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Exercise 2.1: Re-configuration
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Manually Modify Verbosity of a Running ldmsd

This is useful if you don’t want to fill up your log files but want to perform a more 
in-depth inspection of what is happening on a running ldmsd while troubleshooting
• In one terminal window start a sampler and an aggregator

$ ~/ldmscon2021/advanced/exercises/ldms/scripts/E2.1/start_ldms_e2.1_sampler.sh
$ ~/ldmscon2021/advanced/exercises/ldms/scripts/E2.1/start_ldms_e2.1_agg.sh
Since the daemons are running without verbosity specified it is the default of “ERROR”. The 
associated log files should be empty

• Verify that both daemons are running
$ ps auxw | grep ldmsd should return something like:

ldmsd -x sock 10001 –l /home/…/ldms/logs/e2.1_sampler.log
ldmsd -x sock 20001 –l /home/…/ldms/logs/e2.1_agg.log



Modify Verbosity of a Running ldmsd (cont)

• In the second terminal window on the same host run:
$ tail –f ~/ldmscon2021/advanced/exercises/ldms/logs/e2.1_agg.log

• In the first window use the ldmsd_controller to change loglevel to DEBUG:
$ echo "loglevel level=DEBUG" | ldmsd_controller --host localhost --xprt sock --port  20001

• You now should see a continuous stream of information being logged at a variety 
of levels to the aggregator log file displayed in your second terminal window
• You can experiment with changing the levels between the states of: DEBUG, 

INFO, ERROR, CRITICAL, and QUIET to see how the information flowing to the log 
file can be changed dynamically
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Use a Script to Modify Verbosity of a ldmsd
A script to modify the verbosity of a running ldmsd can be found at:

~/ldmscon2021/advanced/exercises/ldms/scripts/E2.1/change_verbosity_e2.1.sh
=====================================

#!/bin/bash

VERBOSITY=$1

PORT=$2

if [ -z ${VERBOSITY} ] | [ -z ${PORT} ]

then

echo "Usage: change_verbosity_e2.1.sh <verbosity level> <ldmsd port>"

exit

fi

echo "loglevel level=${VERBOSITY}" | ldmsd_controller --host localhost --xprt sock --port ${PORT}

=====================================

Try it (Arguments are verbosity level and port number.)
$ ~/ldmscon2021/.../change_verbosity_e2.1.sh DEBUG 20001
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Use a Script to Modify the Collection 
Interval of a Sampler ldmsd
A script to modify the verbosity of a running ldmsd can be found at: 

~/ldmscon2021/advanced/exercises/ldms/scripts/E2.1/change_sample_interval_e2.1_sampler.sh
==========================

#!/bin/bash

PLUGIN=$1

INTERVAL=$2

if [ -z ${PLUGIN} ] | [ -z ${INTERVAL} ]

then

echo "Usage: change_sample_interval_e2.1_sampler.sh <plugin name> <interval in usec>"

exit

fi

echo "stop name=${PLUGIN}" | ldmsd_controller --host localhost --xprt sock --port 10001

echo "start name=${PLUGIN} interval=${INTERVAL} offset=0" | ldmsd_controller --host localhost --xprt 
sock --port 10001

==========================

Try it (Arguments are plugin name and interval in usec)
$ ~/ldmscon2021/.../change_sample_interval_e2.1_sampler.sh meminfo 5000000
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Use a Script to Remove a Sampler Plugin
A script to modify the verbosity of a running ldmsd can be found at:
~/ldmscon2021/advanced/exercises/ldms/scripts/E2.1/remove_sampler_plugin_e2.1_sampler.sh
===============================

#!/bin/bash

PLUGIN=$1

if [ -z ${PLUGIN} ]

then

echo "Usage: remove_sampler_plugin_e2.1_sampler.sh <plugin name (e.g., meminfo)>"

exit

fi

echo "stop name=${PLUGIN}" | ldmsd_controller --host localhost --xprt sock --port 10001

echo "term name=${PLUGIN}" | ldmsd_controller --host localhost --xprt sock --port 10001

===============================

Try it (Argument is a plugin name. Note: This script uses port 10001 only)

$ ~/ldmscon2021/.../remove_sampler_plugin_e2.1_sampler.sh vmstat
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Use a Script to Load a Sampler Plugin
A script to modify the verbosity of a running ldmsd can be found at:
~/ldmscon2021/advanced/exercises/ldms/scripts/E2.1/load_sampler_plugin_e2.1_sampler.sh
===============================

#!/bin/bash

PLUGIN=$1

if [ -z ${PLUGIN} ]

then

echo "Usage: load_sampler_plugin_e2.1_sampler.sh <plugin name (e.g., meminfo)>"

exit

fi

CONFDIR=/home/brandt/ldmscon2020/advanced/exercises/ldms/conf/E2.1

cat ${CONFDIR}/${PLUGIN}.conf | ldmsd_controller --host localhost --xprt sock --port 10001

===============================

vmstat.conf:

load name=vmstat

config name=vmstat producer=node-2 instance=node-2/vmstat component_id=2 job_set=node-2/slurm
uid=1005 gid=1005 perm=0755

start name=vmstat interval=1000000 offset=0

===============================

Try it (Argument is a plugin name. Note: This script uses port 10001 only)
$ ~/ldmscon2021/.../load_sampler_plugin_e2.1_sampler.sh vmstat 8



Exercise 2.2: Authentication
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Using LDMS Authentication
• “none” (no) authentication is the default and what you used in the basic and advanced part 1 exercises
• Examples:

$ldmsd –x sock:10001
$ldmsd –x sock:10001 –a none

• auth “none”
• All data is accessible to anyone who has network access and wants to query for it
• Anyone who has network access can (re)configure the running ldmsd

• auth “ovis”
• Network access is available to anyone who knows the shared secret
• Anyone who has network access can (re)configure the running ldmsd

• auth “munge”
• Data is accessible to user.group who has been authenticated on this connection
• Each metric set contains user.group and permissions
• Only requests on a connection from user.group can access metric set data for which they have permissions
• Configuration changes cannot be made on a daemon for which the connection user.group is not 

authorized
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Using “ovis” Shared Secret Authentication
SYNOPSIS: ldms_app -a ovis [-A conf=PATH]
DESCRIPTION: ovis_auth uses a shared secret to authenticate the connection. The secret is 
a text file containing the line: secretword=X where X is a string at least 8 characters long.
The following four locations are checked, in order, for the secret:
1) full file path given on the command line via "-A conf=authfile",
2) full file path defined by the environment variable “LDMS_AUTH_FILE”,
3) $HOME/.ldmsauth.conf, and
4) $SYSCONFDIR/ldmsauth.conf (e.g. /etc/ldmsauth.conf).
$HOME is taken from /etc/password and $SYSCONFDIR is determined at ldms compile 
time. 
• If one of these is not set, the search continues with the next location. 
• A failure in reading one, if the file exists, ends the search and is a failure to 

authenticate.
The secret file permissions must be set to 600 or more restrictive.
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Run An ldmsd Sampler Daemon Using 
Shared Secret Authentication
• Check contents, ownership, and permissions of: ~/ldmscon2021/advanced/../ldms/conf/E2.2/my_secret
$ ls -l ~/ldmscon2021/advanced/../ldms/conf/E2.2/my_secret
$ -rw------- 1 uid gid 20 Oct 27 2021 my_secret
$ cat ~/ldmscon2021/advanced/../ldms/conf/E2.2/my_secret
$ secretword=shhhhhhh

Run a sampler ldmsd using “ovis” shared secret authentication: …/E2.2/start_sampler_shared_secret.sh
$ ldmsd -x sock:10001 \
-l ~/ldmscon2021/advanced/../ldms/logs/E2.2/sampler_auth.log \
-c ~/ldmscon2021/advanced/../ldms/conf/E2.2/simple_sampler.conf \
–a ovis –A conf=/home/<user>/ldmscon2021/advanced/…/ldms/conf/E2.2/my_secret

• -x: transport : listener port
• -l: Specify the log file path
• -c: Specify configuration file
• -a: Authentication method and associated file
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ldms_ls Using “ovis” Shared Secret Authentication

• Try ldms_ls with no authentication
$ ldms_ls -h localhost –x sock –p 10001

Connection failed/rejected

• Now try ldms_ls with same authentication as sampler daemon
$ ldms_ls -h localhost -x sock -p 10001 -a ovis –A \

conf=/home/<user>/ldmscon2021/advanced/exercises/ldms/conf/E2.2/my_secret

node-64/vmstat

node-64/meminfo

• Now set the LDMS_AUTH_FILE environment variable to point to your shared secret
$ export LDMS_AUTH_FILE=/home/<user>/ldmscon2021/advanced/…/conf/E2.2/my_secret

• Use ldms_ls without specifying the location of your shared secret on the command line
$ ldms_ls –h localhost –x sock –p 10001 –a ovis

node-64/vmstat

node-64/meminfo
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• Run an ldmsd aggregator using shared secret authentication that matches your sampler (…/conf/E2.2 
my_secret.sh)

$ ldmsd -x sock:20001 

-l /home/<user>/ldmscon2021/advanced/.. /ldms/logs/E2.2_aggd.log 

-a ovis –A conf=/home/<user>/ldmscon2021/advanced/../ldms/conf/E2.2/my_secret

• -x: transport : listener port
• -l: Specify the log file path

• -a: Specify alternate shared secret file

14

Aggregator -> sampler authentication



• Kill your previous aggregator ldmsd

• Run an ldmsd aggregator using shared secret authentication not matching your sampler
• Note: you will need to create your “other_secret” in the conf directory

$ ldmsd -x sock:20001 

-l /home/<user>/ldmscon2021/advanced/../ldms/logs/E2.2_aggd.log 

-a ovis –A conf=/home/<user>/ldmscon2021/advanced/ldms/conf/E2.2/other_secret

• -x: transport : listener port

• -l: Specify the log file path
• -a: Specify alternate shared secret file

• Kill all of your running ldmsd and verify they are gone
$killall ldmsd
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Using Munge Authentication
• Run a daemon using munge authentication:
$ldmsd -x sock:10001 -v DEBUG –l \
~/ldmscon2021/advanced/../ldms/logs/E2.2/samplerd.log –c \
~/ldmscon2021/advanced/../ldms/conf/E2.2/sampler.conf -a munge

Note: This will also write out DEBUG-level information to the specified (-l) log.

• Run ldms_ls on that node to see sets, set meta-data, and set data: 
$ ldms_ls -h localhost -x sock -p 10001 -a munge

$ ldms_ls -h localhost -x sock -p 10001 -v -a munge

$ ldms_ls -h localhost -x sock -p 10001 -l -a munge

Note: Users will not be able to authenticate to a daemon launched using “-a munge” if not querying 
using the “-a munge” option. 

Note: Users will only be able to see sets as allowed by set permissions in response to ldms_ls. 
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Using Mixed Authentication Methods
• Edit sampler configuration file for E2.2 and uncomment:
#auth_add name=munge_port plugin=munge  # Defines a domain for munge authentication
#listen auth=munge_port xprt=sock port=10001  # use munge_port for listening on 
sock:10001

#auth_add name=ovis_port plugin=ovis \
#conf=/home/<user>/ldmscon2021/advanced/exercises/ldms/conf/E2.2/my_secret

#listen auth=ovis_port xprt=sock port=30001

• Edit aggregator configuration file for E2.2 and uncomment:
#auth_add name=munge_port plugin=munge # Defines a tag for munge authentication
…20000000 #auth=munge_port # Use munge authentication for this producer
#listen auth=munge_port xprt=sock port=20001  # Use munge authenticaion on sock:20001 
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Using Mixed Authentication Methods

• Start sampler daemon using modified E2.2/simple_sampler.conf
$ldmsd –c /home/<user>/ldmscon2021/advanced/…/conf/E2.2/simple_sampler.conf

• Start agg daemon using modified E2.2/agg.conf
$ldmsd –c /home/<user>/ldmscon2021/advanced/…/conf/E2.2/agg.conf
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Using Mixed Authentication Methods
• Try using ldms_ls to talk to sampler on each of ports 10001 (munge) and 30001 (ovis)
$ldms_ls -h localhost -x sock -p 10001 -a munge

node-64/vmstat

node-64/meminfo

$ldms_ls -h localhost -x sock -p 30001 -a ovis -A 
conf=/home/user64/ldmscon2021/advanced/exercises/ldms/conf/E2.2/my_secret

node-64/vmstat

node-64/meminfo

• Try using ldms_ls to talk to aggregator on port 20001 (munge)
$ldms_ls -h localhost -x sock -p 20001 -a munge

node-64/vmstat

node-64/meminfo

• Using each of –a munge and –a ovis, and ports 10001 and 30001 respectively, query ldmsd on
node-64 and see how munge restricts access based on uid, gid, and perms

19



Exercise 2.3: Scale Emulation
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Run Many ldmsd Per Compute Node
• Differentiate between ldmsd and sampler configurations using port number

• ldmsd –x sock:10001 –c /home/<user>/advanced/exercises/ldms/conf/scripts/E2.3/sampler_10001.conf
• …
• ldmsd –x sock:10100 –c /home/<user>/advanced/exercises/ldms/conf/scripts/E2.3 /sampler_10100.conf

• There is a sample script for this: 
/home/<user>/ldmscon2021/advanced/exercises/ldms/scripts/E2.3/start_multi_samplers.sh

• Generates configuration files and writes them to: 
/home/<user>/ldmscon2021/advanced/exercises/ldms/conf/E2.3/multi_sampler_confs/multi_sampler_
<port#>.conf

• Starts a ldmsd per configuration file
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Example Multi-ldmsd Sampler Configuration

multi_sampler_10001.conf
=================

load name=meminfo

config name=meminfo producer=node-2_10001 instance=node-2_10001/meminfo component_id=210001

start name=meminfo interval=1000000 offset=0

load name=vmstat

config name=vmstat producer=node-2_10001 instance=node-2_10001/vmstat component_id=210001

start name=vmstat interval=1000000 offset=0

===================
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Example Multi-ldmsd Sampler Start Script
start_multi_samplers.sh
=================

#!/bin/bash

ME=$(whoami)

CONFDIR=/home/${ME}/advanced/exercises/ldms/conf/E2.3/multi-samplers_conf

LDMSD_AUTH_PLUGIN=none

LOGLEVEL=QUIET

LDMSD_PLUGIN_LIBPATH=/opt/ovis/lib/ovis-ldms

ZAP_LIBPATH=/opt/ovis/lib/ovis-lib

ldmsd -x sock:10001 -v ${LOGLEVEL} -c ${CONFDIR}/sampler_10001.conf -r /home/${ME}/advanced/exercises/ldms/scripts/E2.3/sampler_10001.pid -a ${LDMSD_AUTH_PLUGIN}

ldmsd -x sock:10002 -v ${LOGLEVEL} -c ${CONFDIR}/sampler_10002.conf -r /home/${ME}/advanced/exercises/ldms/scripts/E2.3/sampler_10002.pid -a ${LDMSD_AUTH_PLUGIN}

.

.

.

=================
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Example Multi-ldmsd Aggregator Configuration
prdcr_add name=prdcr-grp1_10001 host=compute1 port=10001 xprt=sock type=active interval=20000000
prdcr_start name=prdcr-grp1_10001
prdcr_add name=prdcr-grp2_10002 host=compute1 port=10002 xprt=sock type=active interval=20000000

prdcr_start name=prdcr-grp2_10002
…
updtr_add name=updtr1 interval=1000000 offset=200000

updtr_prdcr_add name=updtr1 regex=prdcr-grp1_.*
updtr_start name=updtr1

updtr_add name=updtr2 interval=1000000 offset=200000

updtr_prdcr_add name=updtr2 regex=prdcr-grp2_.*
updtr_start name=updtr2

load name=store_csv

config name=store_csv path=/home/<user>/advanced/exercises/ldms/data/ buffer=0

strgp_add name=meminfo-store_csv plugin=store_csv container=meminfo_metrics schema=meminfo

strgp_start name=meminfo-store_csv

strgp_add name=vmstat-store_csv plugin=store_csv container=vmstat_metrics schema=vmstat
strgp_start name=vmstat-store_csv
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Run Many ldmsd Per Compute Node

• Modify the E2.3 start_multi_samplers.sh script to generate the number of confs and samplers 
you want

• Run the E2.3 start_agg.sh and look at the resulting files
• Use ps auxw | grep ldmsd to see the many running ldmsd

• Use ldms_ls –h localhost –x sock –p 20001 to see what your aggregator is aggregating
• Run pkill ldmsd to kill your aggregator daemon

Note: Running in this containerized environment your compute and memory resources are much 
more limited than on a traditional compute node. Keep the number of sampler ldmsd to 10 or less 
for this exercise.
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Use of the ”test_sampler” Plugin
• Generation of arbitrary metric sets whose component values change in an expected way
• Enables generation of sets that have the same content as those being collected from existing 

telemetry but without the backend overhead (e.g. collecting GPU metrics can take ~10ms).
• Enables large scale infrastructure testing of large sets and/or large numbers of sets

• Example configuration:
load name=test_sampler
config name=test_sampler action=add_schema schema=set1 \
metrics=meta1:meta:U64:1234,component_id:meta:U64:${COMPONENT_ID},job_id:data:U64:1,scalar1:data:U64:1,scalar2:data:U
64:100,array_100_element:data:U64_ARRAY:1:100
config name=test_sampler action=add_schema schema=set2 \
metrics=meta1:meta:U64:5678,component_id:meta:U64:${COMPONENT_ID},job_id:data:U64:1,scalar1:data:U64:1,scalar2:data:U
64:100,array_10_element:data:U64_ARRAY:100:10

config name=test_sampler action=add_set schema=set1 instance=${MYHOST}_${COMPONENT_ID}/set1 \
producer=${MYHOST}_${COMPONENT_ID}
config name=test_sampler action=add_set schema=set2 instance=${MYHOST}_${COMPONENT_ID}/set2 \
producer=${MYHOST}_${COMPONENT_ID}

start name=test_sampler interval=1000000 offset=0
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Output From ”test_sampler” Configuration
node-2_2/set2: consistent, last update: Wed Aug 05 21:16:21 2020 -0500 [1416us] 

M u64        meta1                                      5678

M u64        component_id                        2

D u64        job_id 1

D u64        scalar1                                       55

D u64        scalar2                                       154

D u64[]      array_10_element                  154,154,154,154,154,154,154,154,154,154

Note: If there is interest we can use a LDMS User Group meeting to demonstrate how to use an actual 
metric set as a template to generate an emulation test set.
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Exercise 2.4: CSV Store configs 
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Store Philosophy

• Support a few stores writing to well-known formats that could be easily 
converted from there. CSV is one such standard.
• Features:

• One store plugin can be configured to handle multiple schema (e.g., meminfo vs vmstat) 
and multiple instances (e.g., all nodes’ meminfo)

• Defaults and overrides (e.g., handle different schema differently)
• Can be written to a file or piped to downstream consumers (e.g., port for syslog)
• File Rollover and closed file manipulations
• Buffering and/or flushing
• File permission setting
• Optional separate header (to support loading into a database)
• IETF 4180 quoting for header column names
• Configuration file for options to support multiplicity of options
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CSV Store: (1) configuration for L1 samplers
• ldmsd configuration files: ~/ldmscon2021/advanced/…/conf/E2.4
• 2 samplers with different hostnames and component_ids. 

$ cat sampler_realnode.conf
load name=meminfo
config name=meminfo producer=${HOST} instance=${HOST}/meminfo
component_id=${COMP_ID}
start name=meminfo interval=1000000 offset=0

load name=vmstat
config name=vmstat producer=${HOST} instance=${HOST}/vmstat component_id=${COMP_ID}
start name=vmstat interval=1000000 offset=0

$ cat sampler_fakenode.conf
load name=meminfo
config name=meminfo producer=node-1000 instance=node-1000/meminfo
component_id=1000
start name=meminfo interval=5000000 offset=0

30

Hardwired fake node-1000 and comp_id
Only has meminfo @ 5 sec intervals



CSV Store: (2) configuration for L2 store
$ cat agg.conf

…
load name=store_csv
# store can take the configure lines in a configuration file\
(opt_file=XXX.conf) or called as multiple config lines
config name=store_csv path=XXX/data altheader=1 buffer=0 rolltype=1 
rollover=60 \ # DEFAULT
# override for schema vmstat (container and schema uniquely identify)
config name=store_csv altheader=0 container=csv schema=vmstat

strgp_add name=policy_mem plugin=store_csv container=csv\
schema=meminfo
strgp_prdcr_add name=policy_mem regex=.*
strgp_start name=policy_mem
…
<<similar for vmstat>>

31

Config line without container 
and schema is the default:
• path = path to store. 

path/container/schema 
are the csv files

• altheader = 1 – write 
header to a separate file

• buffer = 0 – don’t use 
system buffering, flush 
after every line

• Rolltype =1 – rollover the 
output file based on time

• Rollover = 60 – every 60 
seconds

Others are overrides:
• Only for csv/vmstat

altheader = 0



CSV Store: (3) Start both L1 and L2

• Run scripts: ~/ldmscon2021/advanced/…/scripts/E2.4
$ ./start_sampler_realnode.sh

$ ./start_sampler_fakenode.sh

$ ./start_agg.sh

$ ps aux | grep ldmsd    #shows all 3 ldmsd
$ ldms_ls -x sock -p 21001 –a munge   #query the aggregator

node-63/vmstat
node-63/meminfo
node-1000/meminfo
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CSV Store: (4) Examine the store

• store: /home/<user>/ldmscon2021/advanced/…/ exercises/ldms/data/E2.4/csv
$ ls

33

• Naming convention with rollover = schema.epochtime. Rollover every 60 sec.
$ cat meminfo.HEADER.XXX

Override: vmstat has header within its data file.
$ cat vmstat.XXX

#Time,Time_usec,ProducerName,component_id,job_id,app_id,nr_free_pages,…
1635307195.001986,1986,node-63,63,0,0,47260754,…
1635307196.001820,1820,node-63,63,0,0,47260891,…
1635307197.002230,2230,node-63,63,0,0,47260800,…



CSV Store: (5) Examine the store timings:

• store: /home/<user>/ldmscon2021/advanced/…/exercises/ldms/data/E2.4/csv
$ grep node-63 meminfo.1596679548 # every 1 sec

1635307538.001148,1148,node-63,63,0,0,263519336,189045864,249258376,14716,60933672,…
1635307539.003048,3048,node-63,63,0,0,263519336,189045996,249258536,14716,60933716,…

1635307540.001397,1397,node-63,63,0,0,263519336,189045748,249258300,14716,60933720,…

$ grep node-1000 meminfo.1596679548 # every 5 sec
1635307540.006179,6179,node-1000,1000,0,0,263519336,189045748,249258300,14716,60933728,…

1635307545.005514,5514,node-1000,1000,0,0,263519336,189045992,249258756,14716,60933960,…
1635307550.005870,5870,node-1000,1000,0,0,263519336,189046068,249258916,14716,60934120,…
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Section 2.5: Systemd Configuration
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sampler.conf
env SAMPLE_INTERVAL=1000000
env SAMPLE_OFFSET=0
env MYHOST=$(eval hostname)
env COMPONENT_ID=$(echo ${MYHOST} | sed 's/compute//g')

load name=slurm_sampler
config name=slurm_sampler component_id=${COMPONENT_ID} producer=${MYHOST} \

instance=${MYHOST}/slurm_sampler task_count=8 job_count=8
start name=slurm_sampler interval=1000000 offset=0

load name=meminfo
config name=meminfo producer=${MYHOST} instance=${MYHOST}/meminfo component_id=${COMPONENT_ID} 
start name=meminfo interval=${SAMPLE_INTERVAL} offset=${SAMPLE_OFFSET}

load name=vmstat
config name=vmstat producer=${MYHOST} instance=${MYHOST}/vmstat component_id=${COMPONENT_ID}
start name=vmstat interval=${SAMPLE_INTERVAL} offset=${SAMPLE_OFFSET}
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ldmsd.sampler.env
# This file contains environment variables for ldmsd.sampler, 
which will affect
# ldmsd initial configuration (e.g. transport, named socket path)

# LDMS transport option (sock, rdma, or ugni)
LDMSD_XPRT=sock
# LDMS Daemon service port
LDMSD_PORT=411
# LDMS spank transport option (sock, rdma, or ugni)
LDMSD_SPANKD_XPRT=sock
# LDMS spankd port
LDMSD_SPANKD_PORT=10000
# LDMS memory allocation
LDMSD_MEM=512K
LDMSD_VERBOSE=QUIET
# Log file control. The default is to log to syslog.
# LDMSD_LOG_OPTION="-l /var/log/ldmsd.log"

37

# Authentication method
LDMSD_AUTH_PLUGIN=munge

# Authentication options
#LDMSD_AUTH_OPTION="-A conf=/opt/ovis/etc/ldms/ldmsauth.conf"

# LDMS plugin configuration file, see /opt/ovis/etc/ldms/sampler.conf for 
an example
LDMSD_PLUGIN_CONFIG_FILE=/opt/ovis/etc/ldms/sampler.conf

# These are configured by configure script, no need to change.
LDMSD_PLUGIN_LIBPATH=/opt/ovis/lib64/ovis-ldms
ZAP_LIBPATH=/opt/ovis/lib64/ovis-lib



aggregator.conf
# LDMS_XPRT is set in ldmsd.aggregator.env

# Adding 1 producer per ldmsd.sampler, if you have thousands of nodes, feel free

# to use a script to generate the configuration file. Producers take care only of

# the LDMS connection aspect. Updater will take care of the data updating logic.

prdcr_add name=nid00012 host=nid00012 type=active xprt=ugni port=411 interval=20000000

prdcr_add name=nid00013 host=nid00013 type=active xprt=ugni port=411 interval=20000000

prdcr_add name=nid00014 host=nid00014 type=active xprt=ugni port=411 interval=20000000

prdcr_start_regex regex=.*

# Create an updater for all producers and all sets.

updtr_add name=update_all interval=1000000 offset=500

# Add all producers.

updtr_prdcr_add name=update_all regex=.*

# By default, all sets in a producer will be updated.

# Start the updater

updtr_start name=update_all
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ldmsd.aggregator.env
# This file contains environment variables for ldmsd.sampler, 
which will affect
# ldmsd initial configuration (e.g. transport, named socket 
path)
# LDMS transport option (sock, rdma, or ugni)
LDMSD_XPRT=sock
# LDMS Daemon service port
LDMSD_PORT=412
# LDMS memory allocation
LDMSD_MEM=2G
# Number of event threads
LDMSD_NUM_THREADS=8
LDMSD_ULIMIT_NOFILE=100000
LDMSD_VERBOSE=CRITICAL
# Log file control. The default is to log to syslog.
LDMSD_LOG_OPTION="-l /var/log/ldmsd.log"
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# Authentication method
LDMSD_AUTH_PLUGIN=munge

# Authentication options
LDMSD_AUTH_OPTION="-A conf=/opt/ovis/etc/ldms/ldmsauth.conf"

LDMSD_PLUGIN_CONFIG_FILE=/opt/ovis/etc/ldms/aggregator.conf

# These are configured by configure script, no need to change.
LDMSD_PLUGIN_LIBPATH=/opt/ovis/lib64/ovis-ldms
ZAP_LIBPATH=/opt/ovis/lib64/ovis-lib



ldmsd.sampler.service
[Unit]

Description = LDMS Sampler Daemon

Documentation = http://ovis.ca.sandia.gov

[Service]

Type = forking

EnvironmentFile = /opt/ovis/etc/ldms/ldmsd.sampler.env

Environment = HOSTNAME=%H

ExecStartPre = /bin/mkdir -p /opt/ovis/var/run/ldmsd

ExecStartPre = -/bin/bash -c "test -n 
\"${LDMS_JOBINFO_DATA_FILE}\" && touch 
${LDMS_JOBINFO_DATA_FILE} || touch 
/var/run/ldms_jobinfo.data"
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ExecStart = /opt/ovis/sbin/ldmsd \
-x ${LDMSD_XPRT}:${LDMSD_PORT} \
-x ${LDMSD_SPANKD_XPRT}:${LDMSD_SPANKD_PORT} \
-c ${LDMSD_PLUGIN_CONFIG_FILE} \
-a ${LDMSD_AUTH_PLUGIN} \
-v ${LDMSD_VERBOSE} \
-m ${LDMSD_MEM} \
$LDMSD_LOG_OPTION \
-r /opt/ovis/var/run/ldmsd/sampler.pid

[Install]
WantedBy = default.target

Note: On our production cray machines we set up the following link: /etc/systemd/system/ldmsd.sampler.service -> 
/opt/ovis/etc/systemd/system/ldmsd.sampler.service
We then install the service file, via rpm install, to /opt/ovis/etc/systemd/system/ldmsd.sampler.service



ldmsd.aggregator.service
[Unit]

Description = LDMS Daemon

Documentation = http://ovis.ca.sandia.gov

[Service]

Type = forking

LimitNOFILE = ${LDMSD_ULIMIT_NOFILE}

EnvironmentFile = 
/opt/ovis/etc/ldms/ldmsd.aggregator.env

Environment = HOSTNAME=%H

ExecStartPre = /bin/mkdir -p /opt/ovis/var/run/ldmsd
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ExecStart = /opt/ovis/sbin/ldmsd \
-x ${LDMSD_XPRT}:${LDMSD_PORT} \
-c ${LDMSD_PLUGIN_CONFIG_FILE} \
-a ${LDMSD_AUTH_PLUGIN} \
-v ${LDMSD_VERBOSE} \
-m ${LDMSD_MEM} \
$LDMSD_LOG_OPTION \
-P ${LDMSD_NUM_THREADS} \
-r /opt/ovis/var/run/ldmsd/aggregator.pid

[Install]
WantedBy = default.target

Note: On our production cray machines we set up the following link: /etc/systemd/system/ldmsd.aggregator.service
-> /opt/ovis/etc/systemd/system/ldmsd.aggregator.service
We then install the service file, via rpm install, to /opt/ovis/etc/systemd/system/ldmsd.aggregator.service



Run Sampler and Aggregator ldmsd using 
systemctl
• Run sampler and aggregator
$ systemctl start ldmsd.sampler
$ systemctl start ldmsd.aggregator
• Use ldms_ls to query aggregator for sets
• Modify the ldmsd configuration file specified in the ldmsd.sampler.env

file to load and start an additional set
• Restart sampler and aggregator
$ system restart ldmsd.sampler
$ system restart ldmsd.aggregator
• Use ldms_ls to query aggregator for sets
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END Advanced Part 2
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