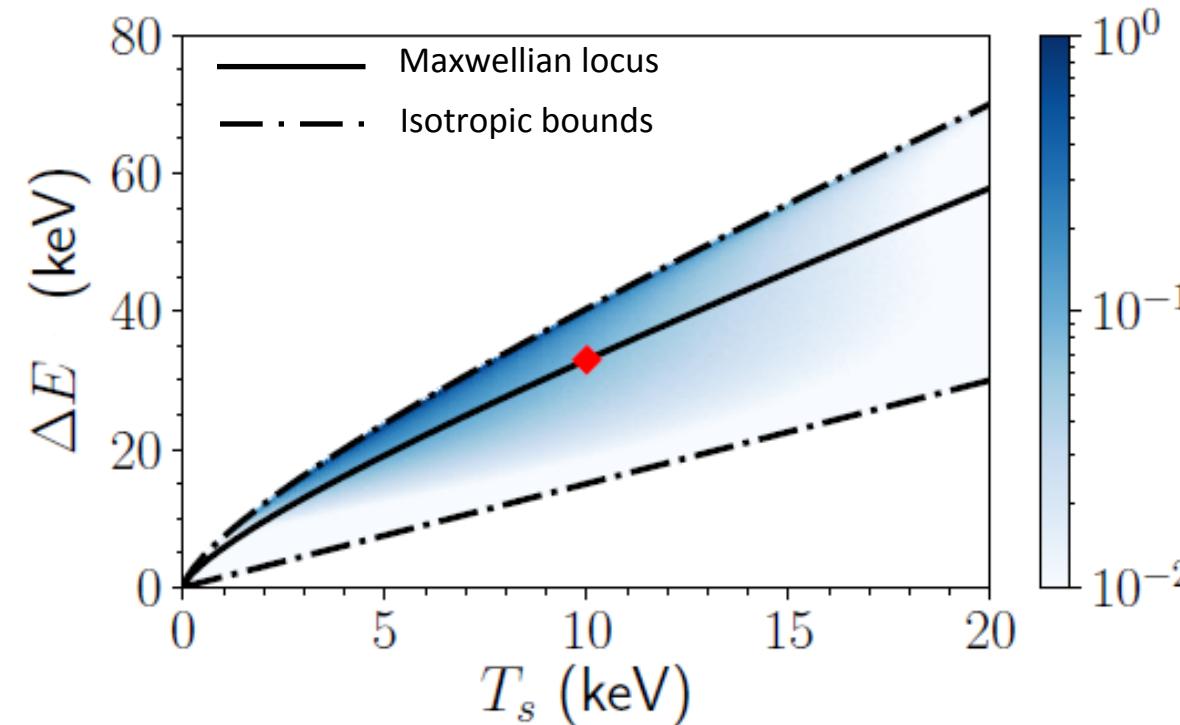
- Fluid velocity increases $\langle v_{cm}^2 \rangle$ but not $\langle K \rangle$
- Points shifted right/below Maxwellian locus in $\Delta E - T_s$ space

$$f_{1,2} \propto \exp\left(-\frac{m_{1,2}}{2T}(\vec{v} - \vec{v}_f)^2\right)$$



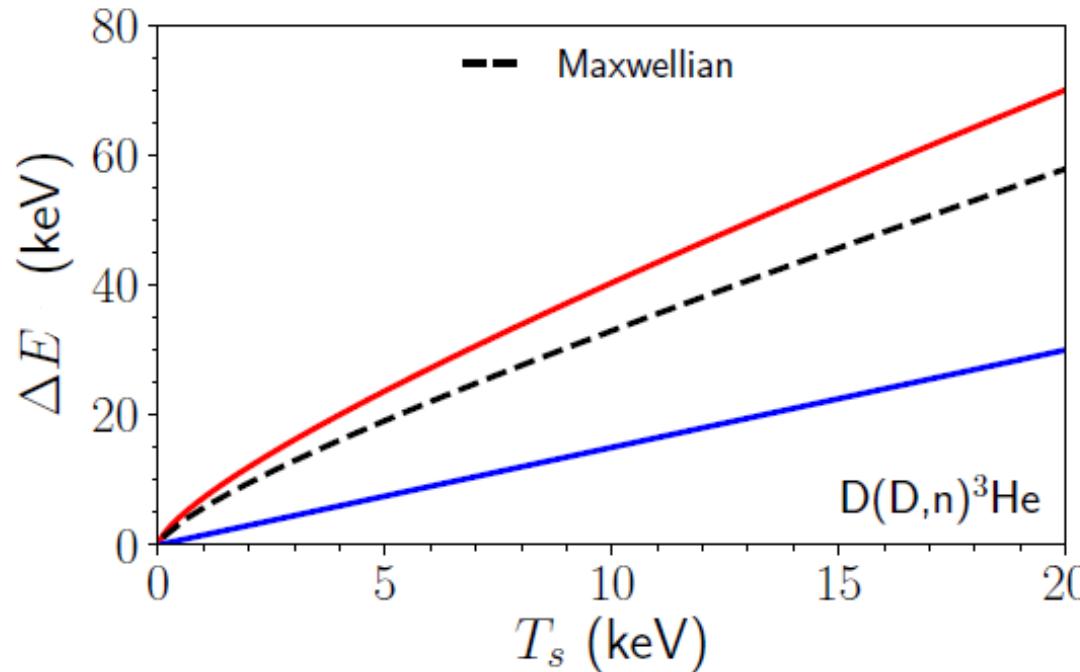
Energy Decomposition of Maxwellian

- The energy decomposition of a Maxwellian occupies a broad region in $\Delta E - T_s$ space
- Region has upper and lower bounds
- These bounds exist for any *isotropic* distribution in velocity space



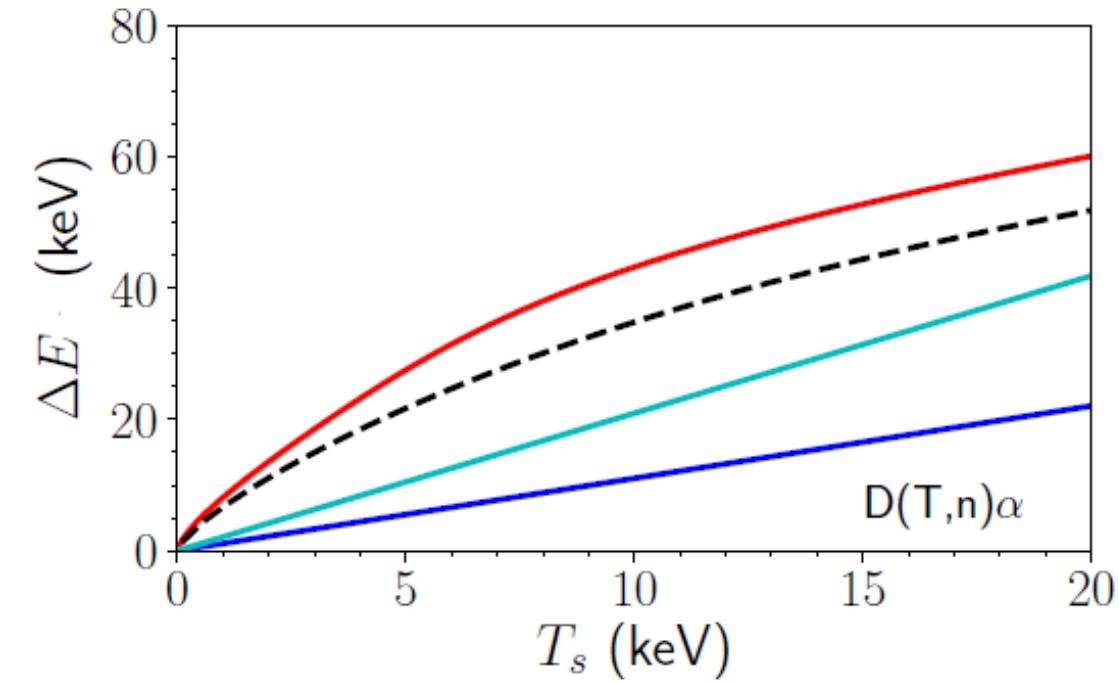
Isotropic Distributions

Region above red curves only accessed by *anisotropic, non-Maxwellian* distribution functions



Upper Bound:
Energies for which $\min|\vec{v}_{cm}| = 0$

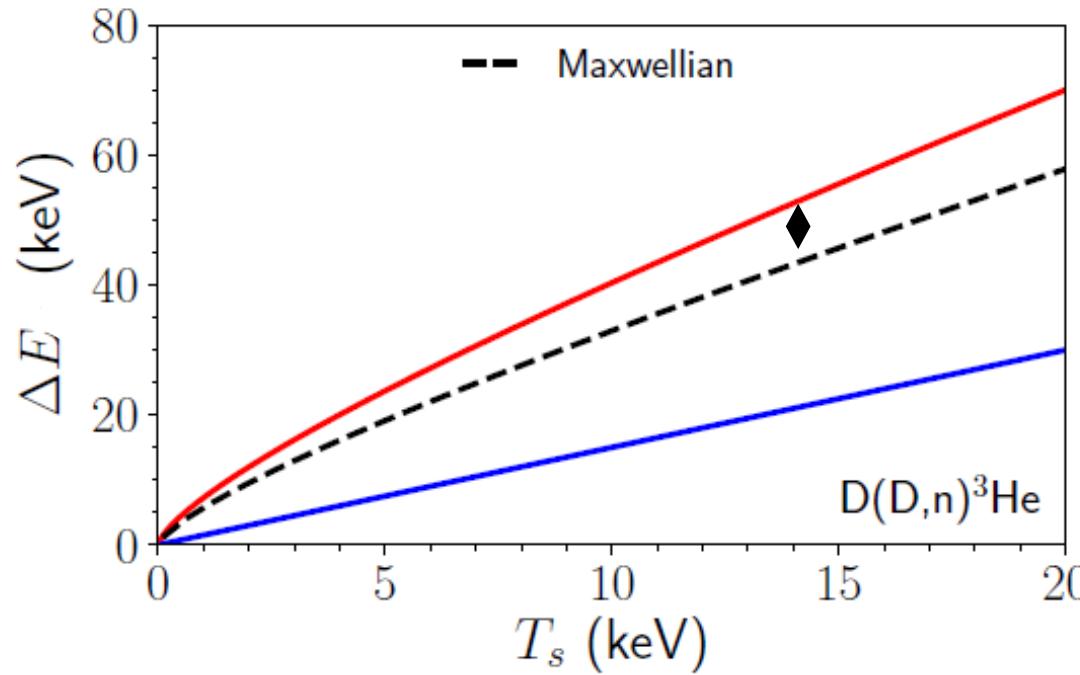
Head-on collisions



Lower Bound:
Target particle is stationary
stationary D stationary T

Beam-target collisions

Experimental Measurements



◆ **OMEGA Exploding Pushers:**
 DD spectra imply non-Maxwellian distributions,
 ion kinetic simulations (iFP) match these spectra

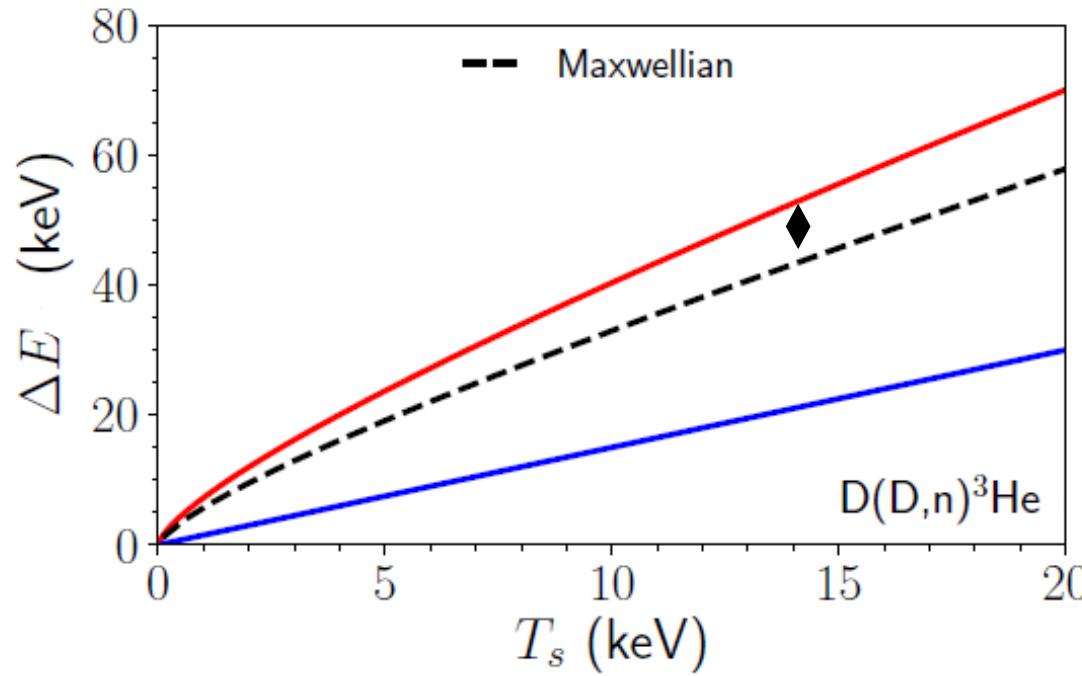
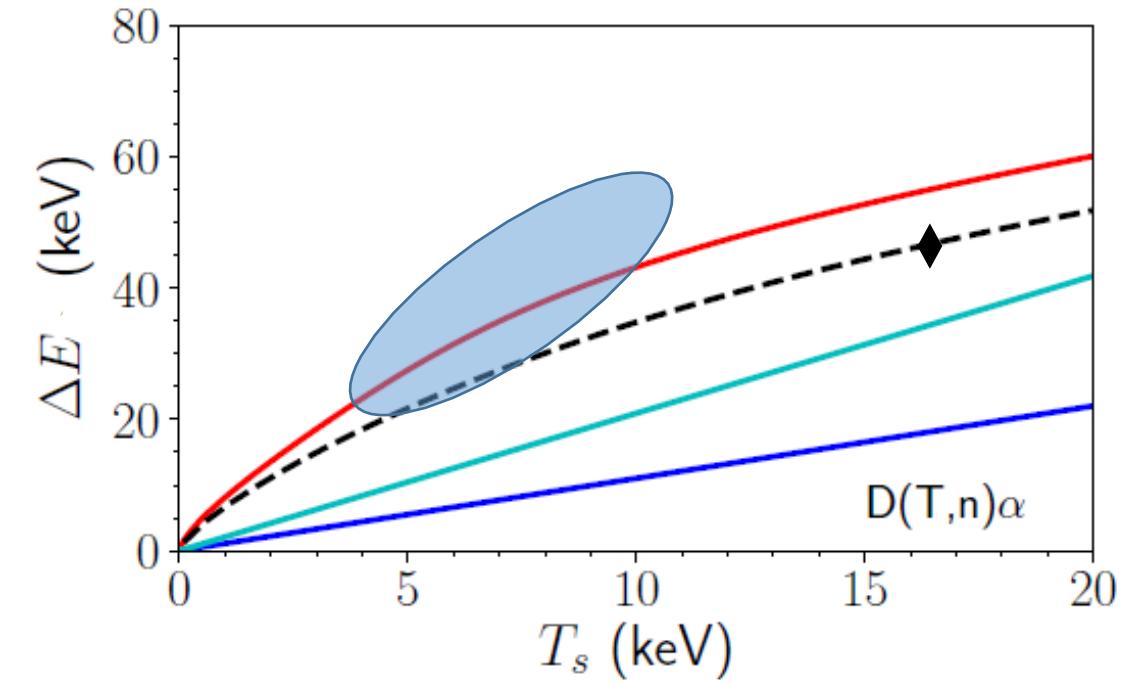
GO07.00010 – O. M. Mannion



 NIF Cryogenic:
 DT spectra imply non-Maxwellian distributions
 including some anisotropic

BI01.00003 – E. P. Hartouni
GO07.00007 – A. S. Moore

Conclusions



- $\Delta E - T_s$ space of primary neutron spectra can characterize ion velocity distributions
- Measurements on NIF & OMEGA show direct evidence of non-Maxwellian distributions
- NIF data shows evidence of anisotropic velocity distributions

bappelbe@ic.ac.uk