
P R E S E N T E D B Y

Sandia National Laboratories is a

multimission laboratory managed and

operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly

owned subsidiary of Honeywell International

Inc. for the U.S. Department of Energy’s

National Nuclear Security Administration

under contract DE-NA0003525.

Data Science with Java

Michae l Brzus towicz , PhD

Data Sc ience and Cyber Ana ly t ics

SAND2021-13382PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

https://www.energy.gov/stem-rising

https://www.sandia.gov/research/research_foundations/computing_information_science.html

I wrote this book →

I am giving a lot of thought to what version 2 will be like.

Code in book is at:

https://github.com/oreillymedia/Data_Science_with_Java

There’s approximately

10 million Java

developers world wide.
https://en.wikipedia.org/wiki/Java_(programming_language)

Java had the highest percent increase over 2015

Java has been #1 (on average) for ~ 15 years

In 2022 Python is leading the pack …

https://www.tiobe.com/tiobe-index/

Why Data Science with Java?

Java is solid and secure.

A lot of infrastructure is coded in Java.

Why not add Data Science to the mix?

My Thoughts on AI Safety and Security

Hardware OS Libraries
System

Programs
User

Programs

My Thoughts on AI Safety and Security

Hardware OS Libraries
System

Programs
User

Programs

Is it harmful?

My Thoughts on AI Safety and Security

Hardware OS Libraries
System

Programs
User

Programs

Is it harmful? Is it hackable?

My Thoughts on AI Safety and Security

Hardware OS Libraries
System

Programs
User

Programs

Any one of these is a potential point of failure.

My Thoughts on AI Safety and Security

Hardware OS Libraries
System

Programs
User

Programs

But let’s just look at these today.

Why not Python?

Things that really bug me about Python:

1) white space

broken code tabs vs. space going between editors

broken code when commenting out blocks … temporary tabs

2) weak types

forgetting to cast input string as int or float (this always gets me)

makes documentation almost useless, i.e. not knowing input or return types

how many different ways to represent Boolean?

3) library

bloat (too many choices sometimes)

deprecated libraries / abandoned projects

version mismatch especially if it involves numpy

the solution seems to be venv (python has a pvm too now!)

just who’s in charge anyway? pip or apt-get / yum or …

4) docs

python docs are usually not so great (with sklearn being an exception)

5) object orientation

no true encapsulation

__do_not_look_at_this()

• As an example, would you rather read CSV parser docs in Python
or Java?

Java Docs are universal and uniform

Is Apache the new GNU?

https://projects.apache.org/statistics.html

https://projects.apache.org/statistics.html

Apache Projects broken down by source

…

https://projects.apache.org/statistics.html

… has a lot of Java.

https://projects.apache.org/statistics.html

What’s going on with Java?

https://www.azul.com/java-stable-secure-free-choose-two-three/

https://access.redhat.com/articles/3409141

Red Hat OpenJDK 11 Advice

OpenJDK 11 included >= RHEL 7.6

Update apps from JDK8 → OpenJDK 11

Red Hat will support OpenJDK 11 till at least 2024

OpenJDK is the new JDK.

A History of Mathematical Java.

Keep in mind ...

From the beginning (1995), Java was no C or

FORTRAN.

Java was comparatively slow.

Because ...

Java was originally created to address SECURE

NETWORKING.

Java Math class (standard algorithms in C with plans to rewrite in Java)

e.g. cos, tanh, abs, etc.

NIST JAMA (https://math.nist.gov/javanumerics/jama/)

Matrix, Matrix ops, SVD, eigenvalue

commits: 1998, 2000, 2003, 2005, 2012

see https://math.nist.gov/javanumerics/jama/ChangeLog

JAMA was supposed to become part of the JDK? [Didn’t happen]

Apache Commons Math (https://commons.apache.org/proper/commons-math/)

Linear Algebra, Sparse Linear Algebra, Statistics (includes streaming), Clustering,

Optimization, Neural Networks (kind of), many other things

2007 - current

Hipparchus (https://www.hipparchus.org/)

Re-factor Apache Commons Math into modules.

Fold back to ACM? Or become a new Apache TLP?

2016 - current

javax.vecmath

(https://docs.oracle.com/cd/E17802_01/j2se/javase/technologies/desktop/java3d/forDevelopers/j3dapi/javax/vecmath/package-summary.html)

GMatrix, Gvector [G is for “general”, package was for Java 3D graphics]

20xx – not maintained

https://math.nist.gov/javanumerics/jama/ChangeLog
https://commons.apache.org/proper/commons-math/
https://www.hipparchus.org/
https://docs.oracle.com/cd/E17802_01/j2se/javase/technologies/desktop/java3d/forDevelopers/j3dapi/javax/vecmath/package-summary.html

javax.vecmath

(https://docs.oracle.com/cd/E17802_01/j2se/javase/technologies/desktop/java3d/forDevelopers/j3dapi/javax/vecmath/package-

summary.html)

GMatrix, Gvector [G is for “general”, package was for Java 3D graphics]

20xx – not maintained

Algorithm Foundry (https://github.com/algorithmfoundry/Foundry)

formerly “Cognitive Foundry” as a Sandia project

Weka (https://www.cs.waikato.ac.nz/~ml/weka/)

more of an app than libs

DL4J (https://deeplearning4j.org/)

commercially backed

Tribuo (tribuo.org) – Machine Learning / Data Science Library from Oracle Labs

Java Vector (Coming in Java 17?) – native Vector Class is coming (no … it’s not the

OLD, deprecated ‘Vector Class’, it’s a new one, with CPU optimization.

https://docs.oracle.com/cd/E17802_01/j2se/javase/technologies/desktop/java3d/forDevelopers/j3dapi/javax/vecmath/package-summary.html
https://github.com/algorithmfoundry/Foundry

Ideal Mathematical Java

Ideally, stable mathematical algorithms should be part of Java (JDK)

But considering failure of javax.vecmath and java.stats, probably will never happen.

Too bad … Java could be the “Language of AI”

Ideally, stable mathematical algorithms should be part of Java (JDK)

But considering failure of javax.vecmath and java.stats, probably will never happen.

Too bad … Java could be the “Language of AI”

THINGS HAVE CHANGED SINCE I LAST GAVE THIS TALK IN 2019!

Looks like we are going to get some native Vector Classes and Linear Algebra?

But who knows … and until then …

Ideally, stable mathematical algorithms should be part of Java (JDK)

But considering failure of javax.vecmath and java.stats, probably will never happen.

Too bad … Java could be the “Language of AI”

Instead, stable mathematical algorithms should be Apache TLP

We already have great code in ACM and Hipparchus (goal is TLP with modules)

Machine Learning needs a lot of work …

Modern NN, Ensemble Methods, Text (NLU), Learning Metrics

Caution: don’t just cut and paste old code!

Ideally, stable mathematical algorithms should be part of Java (JDK)

But considering failure of javax.vecmath and java.stats, probably will never happen.

Too bad … Java could be the “Language of AI”

Instead, stable mathematical algorithms should be Apache TLP

We already have great code in ACM and Hipparchus (goal is TLP with modules)

Machine Learning needs a lot of work …

Modern NN, Ensemble Methods, Text (NLU), Learning Metrics

Caution: don’t just cut and paste old code!

CALL TO ACTION!!!

What do we really need for Data Science?

Data Science Library

1) IO – Input parsing and checking, output formatting and plotting

2) Linear Algebra – Matrix operations and decomposition

3) Statistics – Descriptive stats, random number distributions and information theory

4) Data Operations – Transforming text, reducing dimension, scaling, encoding, partitioning

5) Learning – algorithms and metrics

Data Science Library

1) IO – Input parsing and checking, output formatting and plotting [Apache Commons, JavaFX]

2) Linear Algebra – Matrix operations and decomposition

3) Statistics – Descriptive stats, random number distributions and information theory

4) Data Operations – Transforming text, reducing dimension, scaling, encoding, partitioning

5) Learning – algorithms and metrics

Data Science Library

1) IO – Input parsing and checking, output formatting and plotting [Apache Commons, JavaFX]

2) Linear Algebra – Matrix operations and decomposition [Apache Commons, Hipparchus]

3) Statistics – Descriptive stats, random number distributions and information theory

4) Data Operations – Transforming text, reducing dimension, scaling, encoding, partitioning

5) Learning – algorithms and metrics

Data Science Library

1) IO – Input parsing and checking, output formatting and plotting [Apache Commons, JavaFX]

2) Linear Algebra – Matrix operations and decomposition [Apache Commons, Hipparchus]

3) Statistics – Descriptive stats, random number distributions and information theory [ACM]

4) Data Operations – Transforming text, reducing dimension, scaling, encoding, partitioning

5) Learning – algorithms and metrics

Data Science Library

1) IO – Input parsing and checking, output formatting and plotting [Apache Commons, JavaFX]

2) Linear Algebra – Matrix operations and decomposition [Apache Commons, Hipparchus]

3) Statistics – Descriptive stats, random number distributions and information theory [ACM]

4) Data Operations – Transforming text, reducing dimension, scaling, encoding, partitioning

5) Learning – algorithms and metrics [Clustering in Apache Commons]

Data Science Library

1) IO – Input parsing and checking, output formatting and plotting [Apache Commons, JavaFX]

2) Linear Algebra – Matrix operations and decomposition [Apache Commons, Hipparchus]

3) Statistics – Descriptive stats, random number distributions and information theory [ACM]

4) Data Operations – Transforming text, reducing dimension, scaling, encoding, partitioning

5) Learning – algorithms and metrics [Clustering in Apache Commons]

We need …

IO – Combine CSV, TSV, JSON

IO – JavaFX not in the OpenJDK? Could make it easier to use also.

Data Operations – D.N.E.

Learning – include generalized EM algorithm in addition to generalized optimizer?

Learning – fold linear and non-linear regression into here

Learning – add DNN, RF, SVM, KNN etc...

Plotting Example

Anscombe’s Quartet

Data from Wikipedia

Plots made with JavaFX

Random Data with 3 Sigma Bands

Random Data

Plots made with JavaFX

JavaFX

Official Java graphics package

Used to be separate package

Then it was included in JDK8!

Now it is a separate package … again …

And it doesn’t work so great anymore :(

Has lots of features and great for building GUI apps.

Could be easier to use :(

JavaFX

Official Java graphics package

Used to be separate package

Then it was included in JDK8!

Now it is a separate package … again …

And it doesn’t work so great anymore :(

Has lots of features and great for building GUI apps.

Could be easier to use :(

//TODO make it like this without extending Application class

Plot plot = new ScatterPlot(xData, yData)

plot.render()

Learning Example: MLP (Neural Network)

Multi-layer Perceptron

https://scikit-learn.org/stable/modules/neural_networks_supervised.html

inpu

t

hidde

n

outpu

t

Multi-layer Perceptron

https://scikit-learn.org/stable/modules/neural_networks_supervised.html

inpu

t

hidde

n

outpu

t

Instead of viewing an MLP with dots and

sticks ...

let’s view it as a super-position of linear

models

A “Neural Layer” is just one Linear Model

A “Neural Layer” is just one Linear Model …

with input … weight…

transfer function

… and output.

A “Neural Layer” is just one Linear Model …

with input … weight…

transfer function

… and output.

The error is back-propagated through

model

A “Neural Layer” is just one Linear Model …

with input … weight…

transfer function

… and output.

The error is back-propagated through

model

The parameters can be updated using any optimizer and form desired for that layer.

public class NetworkLayer extends LinearModel {

RealMatrix input;

RealMatrix inputError;

RealMatrix output;

RealMatrix outputError;

Optimizer optimizer;

// Constructor goes here

public void update() {

// back propagate error

// and then update weights

}

}

public class LinearModel {

private RealMatrix weight;

private RealVector bias;

private final OutputFunction outputFunction;

// Constructor goes here

public RealMatrix getOutput(RealMatrix input) {

return outputFunction.getOutput(input, weight, bias);

}

public void setWeight(RealMatrix weight) {

this.weight = weight;

}

public void setBias(RealVector bias) {

this.bias = bias;

}

}

Code in book is at:

https://github.com/oreillymedia/Data_Science_with_Java

Network

Input
Network

Output

FEED FORWARD

BACK PROPAGATE

public class DeepNetwork extends IterativeLearningProcess {

private List<NetworkLayer> layers;

@Override

public RealMatrix predict(RealMatrix input) {

for (NetworkLayer layer : layers) {

/* calc the output and set to next layer input*/

}

return output;

}

@Override

protected void update(RealMatrix input, RealMatrix target, RealMatrix output) {

/* create list iterator and set cursor to last! */

ListIterator li = layers.listIterator(layers.size());

while (li.hasPrevious()) {

NetworkLayer layer = (NetworkLayer) li.previous();

// back propagate error

}

}

} Code in book is at:

https://github.com/oreillymedia/Data_Science_with_Java

Network

Input
Network

Output

FEED FORWARD

BACK PROPAGATE

Given the Java architecture described here, NOTE how easy it is to inspect each

layer, and to define unique optimizer, update schema and others PER LAYER!

Iris Example:

4 input features and 3 output classes

Much easier to access / control layers with following example

Note different optimizer rules for different layers

Iris iris = new Iris();

RealMatrix data = iris.getFeatures();

RealMatrix target = iris.getLabels();

MatrixResampler mr = new MatrixResampler(data, iris.getLabels());

mr.calculateTestTrainSplit(0.40);

DeepNetwork net = new DeepNetwork();

// net.addLayer(new NetworkLayer(4, 7, new RampOutputFunction(), new GradientDescentMomentum(.001, 0.95)));

// net.addLayer(new NetworkLayer(7, 3, new RampOutputFunction(), new GradientDescentMomentum(.001, 0.95)));

net.addLayer(new NetworkLayer(4, 7, new TanhOutputFunction(), new GradientDescent(.001)));

// net.addLayer(new NetworkLayer(2, 2, new TanhOutputFunction(), new GradientDescent(.001)));

// net.addLayer(new NetworkLayer(10, 50, new TanhOutputFunction(), new GradientDescent(0.001)));

// net.addLayer(new NetworkLayer(50, 5, new TanhOutputFunction(), new GradientDescent(0.001)));

net.addLayer(new NetworkLayer(7, 3, new SoftmaxOutputFunction(), new GradientDescent(0.001)));

net.setLossFunction(new SoftMaxCrossEntropyLossFunction());

// net.setLossFunction(new QuadraticLossFunction());

net.setBatchSize(1);

net.setMaxIterations(600000);

net.setPrecision(10E-9);

net.learn(mr.getTrainingFeatures(), mr.getTrainingLabels());

RealMatrix predictions = net.predict(mr.getTestingFeatures());

ClassifierAccuracy acc = new ClassifierAccuracy(predictions, mr.getTestingLabels());

System.out.println("converged = " + net.isConverged());

System.out.println("iterations = " + net.getNumIterations());

System.out.println("accuracy = " + acc.getAccuracy());

Code in book is at: https://github.com/oreillymedia/Data_Science_with_Java

Iris iris = new Iris();

RealMatrix data = iris.getFeatures();

RealMatrix target = iris.getLabels();

MatrixResampler mr = new MatrixResampler(data, iris.getLabels());

mr.calculateTestTrainSplit(0.40);

DeepNetwork net = new DeepNetwork();

// net.addLayer(new NetworkLayer(4, 7, new RampOutputFunction(), new GradientDescentMomentum(.001, 0.95)));

// net.addLayer(new NetworkLayer(7, 3, new RampOutputFunction(), new GradientDescentMomentum(.001, 0.95)));

net.addLayer(new NetworkLayer(4, 7, new TanhOutputFunction(), new GradientDescent(.001)));

// net.addLayer(new NetworkLayer(2, 2, new TanhOutputFunction(), new GradientDescent(.001)));

// net.addLayer(new NetworkLayer(10, 50, new TanhOutputFunction(), new GradientDescent(0.001)));

// net.addLayer(new NetworkLayer(50, 5, new TanhOutputFunction(), new GradientDescent(0.001)));

net.addLayer(new NetworkLayer(7, 3, new SoftmaxOutputFunction(), new GradientDescent(0.001)));

net.setLossFunction(new SoftMaxCrossEntropyLossFunction());

// net.setLossFunction(new QuadraticLossFunction());

net.setBatchSize(1);

net.setMaxIterations(600000);

net.setPrecision(10E-9);

net.learn(mr.getTrainingFeatures(), mr.getTrainingLabels());

RealMatrix predictions = net.predict(mr.getTestingFeatures());

ClassifierAccuracy acc = new ClassifierAccuracy(predictions, mr.getTestingLabels());

System.out.println("converged = " + net.isConverged());

System.out.println("iterations = " + net.getNumIterations());

System.out.println("accuracy = " + acc.getAccuracy());

Code in book is at: https://github.com/oreillymedia/Data_Science_with_Java

Iris iris = new Iris();

RealMatrix data = iris.getFeatures();

RealMatrix target = iris.getLabels();

MatrixResampler mr = new MatrixResampler(data, iris.getLabels());

mr.calculateTestTrainSplit(0.40);

DeepNetwork net = new DeepNetwork();

// net.addLayer(new NetworkLayer(4, 7, new RampOutputFunction(), new GradientDescentMomentum(.001, 0.95)));

// net.addLayer(new NetworkLayer(7, 3, new RampOutputFunction(), new GradientDescentMomentum(.001, 0.95)));

net.addLayer(new NetworkLayer(4, 7, new TanhOutputFunction(), new GradientDescent(.001)));

// net.addLayer(new NetworkLayer(2, 2, new TanhOutputFunction(), new GradientDescent(.001)));

// net.addLayer(new NetworkLayer(10, 50, new TanhOutputFunction(), new GradientDescent(0.001)));

// net.addLayer(new NetworkLayer(50, 5, new TanhOutputFunction(), new GradientDescent(0.001)));

net.addLayer(new NetworkLayer(7, 3, new SoftmaxOutputFunction(), new GradientDescent(0.001)));

net.setLossFunction(new SoftMaxCrossEntropyLossFunction());

// net.setLossFunction(new QuadraticLossFunction());

net.setBatchSize(1);

net.setMaxIterations(600000);

net.setPrecision(10E-9);

net.learn(mr.getTrainingFeatures(), mr.getTrainingLabels());

RealMatrix predictions = net.predict(mr.getTestingFeatures());

ClassifierAccuracy acc = new ClassifierAccuracy(predictions, mr.getTestingLabels());

System.out.println("converged = " + net.isConverged());

System.out.println("iterations = " + net.getNumIterations());

System.out.println("accuracy = " + acc.getAccuracy());

Code in book is at: https://github.com/oreillymedia/Data_Science_with_Java

Iris iris = new Iris();

RealMatrix data = iris.getFeatures();

RealMatrix target = iris.getLabels();

MatrixResampler mr = new MatrixResampler(data, iris.getLabels());

mr.calculateTestTrainSplit(0.40);

DeepNetwork net = new DeepNetwork();

// net.addLayer(new NetworkLayer(4, 7, new RampOutputFunction(), new GradientDescentMomentum(.001, 0.95)));

// net.addLayer(new NetworkLayer(7, 3, new RampOutputFunction(), new GradientDescentMomentum(.001, 0.95)));

net.addLayer(new NetworkLayer(4, 7, new TanhOutputFunction(), new GradientDescent(.001)));

// net.addLayer(new NetworkLayer(2, 2, new TanhOutputFunction(), new GradientDescent(.001)));

// net.addLayer(new NetworkLayer(10, 50, new TanhOutputFunction(), new GradientDescent(0.001)));

// net.addLayer(new NetworkLayer(50, 5, new TanhOutputFunction(), new GradientDescent(0.001)));

net.addLayer(new NetworkLayer(7, 3, new SoftmaxOutputFunction(), new GradientDescent(0.001)));

net.setLossFunction(new SoftMaxCrossEntropyLossFunction());

// net.setLossFunction(new QuadraticLossFunction());

net.setBatchSize(1);

net.setMaxIterations(600000);

net.setPrecision(10E-9);

net.learn(mr.getTrainingFeatures(), mr.getTrainingLabels());

RealMatrix predictions = net.predict(mr.getTestingFeatures());

ClassifierAccuracy acc = new ClassifierAccuracy(predictions, mr.getTestingLabels());

System.out.println("converged = " + net.isConverged());

System.out.println("iterations = " + net.getNumIterations());

System.out.println("accuracy = " + acc.getAccuracy());

Code in book is at: https://github.com/oreillymedia/Data_Science_with_Java

Iris iris = new Iris();

RealMatrix data = iris.getFeatures();

RealMatrix target = iris.getLabels();

MatrixResampler mr = new MatrixResampler(data, iris.getLabels());

mr.calculateTestTrainSplit(0.40);

DeepNetwork net = new DeepNetwork();

// net.addLayer(new NetworkLayer(4, 7, new RampOutputFunction(), new GradientDescentMomentum(.001, 0.95)));

// net.addLayer(new NetworkLayer(7, 3, new RampOutputFunction(), new GradientDescentMomentum(.001, 0.95)));

net.addLayer(new NetworkLayer(4, 7, new TanhOutputFunction(), new GradientDescent(.001)));

// net.addLayer(new NetworkLayer(2, 2, new TanhOutputFunction(), new GradientDescent(.001)));

// net.addLayer(new NetworkLayer(10, 50, new TanhOutputFunction(), new GradientDescent(0.001)));

// net.addLayer(new NetworkLayer(50, 5, new TanhOutputFunction(), new GradientDescent(0.001)));

net.addLayer(new NetworkLayer(7, 3, new SoftmaxOutputFunction(), new GradientDescent(0.001)));

net.setLossFunction(new SoftMaxCrossEntropyLossFunction());

// net.setLossFunction(new QuadraticLossFunction());

net.setBatchSize(1);

net.setMaxIterations(600000);

net.setPrecision(10E-9);

net.learn(mr.getTrainingFeatures(), mr.getTrainingLabels());

RealMatrix predictions = net.predict(mr.getTestingFeatures());

ClassifierAccuracy acc = new ClassifierAccuracy(predictions, mr.getTestingLabels());

System.out.println("converged = " + net.isConverged());

System.out.println("iterations = " + net.getNumIterations());

System.out.println("accuracy = " + acc.getAccuracy());

Code in book is at: https://github.com/oreillymedia/Data_Science_with_Java

• That didn’t seem too bad, did it???

Java is fairly universal world-wide and there is no shortage of programming talent.

Java powers trust-worthy infrastructure applications already.

Perhaps Java coding practices / culture leads to better designed and documented code?

Breaking pieces into logical mathematical units (e.g. neural layers example) is natural in OOP. Easier to

inspect, update and understand code. For example, the Java designation of “one class per file.”

Well defined input, black-box and output types is a GREAT IDEA. There should never be surprises!

Java docs are easy to read and understand partly because OOP encourages cleaner design.

JVM was designed with security in mind, since 1995.

Summary: Data Science with Java?

System.exit(0);

