Thislbaperldescribeslobiectiveltechnicallresultslandlanalysis JAnvisubiectivelviewsloropinionslthagmightlbelexpressedfin} SAND2021-13644C]|
hefpaperfdojnotinecessarilyfrepresentfthejviews]oflthejU.S JDepartmentjoffEnergyforithejUnitedjStatesjGovernment.

Sandia

Exceptional service in the national interest National
| Laboratories

05 Opon Grd Computng Ausin, X OS¢

LDMS Version 4.3.8 Advanced Tutorial: Part 1
https://github.com/ovis-hpc/ovis

Jim Brandt, Ann Gentile
Sandia National Laboratories
Tom Tucker

Open Grid Computing, Inc.

#7%, u.s pesaxrment oF i~ o Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
2 ENERGY TN A s "Qa\ owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

SandiallNational Laboratorieslislalmultimissionilaboratoryimanagediand|operatediby|National Technologvi& EngineeringiSolutionsiofiSandia,ILLC,laiwhollylo
subsidiary/offHoneywell|internationallinc. fforfithelU.S [DepartmentioffEnergy'siNational|NucleariSecuritylAdministrationfundericontractiDE-NA0003525.

Configuration Options and
Parameter Tuning

Environment Variables Sonds

Laboratories

The following environment variables must be set: % 0OGC
LD_LIBRARY_PATH

Path to ovis libraries if not defined in a system default path (/opt/ovis/lib64 & /opt/ovis/lib64/ovis-ldms for this tutorial).
PATH
Include the path to sbin directory containing Idmsd (/opt/ovis/sbin in this tutorial)
Include the path to bin directory containing python modules (/opt/ovis/bin) # Necessary If using Idmsd_controller
ZAP_LIBPATH
Path to ovis/lib/ovis-ldms (/opt/ovis/lib64/ovis-ldms for this tutorial)
LDMSD_PLUGIN_LIBPATH
Path to ovis/lib/ovis-ldms (/opt/ovis/lib64/ovis-ldms for this tutorial)
The following environment variables may be set to override compiled-in defaults:
LDMSD_PIDFILE
Full path name of pidfile (override the default of “/var/run/ldmsd.pid”
Both default and environment variable can be overridden by use of the command line argument "-r pidfilepath”
LDMSD_MEM_SZ
Define the size of memory reserved for metric sets (override the default of 512KB).
This can be overridden by use of the command line argument "-m <size>"
ZAP_10_MAX sets the maximum number of 10 threads that can be brought up (up to NUM_PROCS (including if hyperthreading))
ZAP_10_BUSY sets the busy threshold for spinning up a new I/0 thread (float between 0 and 1.0 default=0.80)
LDMSD_UPDTR_OFFSET_INCR

The increment to the offset hint in microseconds. This is only for updaters that determine the update interval and offset automatically. Example: if

the offset hint is 100000 (100 millisecond), the updater offset will be 100000 + LDMSD_UPDTR_OFFSET_INCR (Default is 100000 (100 milliseconds)). 3

General/Configuration Options B

-F Runin foreground mode; don't daemonize the program. Default is false §§ 0GC
-B version-file-mode

When run in daemon mode, controls the existence of the banner file. Mode 0 suppresses the version file. Mode 1 deletes it at daemon exit. Mode >= 2
leaves it in place for debugging after daemon exit. Default mode is 1. The banner contains the software and protocol versions information, which is also
logged at the INFO level. The banner file name is always the pidfile name with .version appended.

-c CONFIG_PATH
The path to configuration file (optional, default: <none>). The configuration file contains a batch of Idmsd controlling commands, such as ‘load” for loading
a plugin, and “prdcr_add’ for defining a Idmsd producer to aggregate from (see Idmsd_controller(8) for a complete list of commands, or simply run help
from inside the Ildmsd_controller). The commands in the configuration file are executed sequentially, except for prdcr_start, updtr_start, strgp_start, and
failover_start that will be deferred. The failover service, if present, will start first (among the deferred). Then, upon failover pairing success or failure,
the other deferred configuration objects will be started. Note: while the failover service active, prdcr, updtr, and strgp cannot be altered (start, stop, or
reconfigure).

-m MEMORY_SIZE
MEMORY_SIZE is the maximum size of pre-allocated memory for metric sets. The given size must be less than 1 petabytes. For example, 20M or 20mb
are 20 megabytes. The default is adequate for most Idmsd acting in the sampling role. For aggregating Idmsd, a rough estimate of pre-allocated memory
needed is (Number of nodes aggregated) x (Number of metric sets per node) x 4k. Data sets containing arrays may require more. The estimate can be
checked by enabling DEBUG logging and examining the mm_stat bytes_used+holes value at Idmsd exit.
-n NAME
The name of the daemon. Default is "HOSTNAME:PORT".
-r pid_file
The path to the pid file and prefix of the .version banner file for daemon mode. Default is /var/run/ldmsd.pid

-V Display LDMS version information and then exit.
-u plugin_name - This is unreliable, unnecessary, and will be removed.
Display the usage for named plugin. Special names all, sampler, and store match all, sampler type, and store type plugins, respectively.

General/Configuration Options Cont. R

Laboratories

-x XPRT:PORT % OGC

Specifies the transport type to listen on. May be specified more than once for multiple transports. The XPRT string is one of ‘rdma’, ‘sock’, or ‘ugni’

(CRAY XE/XK/XC). A transport specific port number must be specified following a "/, e.g. rdma:10000.
The listening transports can also be specified in the configuration file using listen command, e.g. ‘listen xprt=sock port=1234".
-a AUTH

Define the default LDMS Authentication method for the LDMS connections in this daemon (when the connections do not specify authentication
method/domain). See man pages on Idms_authentication(7) for more information. Default is “none” (no authentication).

-A NAME=VALUE

Passing the NAME=VALUE option to the LDMS Authentication plugin. This command line option can be given multiple times. Please see
Idms_authentication(7) for more information, and consult the plugin manual page for plugin-specific options.

-v LOG_LEVEL
LOG_LEVEL can be one of DEBUG, INFO, ERROR, CRITICAL or QUIET (no output). Default is ERROR
-I LOGFILE
LOGFILE is the path to the log file for status messages. Default is stdout if not specified and —v is NOT QUIET. The syslog
facility is used if LOGFILE is exactly "syslog".
-P THR_COUNT
THR_COUNT is the number of event threads available for updaters and setting up connections

Sandia

Sampler Configuration Considerations B
<< 0GC
= Set Memory — default is 512kB
= Typically this is large enough but use I[dms_|s with the —v flag to check what is being used
= Can save a small amount by reducing to be in alignment with what is actually being used
= May need to increase if using large vectors of sets or sets with large numbers of metrics

= Rough rule of thumb: (number of metrics x 8) + 5x overhead for scalars and 0.25 x overhead for
vectors

= ENOMEM (ERRNO 12) error in log file if set memory capacity is exceeded

= Update interval

= Depends on what makes sense for each data set being collected
= Examples: power-0.1sec, meminfo-1sec, link_status-60sec

= Update offset

= Typically set to O for sampler

= |If not set will be some based on when the sampler started but will gradually drift
= This will be changed to default to 0 but currently should always be set to something

Aggregator Considerations
<< 0GC

= Should be the sum of sampler sets with some headroom for local sets and possible addition of remote sets

= Memory need assessment (See Exercise 1.7)

= Should take into account possible failover configuration and additional associated load

= ulimit —n (See Exercise 1.8)
= Should be ~2x number of connections + number of stores + failover + some headroom
= Some defaults are set to 1024

= Fan-in considerations (See Exercise 1.9)
= Number of cores available on aggregator host (run one event thread per core)
= Number of sets per sampler ldmsd
= Number of metrics per set
= Transport (RDMA is generally more efficient than sock)
= Failover capacity
= Re-connect interval and expected number of down nodes vs. I/O thread pool size

ZAP Transport Components and Tuning 2
5 0GC

= ZAP_IO_MAX sets the maximum number of 10 threads that can be brought up (up to NUM_PROCS
(including if hyperthreading)). These handle update completions and storage

= ZAP_IO_BUSY sets the busy threshold for spinning up a new 1/0 thread (float between 0 and 1.0
default=0.80)

= ZAP_EVENT_QDEPTH [2048] — Queue depth in event threads. Each event worker has an event
gueue. This queue has the depth specified by this environment variable. When this queue depth is
reached, attempts to queue additional events will block. This is to avoid having sender/receiver
overrun the daemons ability to process events and the queue depth growing unbounded.

= ZAP_UGNI_CQ_DEPTH [2048] — Completion queue depth for Cray ugni transport. For high
connection counts, this depth should be increased to avoid overrunning the CQ.

= Transport type
= rdma— Remote Direct Memory Access (RDMA)
= sock -- Socket
= ugni—Cray ugni RDMA
= fabric —libfabric RDMA

Sandia

Start of Hands-On Exercises Natont
<<~ 0GC

= Set up two terminals and change directory (cd) to
~/ldmscon2021/advanced/exercises/Ildms in each

= Set up your environment

S source env/ldms-env.sh

= Check your LDMS environment

S ldmsd-check-env |#dump currently set environment variables that may influence
ldmsd and plugin behavior

= HOSTNAME=node-64

= LD_LIBRARY_PATH=/opt/ovis/lib/:/opt/ovis/lib64/:/opt/gcc/10.2.0/snos/lib64

= LDMSD_PLUGIN_LIBPATH=/opt/ovis/lib64/ovis-ldms

= PYTHONPATH=/opt/ovis/lib/python3.6/site-packages

= ZAP_LIBPATH=/opt/ovis/lib64/ovis-ldms

Exercise 1.1 — 1.4: Specifying a pid File

10

Sandia
National

Exercise 1.1: Specifying a pid file SCone

Scripts for running these exercises can be found in:
/home/<user>/ldmscon2021/advanced/exercises/ldms/scripts/E1.1
S ldmsd -x sock:10001 -r /tmp/run/Ildmsd.pid
S ps auxw | grep ldmsd

userl 21116 0.0 0.0123336 16207 Ssl 10:34 0:00 ldmsd -x sock:10001 -r /tmp/run/ldmsd.pid
Sls -l /tmp/run/

total 8
-rW------- 1 userl userl 6 Oct 20 10:34 Idmsd.pid
-rW------- 1 userl userl 168 Oct 20 10:34 Idmsd.pid.version

S cat /tmp/run/ldmsd.pid

21116

S cat /tmp/run/ldmsd.pid.version

Started LDMS Daemon with authentication version 4.3.4-alpha.1.24-46b6. LDMSD Interface Version
3.2.2.0. LDMS Protocol Version 4.2.0.0. git-SHA 46b691565fa9cfa3a890fcae7fcOb5b00f6b983c

11

Sandia
National

Exercise 1.2: Using —BO version-file-mode 3¢ oac

Scripts for running exercises 1.2 can be found in:
/home/<user>/ldmscon2021/advanced/exercises/ldms/scripts/E1.2

= |nthe previous example Idmsd was run without the —B option which uses the default of —B 1
= Kill your Idmsd from the previous exercise

S kill 21116 # or pkill Idmsd
= Check to see that both the pid and pid.version files are deleted
S Is -ltr /tmp/run

total O

= Run ldmsd again using —B 0 to suppress banner file creation
S ldmsd -x sock:10001 —B O -r /tmp/run/ldmsd.pid
S Is -ltr /tmp/run/

total 4

-rw------- 1 userl userl 6 Oct 20 15:26 ldmsd.pid

12

Exercise 1.3: Using —B2 version-file-mode %&'
= 0GC

= Kill your previous Idmsd and then run a new ldmsd using —B 2 to keep the version file when Idmsd is killed
S pkill Idmsd
S ldmsd -x sock:10001 =B 2 -r /tmp/run/ldmsd.pid

S Is -Itr /tmp/run/

total 8

-rw-—---—--- 1 userl userl 168 oOct 20 15:36 ldmsd.pid.version
-rw-—---—--- 1 userl userl 6 Oct 20 15:36 ldmsd.pid

= Kill your Idmsd and then check for your version file

S pkill Idmsd

S Is -Itr /tmp/run/

total 4

-rw-—---—--- 1 userl userl 168 oOct 20 15:36 ldmsd.pid.version

Note: This file will be overwritten if you re-run your previous Idmsd command so move to preserve

13
- OO " "« OOOOOOOO___OO_OOOOOO___________________________"—"—"_"_______

Sandia

Exercise 1.4: |dmsd -V o
<<~ 0GC

S ldmsd -V

LDMSD Version: 4.3.4-alpha.1.24-46b6
LDMS Protocol Version: 4.2.0.0

LDMSD Plugin Interface Version: 3.2.2.0
git-SHA: 46b691565fa9cfa3a890fcae7fcOb5b00f6b983c

For comparison:
S cat /tmp/run/my.pid.version

Started LDMS Daemon with authentication version 4.3.4-alpha.1.24-46b6. LDMSD Interface Version
3.2.2.0. LDMS Protocol Version 4.2.0.0. git-SHA 46b691565fa9cfa3a890fcae7fcOb5b00f6b983c¢

Exercise 1.6: Aggregating Using Push, Pull, Auto-interval

15

Exercise 1.6: Aggregator Using Data Push, Pull, Auto-Interval Nond,

Laboratories
/home/<user>/ldmscon2021/advanced/exercises/ldms/conf/E1.6/aggll_push.conf % OGC
prdcr_add name=prdcrl_1 host=<node> type=active xprt=sock port=10001 interval=20000000
prdcr_start name=prdcrl_1
prdcr_add name=prdcr2_1 host=<node> type=active xprt=sock port=10002 interval=20000000
prdcr_start name=prdcr2_1
updtr_add name=updtrl interval=10000000 offset=100000
updtr_prdcr_add name=updtrl regex=prdcrl.*
updtr_start name=updtrl
updtr_add name=updtr2 interval=10000000 push=onchange auto_interval=false
updtr_prdcr_add name=updtr2 regex=.*
updtr_match_add name=updtr2 match=inst regex=.*/meminfo
updtr_start name=updtr2
updtr_add name=updtr3 interval=10000000 auto_interval=true #(Honor “hints” if true)
updtr_prdcr_add name=updtr3 regex=prdcr2.*
updtr_match_add name=updtr3 match=schema regex=.*vmstat.*
updtr_start name=updtr3
Note: interval=<some interval> must be specified to even when registering for push mode but has no effect on data collection
= Push/Pull/auto_interval configuration is performed on the aggregator only
= Can mix push and pull within a single aggregator. 16

Exercise 1.6: Aggregator Using Data Push Cont. %‘%
> 0GC

= Run two ldmsd using ports 10001 and 10002 using:
/home/<user>/ldmscon2021/advanced/exercises/Idms/scripts/E1.6/start_multi_samplers.sh

= Run pull aggregator Idmsd using agg_push_pull.conf:
/home/<user>/ldmscon2021/advanced/exercises/ldms/scripts/E1.6/start_aggll push_pull.sh

start_aggll push_pull.sh

#!/bin/bash

ME=S(whoami)

ldmsd -x sock:20001 -c /home/S{ME}/ldmscon2021/advanced/exercises/ldms/conf/E1.5/aggll push_pull.conf\
—v DEBUG -l /home/S{ME}/ldmscon2021/advanced/exercises/ldms/logs/aggll push_pull.log \
-r /tmp/run/aggll_push_pull.pid

Exercise 1.6: Aggregator Using Data Push (i)

= Verify, using Idms_Is that data is being pushed/pulled as defined in aggll_push.conf

S Idms_Is -h localhost -x sock -p 20001 -v

$ Tdms_1s -h Tocalhost -x sock -p 20001 -v

Schema Instance Flags Msize Dsize UID GID Perm Update Duration Info

vmstat node-2_10002/vmstat CR 6536 1016 1005 1005 -rwxrwxrwx 1596712615.004823 0.000208 "updt_hint_us"="5000000:100000"
meminfo node-2_10002/meminfo CR 2496 440 1005 1005 -rwxrwxrwx 1596712620.004248 0.002316 "updt_hint_us"="1000000:0"
vmstat node-2_10001/vmstat CR 6536 1016 1005 1005 -rwxrwxrwx 1596712610.002842 0.000200 "updt_hint_us"="10000000:100000"
meminfo node-2_10001/meminfo CR 2496 440 1005 1005 -rwxrwxrwx 1596712620.003005 0.001364 "updt_hint_us"="10000000:100000"

Total Sets: 4, Meta Data (kB): 18.06, Data (kB) 2.91, Memory (kB): 20.98

Exercise 1.7: Too Little Memory

19

Exercise 1.7: Too Little Memory (Sampler,)
Aggregator) >< o6e

= This exercise explores what happens (failure modes) when the amount of memory allocated to a
daemon for hosting metric sets is set too low

= cdto /home/<user>/ldmscon2021/advanced/exercises/ldms/scripts/E1.7 for this exercise

= Examine the sampler configuration file for this exercise and note that the amount of memory being
allocated for hosting metric sets on the sampler is set to 10k

S cat start_|ldms_e1.7 _sampler.sh
= Run this script and note that the sampler daemon fails to start
S ./start_Idms_el.7 sampler.sh

cat the log file to find the problem (insufficient memory to load all plugins results in daemon
failure)

Modify the memory allocation (try 16k) in the start script and try again
S ./start_Idms_el.7 sampler.sh

= Success! Note, using ldms_Is —v that the memory required is ~11k
20

Too Little Memory (Sampler, Aggregator) () e,
<< 0GC

= Examine the aggregator configuration file for this exercise and note that the amount of memory
being allocated for hosting metric sets on the aggregator is also set to 10k

S cat start_|ldms_e1.7_sampler.sh

= Run this script and see that the aggregator daemon successfully starts
S ./start_Idms_el.7 sampler.sh

S ps axuw | grep Ildmsd | grep 20001

= Now check that the aggregator is indeed acquiring the metric sets data
S Ildms_ls —h localhost —x sock —p 20001 —v

= Note that the aggregator is only hosting the meminfo metric set

= cat the log file to find the problem (insufficient memory to aggregate all sets from producers does
NOT result in daemon failure but does result in logging errors along with the likely fix) Note that if
your verbosity were set to CRITICAL you would not see this error

= Modify the memory allocation (try 16k) in the start script and try again
S ./start_Idms_el.7 sampler.sh
= Success! Note, using ldms_Is —v that the memory required is ~11k 21

Too Little Memory (Sampler, Aggregator) 3¢ oc

Sandia
National _
Laboratories

= Modify the memory allocation (try 16k) in the start script and try again

S ./start_Idms_el.7 aggregator.sh

= Success! Note, using ldms_Is —v that the memory required is ~11k

= Memory need assessment

For a daemon only hosting sampler plugins this should be the sum of sampler sets with some headroom in
case you want to add some additional sampler plugins

For aggregators this should be the sum of metric sets being aggregated with some headroom in case
additional samplers are added to remote sampler daemons

For aggregators this should also take into account possible failover configurations and the possible
additional associated load

Exercise 1.8: Open File Descriptor Limits

23

Exercise 1.8: Aggregator Open File Descriptor e,

Laboratories

Limit Set Too Low 3 o6c

= When the ratio of sampler daemons to aggregators is large the upper bound on the number of open
file descriptors may need to be modified to accommodate all of the connections using ulimit —n
<num>

= num should be ~“2x number of connections + number of stores + failover + some headroom

= Some defaults are set to 1024

= This exercise explores what happens when ulimit is set too low for the number of connections
between an aggregator and samplers

= Check your current ulimit —n

S ulimit —n
1024

Exercise 1.8: Aggregator Open File Descriptor e,

Laboratories

Limit Set Too Low (Best Practices) >< o6

= Start 10 sampler daemons

S /home/<user>/ldmscon2021/advanced/exercises/ldms/scripts/E1.8/start_multi_samplers.sh
= Start your aggregator to connect to these sampler daemons

S /home/<user>/ldmscon2021/advanced/exercises/ldms/scripts/E1.8/start_multi_samplers.sh

Exercise 1.9: Fan-in & Reconnect Intervals

26

Exercise 1.9: Fan-in, Reconnect Intervals 3¢ o6e

Sandia
National _
Laboratories

= Fan-in considerations

Number of cores available on aggregator host (run one event thread per core)
Number of sets per sampler [dmsd

Number of metrics per set

Transport (RDMA is generally more efficient than sock)

Failover capacity

Re-connect interval and expected number of down nodes vs. thread pool size

Exercise 1.10: Aggregator Failover Pairs

28

Sandia
National

Exercise 1.10: Aggregator Failover Pairs

<< 0GC
Naming your daemons: The reason for naming a I[dmsd is for ease of reference when setting up aggregator
“failover pairs”. We typically refer to aggregators by level and number though the names are just strings that we
use for bookkeeping. In this diagram we refer to the aggregators directly communicating with the “samplers” as
level 1 (or L1) aggregators. We typically use the notation aggxy where x refers to the level and y refers to the
instance at level x (e.g., agg12 would refer to the second L1 aggregator).

samplers (QQOOOC) QOO

Example: Naming daemons
Sldmsd -x sock:10001 -c aggll.conf -v ERROR -n aggll

L1 Aggregator(s) ([cle[efliiprrmsmmmmsmmmsssseeess Sldmsd -x sock:10002 -c agg12.conf -v ERROR -n aggl2

......... Config & Heartbeat
L2 Aggregator

— Data flow 29

Exercise 1.10: Two Aggregators Configured as Failover Pairs Netionl

Laboratories

Run multiple (10) ldmsd using ports 11001 through 11010 using % 0OGC
/home/<user>/exercises/ldms/scripts/E1.10/start_multi_samplers.sh script.

Make a configuration file (use ~/ldmscon2021/advanced/exercises/ldms/conf/E1.10/aggll_failover.conf) to
aggregate from five samplers

env MYHOST=S(eval hostname)

prdcr_add name=prdcrl host=S{MYHOST} type=active xprt=sock port=10001 interval=20000000
prdcr_start name=prdcrl

prdcr_add name=prdcr5 host=S{MYHOST} type=active xprt=sock port=10005 interval=20000000
prdcr_start name=prdcr5

updtr_add name=updtrl interval=1000000 offset=100000

updtr_prdcr_add name=updtrl regex=prdcrl_.*

updtr_start name=updtrl

failover_config host=S{MYHOST} port=20002 xprt=sock interval=1000000 peer_name=aggl2 timeout_factor=2
failover_start

Note: S{MYHOST} is used here because the exercises are all on the same host. This would be the agg12 host
30

Two Aggregators Configured as Failover Pairs Cont. e

Laboratories

% OGC
Make a configuration file (use ~/ldmscon2021/advanced/exercises/ldms/conf/E1.9/aggl2_failover.conf) to
aggregate from another five samplers:

env MYHOST=S(eval hostname)

prdcr_add name=prdcr6 host=S{MYHOST} type=active xprt=sock port=10006 interval=20000000
prdcr_start name=prdcr6

prdcr_add name=prdcr10 host=S{MYHOST} type=active xprt=sock port=10010 interval=20000000
prdcr_start name=prdcrl0

updtr_add name=updtrl interval=1000000 offset=100000

updtr_prdcr_add name=updtrl regex=prdcrl_.*

updtr_start name=updtrl

failover_config host=S{MYHOST} port=20001 xprt=sock interval=1000000 peer_name=aggl1 timeout_factor=2

failover_start

Note: S{MYHOST} is used here because the exercises are all on the same host. This would be the aggl1 host.

31

Two Aggregators Configured as Failover Pairs Cont. o

Laboratories

<< 0GC

/home/<user>/ldmscon2021/advanced/ exercises/ldms/scripts/E1.9/start_aggll failover.sh
#!/bin/bash

ME=S(whoami)

ldmsd -x sock:20001 -c /home/S{ME}/ldmscon2021/advanced/exercises/ldms/conf/E1.9/aggll failover.conf\

—v DEBUG -l /home/S{ME}/ldmscon2021/advanced/exercises/ldms/logs/aggll_failover.log \
-n aggll -r /tmp/run/aggll failover.pid

/home/<user>/exercises/ldms/scripts/E1.9/start_aggl2_ failover.sh
#!/bin/bash

ME=S(whoami)

ldmsd -x sock:20002 -c /home/S{ME}/ldmscon2021/advanced/exercises/ldms/conf/E1.9/aggl2 failover.conf\

—v DEBUG -l /home/S{ME}/ldmscon2021/advanced/exercises/ldms/logs/aggl2_failover.log \
-n aggl2 -r /tmp/run/aggl2_failover.pid

Sandia

Two Aggregators Configured as Failover Pairs Cont. Notional
<< 0GC

= Run failover aggregator Idmsds using aggll failover.conf and aggl2_ failover.conf

S ~/ldmscon2021/advanced/exercises/ldms/scripts/E1.9/start_aggll failover.sh

S ~/ldmscon2021/advanced/exercises/ldms/scripts/E1.9/start_aggl2_failover.sh

= Verify that aggll is aggregating from samplers 1-5 and aggl2 is aggregating from samplers 6-10

S ldms_Is —h localhost —x sock —p 20001 —v

S ldms_Is —h localhost —x sock —p 20002 —v

= Kill aggl1l

S ~/ldmscon2021/advanced/exercises/ldms/scripts/E1.9/stop_aggll failover.sh

= Verify that aggl2 is now aggregating from samplers 1-10

S ldms_Is —h localhost —x sock —p 20002 —v

= Restart aggll and verify that aggll & aggl2 are again aggregating from samplers 1-5 & 6-10
respectively

S ldms_Is —h localhost —x sock —p 20001 —v
S ldms_ls —h localhost —x sock —p 20002 —v

33
- OO " "« OOOOOOOO___OO_OOOOOO___________________________"—"—"_"_______

Exercise 1.11: Maestro

34

Exercise 1.12: Vector of Sets

35

Sandia

Exercise 1.12: Vector (Buffer) of Sets Sampler Configuration oo

<<~ 0GC

~/ldmscon2021/advanced/exercises/ldms/conf/E1.12/vector_sampler.conf

env MYHOST=S(eval hostname)

load name=meminfo

config name=meminfo producer=S{MYHOST} instance=S{MYHOST}/meminfo schema=meminfo \
set_array_card=10

start name=meminfo interval=1000000 offset=0

Note: set_array_card=n configures a ring buffer of size (n x set data size)

Sandia
National _
Laboratories

Vector of Sets Sampler Configuration 3¢ oac

~/ldmscon2021/advanced/exercises/ldms/scripts/E1.12/start_vector_sampler.sh

#!1/bin/bash

ME=S(whoami)

ldmsd -x sock:10001 —v DEBUG -l /home/S{ME}/Idmscon2021/advanced/exercises/ldms/logs/sampler_vector.log \
-c /home/S{ME}/ldmscon2021/advanced/exercises/ldms/conf/E1.12/sampler_vector.conf\
-r /home/S{ME}/ldmscon2021/advanced/exercises/ldms/run/sampler_vector.pid

#!1/bin/bash
ME=S(whoami)
kill S(cat /home/S{ME}/exercises/ldms/run/sampler_vector.pid)

Sandia

Vector of Sets Aggregator Configuration e
<< 0GC

~/ldmscon2021/advanced/exercises/ldms/conf/E1.12/vector_agg.conf

env MYHOST=S(eval hostname)
env ME=S(whoami)

prdcr_add name=prdcrl host=S{MYHOST} xprt=sock port=10001 type=active interval=20000000
prdcr_start name=prdcrl

10 sec update interval of newly populated sets in ring
updtr_add name=updtr interval=10000000 offset=200000
updtr_prdcr_add name=updtr regex=.*

updtr_start name=updtr

load name=store_csv
config name=store_csv path=/home/S{ME}/ldmscon2020/advanced/exercises/ldms/data/CSV buffer=0

strgp_add name=meminfo_vector-store_csv plugin=store_csv container=meminfo schema=meminfo
strgp_prdcr_add name=meminfo_vector-store_csv regex=.*

strgp_start name=meminfo_vector-store_csv

Sandia

Vector of Sets Aggregator Start/Stop Scripts %l“:&iﬂz%ﬁes
> 0OGC

~/ldmscon2021/advanced/exercises/Idms/scripts/E1.12/start_vector_agg.sh
#!/bin/bash
ME=S(whoami)

ldmsd -x sock:20001 —v DEBUG \
—l /home/S{ME}/Idmscon2021/advanced/exercises/ldms/logs/vector_agg.log \

-c /home/S{ME}/ldmscon2021/advanced/exercises/ldms/conf/E1.12/vector _agg.conf\
-r /tmp/run/vector_agg.pid

~/ldmscon2021/advanced/exercises/ldms/scripts/E1.12/stop_vector_aggregator.sh
#!/bin/bash

ME=S(whoami)

kill S(cat /tmp/run/vector_agg.pid)

39

Sandia
National

Run Vector of Sets Aggregator
<< 0GC

= Run vector sampler and aggregator
~/ldmscon2021/advanced/exercises/ldms/scripts/E1.12/start_vector_sampler.sh

~/ldmscon2021/advanced/exercises/ldms/scripts/E1.12/start_vector_agg.sh

= Tail the store file and see that data comes in chunks of 10 while a I[dms_Is of the aggregator only
shows one instance

S tail -f ~/ldmscon2021/advanced/exercises/ldms/data/CSV/meminfo/meminfo_vector

= Stop vector sampler and aggregator
~/ldmscon2021/advanced/exercises/Idms/scripts/E1.12/stop_vector_sampler.sh

~/ldmscon2021/advanced/exercises/ldms/scripts/E1.12/stop_vector_agg.sh

END Advanced Part 1

41

