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MagLIF performance is sensitive to the preheat 
energy coupled

S. Slutz et al., Physics of Plasmas 25, 112706 (2018)
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 Understanding how much preheat energy is coupled is crucial to understanding MagLIF 
performance

Preheat starved
Optimum preheat

Too much preheat!
(Nernst effect)

2D LASNEX simulations 1.1 mg/cc, AR6 liner, 17.5 MA current
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Preheat energy needs to be increased in tandem 
with B field and fuel density

 To optimize at present MagLIF capabilities we need >2 kJ preheat
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2D LASNEX simulations 1.1 mg/cc, AR6 liner, 17.5 MA current
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Preheat configurations are designed in offline 
“Pecos” experiments

“Warm” experiments have not exceeded 2 kJ with 
ZBL

 Need to reduce losses to increase efficiency

 Energy invested in heating LEH foil

 LPI backscatter losses from LEH foil and gas

Laser Shadowgram
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Scattered light
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Gas fill
Blast wave expansion 
– energy deposited

A. Harvey-Thompson et al., Physics of Plasmas 26, 032707 (2019)
M. Geissel et al., Physics of Plasmas 25, 022706 (2018)
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Cryogenic cooling
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Cryogenically cooling enables lower pressures, 
thinner LEH foils

Optical window

LEH foil

Xray window

Cryostat

Cryogen – 
temperature 
controlled at 
dewar

Front temperature 
sensor

Back temperature sensor

Target design

Motivated by: Weis et al., Physics of Plasmas 28, 012705 (2021)

On-shot pressure and temperature

B21040606
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Cryogenic cooling enables lower pressures, 
thinner LEH foils

Warm Cryo

Density (mg/cc) 1.05 1.05

Temperature (K) 293 73

Pressure (psi) 90 23

LEH thickness (nm) 1600 500

LEH diameter (mm) 2.2 3

Spot diameter (mm) 1.1 1.5

 The pressure is set ahead of time and the temperature tweaked to match desired density 

 Target design enables minimal temperature gradients and uncertainty  minimal density uncertainty

Experimental parameters

On-shot pressure and temperature

B21040606
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Cryogenically-cooled preheat experiments 
demonstrated greatly improved coupling

Warm Cryo

Density (mg/cc) 1.05 1.05

Temperature (K) 293 73

Pressure (psi) 90 23

LEH thickness (nm) 1300 500

LEH diameter (mm) 2.2 3

Spot size (mm) 1.1 1.5

Cryo

Warm

 At 88% coupling efficiency, >2 kJ energy coupling can be readily achieved with ZBL
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Coolant inCoolant out

>2 kJ preheat energy was coupled to a cryo-
cooled MagLIF experiment on Z

MagLIF 
liner

Top 
cryostat

Bottom 
cryostat

Integrated Z hardware

Cryo

Warm

For more analysis of z3576 see P. Knapp: BI01.00004 
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The cryo cooled experiments greatly 
outperform the warm – but why??

 Principle changes from warm to cryo: 
 Reduced LEH foil thickness from 1.6 to 0.5 µm
 Increased spot diameter from 1.1 to 1.5 mm

 Laser interacts with less LEH mass (~59% mass 
of warm target) – less energy lost to foil?

 Laser intensity is ~halved due to larger spot – 
reduced LPI backscatter?

 Does the blast wave analysis have important 
sensitivities beyond coupled energy?

Cryo

Warm
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 Principle changes from warm to cryo: 
 Reduced LEH foil thickness from 1.6 to 0.5 µm
 Increased spot diameter from 1.1 to 1.5 mm

 Laser interacts with less LEH mass (~59% mass 
of warm target) – less energy lost to foil?

 Laser intensity is ~halved due to larger spot – 
reduced LPI backscatter?

 Does the blast wave analysis have important 
sensitivities beyond coupled energy?

 LEH and backscatter hypotheses will be 
explored by M. Geissel (CO05.00006)

The cryo cooled experiments greatly 
outperform the warm – but why??
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2D Hydra simulations compare well with cryo 
shadowgraphy data

2D Hydra
Electron density maps

Experimental shadowgraphs

3.2 ns 53.2 ns

B21020503

Synthetic boundary

Cryo

Warm
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The energy “seen” by the blast wave is not just 
inverse Bremss. deposition in the D2

 At the end of the laser pulse, for z>0:
 Energy in gas < energy inferred from blast wave
 Energy in LEH+gas > energy inferred from blast wave

 The energy balance is dynamic – e.g. foil material 
is ejected in simulations later in time

 The energy inference is complex and includes 
contributions from the LEH foil material
 Remember for laser-gate (B. Galloway CO05.00005) 

and thicker-foil targets (M. Geissel CO05.00006)!

 But… simulations suggest the blast wave is 
capturing energy deposition in these targets

 The effects do not explain the discrepancy 
between warm and cryo targets – must be LEH 
or LPI!

Energetics at end of laser pulse

Other dependencies discussed in A. Harvey-Thompson 
et al., Physics of Plasmas 26, 032707 (2019)
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Summary

 Increasing MagLIF performance requires increased 
preheat energies beyond 2 kJ

 Cryogenically-cooled MagLIF targets have 
dramatically increased the coupling efficiency
 >2 kJ preheat energy was coupled in z3576
 Laser-gate may also enable performance increases (see 

next talk B. Galloway CO05.00005)

 We are working to understand the improvement in 
energy coupling
 Assumptions in the blast wave analysis do not seem to be a 

major contribution – we are measuring the coupled energy
 Other possibilities are losses to the LEH foil and LPI 

backscatter – see talk by M. Geissel (CO05.00006)
 Spoiler alert – we think SRS backscatter in the warm targets 

explains the energy difference
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