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2 | MaglLIF performance is sensitive to the preheat

energy coupled

2D LASNEX simulations 1.1 mg/cc, ARG liner, 17.5 MA current
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= Understanding how much preheat energy is coupled is crucial to understanding MagLIF

performance
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* | Preheat energy needs to be increased in tandem
with B field and fuel density

2D LASNEX simulations 1.1 mg/cc, ARG liner, 17.5 MA current
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=" To optimize at present MagLIF capabilities we need >2 kJ preheat

S. Slutz et al., Physics of Plasmas 25, 112706 (2018)



4 ‘ Preheat configurations are designed in offline
“Pecos” experiments

Best performing “warm” preheat configuration
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s | Preheat configurations are designed in offline

“Pecos” experiments

Best performing “warm” preheat configuration
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Cryogenic cooling




s | Cryogenically cooling enables lower pressures,
thinner LEH foils

Target desien On-shot pressure and temperature
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Motivated by: Weis et al., Physics of Plasmas 28, 012705 (2021)
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7| Cryogenic cooling enables lower pressures,
thinner LEH foils

On-shot pressure and temperature
7%40+—r+—+++— "+ 24

Experimental parameters . Temperature front
735 ---- Temperature back 1
Density (mg/cc) 1.05 1.05 2 73.04 | =
) ' N
Temperature (K) 293 73 E %
CU | S
Pressure (psi) 90 23 & 297 123 3
‘E’- %)
i ()
LEH thickness (nm) 1600 500 S 720- | £
LEH diameter (mm) 2.2 3
Spot diameter (mm) 1.1 1.5 71.51 -
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71.0 - T - T - T ' T - - 22
-5 -4 -3 -2 -1 0 1

Time to shot (minutes)

" The pressure is set ahead of time and the temperature tweaked to match desired density

= Target design enables minimal temperature gradients and uncertainty = minimal density uncertainty



s | Cryogenically-cooled preheat experiments
demonstrated greatly improved coupling

= ~1.05 mg/cc 5.5 ns pulse 0.5 um LEH 1.5 mm DPP
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= At 88% coupling efficiency, >2 kJ energy coupling can be readily achieved with ZBL
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‘ >2 kJ preheat energy was coupled to a cryo-

Integrated Z hardware
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For more analysis of z3576 see P. Knapp: BI01.00004
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0 | The cryo cooled experiments greatly
outperform the warm — but why??

" Principle changes from warm to cryo:
= Reduced LEH foil thickness from 1.6 to 0.5 um
" |ncreased spot diameter from 1.1 to 1.5 mm

= Laser interacts with less LEH mass (~*59% mass
of warm target) — less energy lost to foil?

= Laser intensity is “halved due to larger spot —
reduced LPI backscatter?

= Does the blast wave analysis have important
sensitivities beyond coupled energy?

1.05 mg/cc 5.5 ns pulse 1.6 um LEH 1.1 mm DPP

= ~1.05 mg/cc 5.5 ns pulse 0.5 um LEH 1.5 mm DPP
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u | The cryo cooled experiments greatly
outperform the warm — but why??

®  1.05 mg/cc 5.5 ns pulse 1.6 um LEH 1.1 mm DPP
= ~1.05 mg/cc 5.5 ns pulse 0.5 um LEH 1.5 mm DPP

" Principle changes from warm to cryo:

= Reduced LEH foil thickness from 1.6 to 0.5 pm 1200 1 1
" |ncreased spot diameter from 1.1 to 1.5 mm 1000 - H |
. . > - W
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) 7] ]
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2 | The cryo cooled experirnr
outperform the warm —

" Principle changes from warm to cryo:
= Reduced LEH foil thickness from 1.6 to 0.5 um
" |ncreased spot diameter from 1.1 to 1.5 mm

= Laser interacts with less LEH mass (~*59% mass
of warm target) — less energy lost to foil?

= Laser intensity is “halved due to larger spot —
reduced LPI backscatter?

" Does the blast wave analysis have important
sensitivities beyond coupled energy?

= LEH and backscatter hypotheses will be
explored by M. Geissel (CO05.00006)

ents greatly
out why??

®  1.05 mg/cc 5.5 ns pulse 1.6 um LEH 1.1 mm DPP

= ~1.05 mg/cc 5.5 ns pulse 0.5 um LEH 1.5 mm DPP
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13 | 2D Hydra simulations compare well with cryo
shadowgraphy data

Experimental shadowgraphs
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= 1100 um, DPP, 5.5 ns pulse, 1.6 um LEH

= 1500 um, 5.5 ns pulse, 0.5 um LEH

O Simulation (blastwave analysis)
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14 | The energy “seen” by the blast wave is not just |

inverse Bremss. deposition in the D, |
= At the end of the laser pulse, for z>0: Energetics at end of laser pulse ‘
= Energy in gas < energy inferred from blast wave B21020503 (cryo)
. : : - Experiment (78.2 ns) - 2.30kJ
Energy in LEH+gas > energy inferred from blast wave 2000 Simulated blastwave - 2.35 kJ |
= The energy balance is dynamic — e.g. foil material = 4,,. Energy in gas - 2.18 kJ
. D : L £ Energy in LEH - 0.29 kJ i
is ejected in simulations later in time S a000. ]
" The energy inference is complex and includes - ]
contributions from the LEH foil material o 00 _
= Remember for laser-gate (B. Galloway CO05.00005) {3 :
and thicker-foil targets (M. Geissel CO05.00006)! o 15001 ]
. . . C - -
= But... simulations suggest the blast wave is w1000~
capturing energy deposition in these targets 5001 i :
" The effects do not explain the discrepancy R AP S S A A
between warm and cryo targets — must be LEH Distance past LEH foil (mm)

or LPI!

Other dependencies discussed in A. Harvey-Thompson
et al., Physics of Plasmas 26, 032707 (2019)



® | Summary

" [ncreasing MagLIF performance requires increased
preheat energies beyond 2 kJ

= Cryogenically-cooled MagLIF targets have
dramatically increased the coupling efficiency
= >2 kJ preheat energy was coupled in zZ3576

= Laser-gate may also enable performance increases (see
next talk B. Galloway CO05.00005)

= We are working to understand the improvement in
energy coupling

= Assumptions in the blast wave analysis do not seem to be a
major contribution — we are measuring the coupled energy

= Other possibilities are losses to the LEH foil and LPI
backscatter — see talk by M. Geissel (CO05.00006)

= Spoiler alert — we think SRS backscatter in the warm targets
explains the energy difference
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