
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

LDMS Version 4.3.8 Advanced Tutorial: Part 2
https://github.com/ovis-hpc/ovis

Jim Brandt, Ann Gentile
Sandia National Laboratories

Tom Tucker
Open Grid Computing, Inc.

OGC | Open Grid Computing, Austin, TX

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

SAND2021-13645CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Exercise 2.1: Re-configuration

2

Manually Modify Verbosity of a Running ldmsd

This is useful if you don’t want to fill up your log files but want to perform a more
in-depth inspection of what is happening on a running ldmsd while troubleshooting
• In one terminal window start a sampler and an aggregator

$ ~/ldmscon2021/advanced/exercises/ldms/scripts/E2.1/start_ldms_e2.1_sampler.sh
$ ~/ldmscon2021/advanced/exercises/ldms/scripts/E2.1/start_ldms_e2.1_agg.sh
Since the daemons are running without verbosity specified it is the default of “ERROR”. The
associated log files should be empty

• Verify that both daemons are running
$ ps auxw | grep ldmsd should return something like:

ldmsd -x sock 10001 –l /home/…/ldms/logs/e2.1_sampler.log
ldmsd -x sock 20001 –l /home/…/ldms/logs/e2.1_agg.log

Modify Verbosity of a Running ldmsd (cont)

• In the second terminal window on the same host run:
$ tail –f ~/ldmscon2021/advanced/exercises/ldms/logs/e2.1_agg.log

• In the first window use the ldmsd_controller to change loglevel to DEBUG:
$ echo "loglevel level=DEBUG" | ldmsd_controller --host localhost --xprt sock --port 20001

• You now should see a continuous stream of information being logged at a variety
of levels to the aggregator log file displayed in your second terminal window
• You can experiment with changing the levels between the states of: DEBUG,

INFO, ERROR, CRITICAL, and QUIET to see how the information flowing to the log
file can be changed dynamically

4

Use a Script to Modify Verbosity of a ldmsd
A script to modify the verbosity of a running ldmsd can be found at:

~/ldmscon2021/advanced/exercises/ldms/scripts/E2.1/change_verbosity_e2.1.sh
=====================================

#!/bin/bash

VERBOSITY=$1

PORT=$2

if [-z ${VERBOSITY}] | [-z ${PORT}]

then

echo "Usage: change_verbosity_e2.1.sh <verbosity level> <ldmsd port>"

exit

fi

echo "loglevel level=${VERBOSITY}" | ldmsd_controller --host localhost --xprt sock --port ${PORT}

=====================================

Try it (Arguments are verbosity level and port number.)
$ ~/ldmscon2021/.../change_verbosity_e2.1.sh DEBUG 20001

5

Use a Script to Modify the Collection
Interval of a Sampler ldmsd
A script to modify the verbosity of a running ldmsd can be found at:

~/ldmscon2021/advanced/exercises/ldms/scripts/E2.1/change_sample_interval_e2.1_sampler.sh
==========================

#!/bin/bash

PLUGIN=$1

INTERVAL=$2

if [-z ${PLUGIN}] | [-z ${INTERVAL}]

then

echo "Usage: change_sample_interval_e2.1_sampler.sh <plugin name> <interval in usec>"

exit

fi

echo "stop name=${PLUGIN}" | ldmsd_controller --host localhost --xprt sock --port 10001

echo "start name=${PLUGIN} interval=${INTERVAL} offset=0" | ldmsd_controller --host localhost --xprt
sock --port 10001

==========================

Try it (Arguments are plugin name and interval in usec)
$ ~/ldmscon2021/.../change_sample_interval_e2.1_sampler.sh meminfo 5000000

6

Use a Script to Remove a Sampler Plugin
A script to modify the verbosity of a running ldmsd can be found at:
~/ldmscon2021/advanced/exercises/ldms/scripts/E2.1/remove_sampler_plugin_e2.1_sampler.sh
===============================

#!/bin/bash

PLUGIN=$1

if [-z ${PLUGIN}]

then

echo "Usage: remove_sampler_plugin_e2.1_sampler.sh <plugin name (e.g., meminfo)>"

exit

fi

echo "stop name=${PLUGIN}" | ldmsd_controller --host localhost --xprt sock --port 10001

echo "term name=${PLUGIN}" | ldmsd_controller --host localhost --xprt sock --port 10001

===============================

Try it (Argument is a plugin name. Note: This script uses port 10001 only)

$ ~/ldmscon2021/.../remove_sampler_plugin_e2.1_sampler.sh vmstat

7

Use a Script to Load a Sampler Plugin
A script to modify the verbosity of a running ldmsd can be found at:
~/ldmscon2021/advanced/exercises/ldms/scripts/E2.1/load_sampler_plugin_e2.1_sampler.sh
===============================

#!/bin/bash

PLUGIN=$1

if [-z ${PLUGIN}]

then

echo "Usage: load_sampler_plugin_e2.1_sampler.sh <plugin name (e.g., meminfo)>"

exit

fi

CONFDIR=/home/brandt/ldmscon2020/advanced/exercises/ldms/conf/E2.1

cat ${CONFDIR}/${PLUGIN}.conf | ldmsd_controller --host localhost --xprt sock --port 10001

===============================

vmstat.conf:

load name=vmstat

config name=vmstat producer=node-2 instance=node-2/vmstat component_id=2 job_set=node-2/slurm
uid=1005 gid=1005 perm=0755

start name=vmstat interval=1000000 offset=0

===============================

Try it (Argument is a plugin name. Note: This script uses port 10001 only)
$ ~/ldmscon2021/.../load_sampler_plugin_e2.1_sampler.sh vmstat 8

Exercise 2.2: Authentication

9

Using LDMS Authentication
• “none” (no) authentication is the default and what you used in the basic and advanced part 1 exercises
• Examples:

$ldmsd –x sock:10001
$ldmsd –x sock:10001 –a none

• auth “none”
• All data is accessible to anyone who has network access and wants to query for it
• Anyone who has network access can (re)configure the running ldmsd

• auth “ovis”
• Network access is available to anyone who knows the shared secret
• Anyone who has network access can (re)configure the running ldmsd

• auth “munge”
• Data is accessible to user.group who has been authenticated on this connection
• Each metric set contains user.group and permissions
• Only requests on a connection from user.group can access metric set data for which they have permissions
• Configuration changes cannot be made on a daemon for which the connection user.group is not

authorized

10

Using “ovis” Shared Secret Authentication
SYNOPSIS: ldms_app -a ovis [-A conf=PATH]
DESCRIPTION: ovis_auth uses a shared secret to authenticate the connection. The secret is
a text file containing the line: secretword=X where X is a string at least 8 characters long.
The following four locations are checked, in order, for the secret:
1) full file path given on the command line via "-A conf=authfile",
2) full file path defined by the environment variable “LDMS_AUTH_FILE”,
3) $HOME/.ldmsauth.conf, and
4) $SYSCONFDIR/ldmsauth.conf (e.g. /etc/ldmsauth.conf).
$HOME is taken from /etc/password and $SYSCONFDIR is determined at ldms compile
time.
• If one of these is not set, the search continues with the next location.
• A failure in reading one, if the file exists, ends the search and is a failure to

authenticate.
The secret file permissions must be set to 600 or more restrictive.

11

Run An ldmsd Sampler Daemon Using
Shared Secret Authentication
• Check contents, ownership, and permissions of: ~/ldmscon2021/advanced/../ldms/conf/E2.2/my_secret
$ ls -l ~/ldmscon2021/advanced/../ldms/conf/E2.2/my_secret
$ -rw------- 1 uid gid 20 Oct 27 2021 my_secret
$ cat ~/ldmscon2021/advanced/../ldms/conf/E2.2/my_secret
$ secretword=shhhhhhh

Run a sampler ldmsd using “ovis” shared secret authentication: …/E2.2/start_sampler_shared_secret.sh
$ ldmsd -x sock:10001 \
-l ~/ldmscon2021/advanced/../ldms/logs/E2.2/sampler_auth.log \
-c ~/ldmscon2021/advanced/../ldms/conf/E2.2/simple_sampler.conf \
–a ovis –A conf=/home/<user>/ldmscon2021/advanced/…/ldms/conf/E2.2/my_secret

• -x: transport : listener port
• -l: Specify the log file path
• -c: Specify configuration file
• -a: Authentication method and associated file

12

ldms_ls Using “ovis” Shared Secret Authentication

• Try ldms_ls with no authentication
$ ldms_ls -h localhost –x sock –p 10001

Connection failed/rejected

• Now try ldms_ls with same authentication as sampler daemon
$ ldms_ls -h localhost -x sock -p 10001 -a ovis –A \

conf=/home/<user>/ldmscon2021/advanced/exercises/ldms/conf/E2.2/my_secret

node-64/vmstat

node-64/meminfo

• Now set the LDMS_AUTH_FILE environment variable to point to your shared secret
$ export LDMS_AUTH_FILE=/home/<user>/ldmscon2021/advanced/…/conf/E2.2/my_secret

• Use ldms_ls without specifying the location of your shared secret on the command line
$ ldms_ls –h localhost –x sock –p 10001 –a ovis

node-64/vmstat

node-64/meminfo

13

• Run an ldmsd aggregator using shared secret authentication that matches your sampler (…/conf/E2.2
my_secret.sh)

$ ldmsd -x sock:20001

-l /home/<user>/ldmscon2021/advanced/.. /ldms/logs/E2.2_aggd.log

-a ovis –A conf=/home/<user>/ldmscon2021/advanced/../ldms/conf/E2.2/my_secret

• -x: transport : listener port
• -l: Specify the log file path

• -a: Specify alternate shared secret file

14

Aggregator -> sampler authentication

• Kill your previous aggregator ldmsd

• Run an ldmsd aggregator using shared secret authentication not matching your sampler
• Note: you will need to create your “other_secret” in the conf directory

$ ldmsd -x sock:20001

-l /home/<user>/ldmscon2021/advanced/../ldms/logs/E2.2_aggd.log

-a ovis –A conf=/home/<user>/ldmscon2021/advanced/ldms/conf/E2.2/other_secret

• -x: transport : listener port

• -l: Specify the log file path
• -a: Specify alternate shared secret file

• Kill all of your running ldmsd and verify they are gone
$killall ldmsd

15

Aggregator -> sampler authentication

Using Munge Authentication
• Run a daemon using munge authentication:
$ldmsd -x sock:10001 -v DEBUG –l \
~/ldmscon2021/advanced/../ldms/logs/E2.2/samplerd.log –c \
~/ldmscon2021/advanced/../ldms/conf/E2.2/sampler.conf -a munge

Note: This will also write out DEBUG-level information to the specified (-l) log.

• Run ldms_ls on that node to see sets, set meta-data, and set data:
$ ldms_ls -h localhost -x sock -p 10001 -a munge

$ ldms_ls -h localhost -x sock -p 10001 -v -a munge

$ ldms_ls -h localhost -x sock -p 10001 -l -a munge

Note: Users will not be able to authenticate to a daemon launched using “-a munge” if not querying
using the “-a munge” option.

Note: Users will only be able to see sets as allowed by set permissions in response to ldms_ls.

16

Using Mixed Authentication Methods
• Edit sampler configuration file for E2.2 and uncomment:
#auth_add name=munge_port plugin=munge # Defines a domain for munge authentication
#listen auth=munge_port xprt=sock port=10001 # use munge_port for listening on
sock:10001

#auth_add name=ovis_port plugin=ovis \
#conf=/home/<user>/ldmscon2021/advanced/exercises/ldms/conf/E2.2/my_secret

#listen auth=ovis_port xprt=sock port=30001

• Edit aggregator configuration file for E2.2 and uncomment:
#auth_add name=munge_port plugin=munge # Defines a tag for munge authentication
…20000000 #auth=munge_port # Use munge authentication for this producer
#listen auth=munge_port xprt=sock port=20001 # Use munge authenticaion on sock:20001

17

Using Mixed Authentication Methods

• Start sampler daemon using modified E2.2/simple_sampler.conf
$ldmsd –c /home/<user>/ldmscon2021/advanced/…/conf/E2.2/simple_sampler.conf

• Start agg daemon using modified E2.2/agg.conf
$ldmsd –c /home/<user>/ldmscon2021/advanced/…/conf/E2.2/agg.conf

18

Using Mixed Authentication Methods
• Try using ldms_ls to talk to sampler on each of ports 10001 (munge) and 30001 (ovis)
$ldms_ls -h localhost -x sock -p 10001 -a munge

node-64/vmstat

node-64/meminfo

$ldms_ls -h localhost -x sock -p 30001 -a ovis -A
conf=/home/user64/ldmscon2021/advanced/exercises/ldms/conf/E2.2/my_secret

node-64/vmstat

node-64/meminfo

• Try using ldms_ls to talk to aggregator on port 20001 (munge)
$ldms_ls -h localhost -x sock -p 20001 -a munge

node-64/vmstat

node-64/meminfo

• Using each of –a munge and –a ovis, and ports 10001 and 30001 respectively, query ldmsd on
node-64 and see how munge restricts access based on uid, gid, and perms

19

Exercise 2.3: Scale Emulation

20

Run Many ldmsd Per Compute Node
• Differentiate between ldmsd and sampler configurations using port number

• ldmsd –x sock:10001 –c /home/<user>/advanced/exercises/ldms/conf/scripts/E2.3/sampler_10001.conf
• …
• ldmsd –x sock:10100 –c /home/<user>/advanced/exercises/ldms/conf/scripts/E2.3 /sampler_10100.conf

• There is a sample script for this:
/home/<user>/ldmscon2021/advanced/exercises/ldms/scripts/E2.3/start_multi_samplers.sh

• Generates configuration files and writes them to:
/home/<user>/ldmscon2021/advanced/exercises/ldms/conf/E2.3/multi_sampler_confs/multi_sampler_
<port#>.conf

• Starts a ldmsd per configuration file

21

Example Multi-ldmsd Sampler Configuration

multi_sampler_10001.conf
=================

load name=meminfo

config name=meminfo producer=node-2_10001 instance=node-2_10001/meminfo component_id=210001

start name=meminfo interval=1000000 offset=0

load name=vmstat

config name=vmstat producer=node-2_10001 instance=node-2_10001/vmstat component_id=210001

start name=vmstat interval=1000000 offset=0

===================

22

Example Multi-ldmsd Sampler Start Script
start_multi_samplers.sh
=================

#!/bin/bash

ME=$(whoami)

CONFDIR=/home/${ME}/advanced/exercises/ldms/conf/E2.3/multi-samplers_conf

LDMSD_AUTH_PLUGIN=none

LOGLEVEL=QUIET

LDMSD_PLUGIN_LIBPATH=/opt/ovis/lib/ovis-ldms

ZAP_LIBPATH=/opt/ovis/lib/ovis-lib

ldmsd -x sock:10001 -v ${LOGLEVEL} -c ${CONFDIR}/sampler_10001.conf -r /home/${ME}/advanced/exercises/ldms/scripts/E2.3/sampler_10001.pid -a ${LDMSD_AUTH_PLUGIN}

ldmsd -x sock:10002 -v ${LOGLEVEL} -c ${CONFDIR}/sampler_10002.conf -r /home/${ME}/advanced/exercises/ldms/scripts/E2.3/sampler_10002.pid -a ${LDMSD_AUTH_PLUGIN}

.

.

.

=================

23

Example Multi-ldmsd Aggregator Configuration
prdcr_add name=prdcr-grp1_10001 host=compute1 port=10001 xprt=sock type=active interval=20000000
prdcr_start name=prdcr-grp1_10001
prdcr_add name=prdcr-grp2_10002 host=compute1 port=10002 xprt=sock type=active interval=20000000

prdcr_start name=prdcr-grp2_10002
…
updtr_add name=updtr1 interval=1000000 offset=200000

updtr_prdcr_add name=updtr1 regex=prdcr-grp1_.*
updtr_start name=updtr1

updtr_add name=updtr2 interval=1000000 offset=200000

updtr_prdcr_add name=updtr2 regex=prdcr-grp2_.*
updtr_start name=updtr2

load name=store_csv

config name=store_csv path=/home/<user>/advanced/exercises/ldms/data/ buffer=0

strgp_add name=meminfo-store_csv plugin=store_csv container=meminfo_metrics schema=meminfo

strgp_start name=meminfo-store_csv

strgp_add name=vmstat-store_csv plugin=store_csv container=vmstat_metrics schema=vmstat
strgp_start name=vmstat-store_csv

24

Run Many ldmsd Per Compute Node

• Modify the E2.3 start_multi_samplers.sh script to generate the number of confs and samplers
you want

• Run the E2.3 start_agg.sh and look at the resulting files
• Use ps auxw | grep ldmsd to see the many running ldmsd

• Use ldms_ls –h localhost –x sock –p 20001 to see what your aggregator is aggregating
• Run pkill ldmsd to kill your aggregator daemon

Note: Running in this containerized environment your compute and memory resources are much
more limited than on a traditional compute node. Keep the number of sampler ldmsd to 10 or less
for this exercise.

25

Use of the ”test_sampler” Plugin
• Generation of arbitrary metric sets whose component values change in an expected way
• Enables generation of sets that have the same content as those being collected from existing

telemetry but without the backend overhead (e.g. collecting GPU metrics can take ~10ms).
• Enables large scale infrastructure testing of large sets and/or large numbers of sets

• Example configuration:
load name=test_sampler
config name=test_sampler action=add_schema schema=set1 \
metrics=meta1:meta:U64:1234,component_id:meta:U64:${COMPONENT_ID},job_id:data:U64:1,scalar1:data:U64:1,scalar2:data:U
64:100,array_100_element:data:U64_ARRAY:1:100
config name=test_sampler action=add_schema schema=set2 \
metrics=meta1:meta:U64:5678,component_id:meta:U64:${COMPONENT_ID},job_id:data:U64:1,scalar1:data:U64:1,scalar2:data:U
64:100,array_10_element:data:U64_ARRAY:100:10

config name=test_sampler action=add_set schema=set1 instance=${MYHOST}_${COMPONENT_ID}/set1 \
producer=${MYHOST}_${COMPONENT_ID}
config name=test_sampler action=add_set schema=set2 instance=${MYHOST}_${COMPONENT_ID}/set2 \
producer=${MYHOST}_${COMPONENT_ID}

start name=test_sampler interval=1000000 offset=0

26

Output From ”test_sampler” Configuration
node-2_2/set2: consistent, last update: Wed Aug 05 21:16:21 2020 -0500 [1416us]

M u64 meta1 5678

M u64 component_id 2

D u64 job_id 1

D u64 scalar1 55

D u64 scalar2 154

D u64[] array_10_element 154,154,154,154,154,154,154,154,154,154

Note: If there is interest we can use a LDMS User Group meeting to demonstrate how to use an actual
metric set as a template to generate an emulation test set.

27

Exercise 2.4: CSV Store configs

28

Store Philosophy

• Support a few stores writing to well-known formats that could be easily
converted from there. CSV is one such standard.
• Features:

• One store plugin can be configured to handle multiple schema (e.g., meminfo vs vmstat)
and multiple instances (e.g., all nodes’ meminfo)

• Defaults and overrides (e.g., handle different schema differently)
• Can be written to a file or piped to downstream consumers (e.g., port for syslog)
• File Rollover and closed file manipulations
• Buffering and/or flushing
• File permission setting
• Optional separate header (to support loading into a database)
• IETF 4180 quoting for header column names
• Configuration file for options to support multiplicity of options

29

CSV Store: (1) configuration for L1 samplers
• ldmsd configuration files: ~/ldmscon2021/advanced/…/conf/E2.4
• 2 samplers with different hostnames and component_ids.

$ cat sampler_realnode.conf
load name=meminfo
config name=meminfo producer=${HOST} instance=${HOST}/meminfo
component_id=${COMP_ID}
start name=meminfo interval=1000000 offset=0

load name=vmstat
config name=vmstat producer=${HOST} instance=${HOST}/vmstat component_id=${COMP_ID}
start name=vmstat interval=1000000 offset=0

$ cat sampler_fakenode.conf
load name=meminfo
config name=meminfo producer=node-1000 instance=node-1000/meminfo
component_id=1000
start name=meminfo interval=5000000 offset=0

30

Hardwired fake node-1000 and comp_id
Only has meminfo @ 5 sec intervals

CSV Store: (2) configuration for L2 store
$ cat agg.conf

…
load name=store_csv
store can take the configure lines in a configuration file\
(opt_file=XXX.conf) or called as multiple config lines
config name=store_csv path=XXX/data altheader=1 buffer=0 rolltype=1
rollover=60 \ # DEFAULT
override for schema vmstat (container and schema uniquely identify)
config name=store_csv altheader=0 container=csv schema=vmstat

strgp_add name=policy_mem plugin=store_csv container=csv\
schema=meminfo
strgp_prdcr_add name=policy_mem regex=.*
strgp_start name=policy_mem
…
<<similar for vmstat>>

31

Config line without container
and schema is the default:
• path = path to store.

path/container/schema
are the csv files

• altheader = 1 – write
header to a separate file

• buffer = 0 – don’t use
system buffering, flush
after every line

• Rolltype =1 – rollover the
output file based on time

• Rollover = 60 – every 60
seconds

Others are overrides:
• Only for csv/vmstat

altheader = 0

CSV Store: (3) Start both L1 and L2

• Run scripts: ~/ldmscon2021/advanced/…/scripts/E2.4
$./start_sampler_realnode.sh

$./start_sampler_fakenode.sh

$./start_agg.sh

$ ps aux | grep ldmsd #shows all 3 ldmsd
$ ldms_ls -x sock -p 21001 –a munge #query the aggregator

node-63/vmstat
node-63/meminfo
node-1000/meminfo

32

CSV Store: (4) Examine the store

• store: /home/<user>/ldmscon2021/advanced/…/ exercises/ldms/data/E2.4/csv
$ ls

33

• Naming convention with rollover = schema.epochtime. Rollover every 60 sec.
$ cat meminfo.HEADER.XXX

Override: vmstat has header within its data file.
$ cat vmstat.XXX

#Time,Time_usec,ProducerName,component_id,job_id,app_id,nr_free_pages,…
1635307195.001986,1986,node-63,63,0,0,47260754,…
1635307196.001820,1820,node-63,63,0,0,47260891,…
1635307197.002230,2230,node-63,63,0,0,47260800,…

CSV Store: (5) Examine the store timings:

• store: /home/<user>/ldmscon2021/advanced/…/exercises/ldms/data/E2.4/csv
$ grep node-63 meminfo.1596679548 # every 1 sec

1635307538.001148,1148,node-63,63,0,0,263519336,189045864,249258376,14716,60933672,…
1635307539.003048,3048,node-63,63,0,0,263519336,189045996,249258536,14716,60933716,…

1635307540.001397,1397,node-63,63,0,0,263519336,189045748,249258300,14716,60933720,…

$ grep node-1000 meminfo.1596679548 # every 5 sec
1635307540.006179,6179,node-1000,1000,0,0,263519336,189045748,249258300,14716,60933728,…

1635307545.005514,5514,node-1000,1000,0,0,263519336,189045992,249258756,14716,60933960,…
1635307550.005870,5870,node-1000,1000,0,0,263519336,189046068,249258916,14716,60934120,…

34

Section 2.5: Systemd Configuration

35

sampler.conf
env SAMPLE_INTERVAL=1000000
env SAMPLE_OFFSET=0
env MYHOST=$(eval hostname)
env COMPONENT_ID=$(echo ${MYHOST} | sed 's/compute//g')

load name=slurm_sampler
config name=slurm_sampler component_id=${COMPONENT_ID} producer=${MYHOST} \

instance=${MYHOST}/slurm_sampler task_count=8 job_count=8
start name=slurm_sampler interval=1000000 offset=0

load name=meminfo
config name=meminfo producer=${MYHOST} instance=${MYHOST}/meminfo component_id=${COMPONENT_ID}
start name=meminfo interval=${SAMPLE_INTERVAL} offset=${SAMPLE_OFFSET}

load name=vmstat
config name=vmstat producer=${MYHOST} instance=${MYHOST}/vmstat component_id=${COMPONENT_ID}
start name=vmstat interval=${SAMPLE_INTERVAL} offset=${SAMPLE_OFFSET}

36

ldmsd.sampler.env
This file contains environment variables for ldmsd.sampler,
which will affect
ldmsd initial configuration (e.g. transport, named socket path)

LDMS transport option (sock, rdma, or ugni)
LDMSD_XPRT=sock
LDMS Daemon service port
LDMSD_PORT=411
LDMS spank transport option (sock, rdma, or ugni)
LDMSD_SPANKD_XPRT=sock
LDMS spankd port
LDMSD_SPANKD_PORT=10000
LDMS memory allocation
LDMSD_MEM=512K
LDMSD_VERBOSE=QUIET
Log file control. The default is to log to syslog.
LDMSD_LOG_OPTION="-l /var/log/ldmsd.log"

37

Authentication method
LDMSD_AUTH_PLUGIN=munge

Authentication options
#LDMSD_AUTH_OPTION="-A conf=/opt/ovis/etc/ldms/ldmsauth.conf"

LDMS plugin configuration file, see /opt/ovis/etc/ldms/sampler.conf for
an example
LDMSD_PLUGIN_CONFIG_FILE=/opt/ovis/etc/ldms/sampler.conf

These are configured by configure script, no need to change.
LDMSD_PLUGIN_LIBPATH=/opt/ovis/lib64/ovis-ldms
ZAP_LIBPATH=/opt/ovis/lib64/ovis-lib

aggregator.conf
LDMS_XPRT is set in ldmsd.aggregator.env

Adding 1 producer per ldmsd.sampler, if you have thousands of nodes, feel free

to use a script to generate the configuration file. Producers take care only of

the LDMS connection aspect. Updater will take care of the data updating logic.

prdcr_add name=nid00012 host=nid00012 type=active xprt=ugni port=411 interval=20000000

prdcr_add name=nid00013 host=nid00013 type=active xprt=ugni port=411 interval=20000000

prdcr_add name=nid00014 host=nid00014 type=active xprt=ugni port=411 interval=20000000

prdcr_start_regex regex=.*

Create an updater for all producers and all sets.

updtr_add name=update_all interval=1000000 offset=500

Add all producers.

updtr_prdcr_add name=update_all regex=.*

By default, all sets in a producer will be updated.

Start the updater

updtr_start name=update_all
38

ldmsd.aggregator.env
This file contains environment variables for ldmsd.sampler,
which will affect
ldmsd initial configuration (e.g. transport, named socket
path)
LDMS transport option (sock, rdma, or ugni)
LDMSD_XPRT=sock
LDMS Daemon service port
LDMSD_PORT=412
LDMS memory allocation
LDMSD_MEM=2G
Number of event threads
LDMSD_NUM_THREADS=8
LDMSD_ULIMIT_NOFILE=100000
LDMSD_VERBOSE=CRITICAL
Log file control. The default is to log to syslog.
LDMSD_LOG_OPTION="-l /var/log/ldmsd.log"

39

Authentication method
LDMSD_AUTH_PLUGIN=munge

Authentication options
LDMSD_AUTH_OPTION="-A conf=/opt/ovis/etc/ldms/ldmsauth.conf"

LDMSD_PLUGIN_CONFIG_FILE=/opt/ovis/etc/ldms/aggregator.conf

These are configured by configure script, no need to change.
LDMSD_PLUGIN_LIBPATH=/opt/ovis/lib64/ovis-ldms
ZAP_LIBPATH=/opt/ovis/lib64/ovis-lib

ldmsd.sampler.service
[Unit]

Description = LDMS Sampler Daemon

Documentation = http://ovis.ca.sandia.gov

[Service]

Type = forking

EnvironmentFile = /opt/ovis/etc/ldms/ldmsd.sampler.env

Environment = HOSTNAME=%H

ExecStartPre = /bin/mkdir -p /opt/ovis/var/run/ldmsd

ExecStartPre = -/bin/bash -c "test -n
\"${LDMS_JOBINFO_DATA_FILE}\" && touch
${LDMS_JOBINFO_DATA_FILE} || touch
/var/run/ldms_jobinfo.data"

40

ExecStart = /opt/ovis/sbin/ldmsd \
-x ${LDMSD_XPRT}:${LDMSD_PORT} \
-x ${LDMSD_SPANKD_XPRT}:${LDMSD_SPANKD_PORT} \
-c ${LDMSD_PLUGIN_CONFIG_FILE} \
-a ${LDMSD_AUTH_PLUGIN} \
-v ${LDMSD_VERBOSE} \
-m ${LDMSD_MEM} \
$LDMSD_LOG_OPTION \
-r /opt/ovis/var/run/ldmsd/sampler.pid

[Install]
WantedBy = default.target

Note: On our production cray machines we set up the following link: /etc/systemd/system/ldmsd.sampler.service ->
/opt/ovis/etc/systemd/system/ldmsd.sampler.service
We then install the service file, via rpm install, to /opt/ovis/etc/systemd/system/ldmsd.sampler.service

ldmsd.aggregator.service
[Unit]

Description = LDMS Daemon

Documentation = http://ovis.ca.sandia.gov

[Service]

Type = forking

LimitNOFILE = ${LDMSD_ULIMIT_NOFILE}

EnvironmentFile =
/opt/ovis/etc/ldms/ldmsd.aggregator.env

Environment = HOSTNAME=%H

ExecStartPre = /bin/mkdir -p /opt/ovis/var/run/ldmsd

41

ExecStart = /opt/ovis/sbin/ldmsd \
-x ${LDMSD_XPRT}:${LDMSD_PORT} \
-c ${LDMSD_PLUGIN_CONFIG_FILE} \
-a ${LDMSD_AUTH_PLUGIN} \
-v ${LDMSD_VERBOSE} \
-m ${LDMSD_MEM} \
$LDMSD_LOG_OPTION \
-P ${LDMSD_NUM_THREADS} \
-r /opt/ovis/var/run/ldmsd/aggregator.pid

[Install]
WantedBy = default.target

Note: On our production cray machines we set up the following link: /etc/systemd/system/ldmsd.aggregator.service
-> /opt/ovis/etc/systemd/system/ldmsd.aggregator.service
We then install the service file, via rpm install, to /opt/ovis/etc/systemd/system/ldmsd.aggregator.service

Run Sampler and Aggregator ldmsd using
systemctl
• Run sampler and aggregator
$ systemctl start ldmsd.sampler
$ systemctl start ldmsd.aggregator
• Use ldms_ls to query aggregator for sets
• Modify the ldmsd configuration file specified in the ldmsd.sampler.env

file to load and start an additional set
• Restart sampler and aggregator
$ system restart ldmsd.sampler
$ system restart ldmsd.aggregator
• Use ldms_ls to query aggregator for sets

42

END Advanced Part 2

43

