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Project goal: Characterize interactions of doped cement materials
(Low pH cements and CEM [) with carbonate geologic strata within the
Mount Scopus Group (i.e., limestone, marl, chalk, oil shale) of the

northern Negey, Israel.

Specific objectives:

i) Use laboratory experiments to characterize the reactions and

transport of radionuclides (dopants) and primary matrix
constituents at the interface between carbonate rock types and

cementitious barriers; and,

ii) Demonstrate and benchmark multiphase diffusion reactive
transport models for parameter estimation and to simulate long-
term interactions considering potential intermediate depth
borehole disposal.



SO Expected Contribution to IDB
' Design and Safety Case
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* Guide the selection of the chemically appropriate cement
formulation for the host rocks in Israel

 Provide mechanistic basis and validated models for reactions
and diffusive mass transport at representative rock-cement
interfaces

* Define expected contaminant migration factors
(e.g., effective R and K,) from cement waste form to rock
formation

* Provide input on the safety margin for unsaturated cement
environment (strength, formulation and migration)
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Rocks and cement 1313 tests (L/S=10and 1 1315 tests (diffusion) —
characterization — over range of pH) — calibration of tortuosity,
porosity, mineral calibration of mineral verification of mineral
assemblages reaction set reaction set

Data from
cement/rock
interface
experiments

. Cement/rock
planning | interface

<

measured

modeling -
prediction

comparison

Solids characterization — micro-CT,
Nano-indentation, SEM, LA-ICP-MS

W ComPIEtEd

Interface Evaluations

* 6 rock types, each with 2 cements
* Experiments —ca. 1-2 years

e Simulations

Experimental planning
Experimental data interpretation
Long-term prediction



Model assumptions:

1. Each cell is well mixed
Local equilibrium
C-(N-)A-S-H solid solutions

Multi-ionic diffusion only

A N

Materials intact throughout the
entire simulation

Conceptual Model - R
Rock/Cement Interface

Carbonated
<+—— Rock *~cement ~TF— Cement —»|

7/

1l
1

Model conditions for experimental case:

* 100 years simulated, saturated conditions, 30 C
 1-D, 378 cells, Finite volume

* No fluxes at external boundaries

* Thermodynamic databases — Minteq v4; LLNL,
CEMDATA18 (Lothenbach et al. (2018))

* Initial carbonate content — based on 1313 test
* Tortuosity — calibrated values
e Porosity — measured values



Simulations Results — PRI
pH Profiles
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Solid Phases Distribution Profiles
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* Portlandite depletion e Thaumsite formation
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* Thaumsite formation (both sides of interface)
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1 Interface Models Results
- “¥Carbonation Front Progress Prediction ="

@ OPC paste simulation results
M low pH cement simulation results
QO OPC paste projection

Olow pH cement projection ’
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The location, X, of the moving carbonation
front as a function of cement composition
and conditions, when the relative humidity
is above 50%, is (Papadakis et al., 1989):

X, = AVt

X - the location, of the moving carbonation
front (mm)

A - proportionality constant (mm yr?->)

t - time (years)

Long-term scenarios (saturated conditions):

* Oil shale-OPC: 16 and 51 mm of OPC are
carbonated in 1,000 and 10,000 years

* Oil shale-low pH cement: 6 and 19 mm of
cement are carbonated in 1,000 and
10,000 years

Estimates for the unsaturated case need to
be addressed
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Volume Change (< 100 yrs)
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Interface Models Results
Majors Profiles

Oil shale — OPC paste
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OPC paste vs. low pH cement:

Diffusion distance in OPC paste is ~500 mm compared ~100 mm
in low pH cement as a result of lower tortuosity factor (25 vs 75)
and higher porosity (~¥25% vs ~16%)

Significant change in oil shale pore water chemistry is observed

deeper in the rock for OPC paste interface

— Initial concentration
——100 years

- - Interface
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Key observations:

* Portlandite and CSH depletion in OPC paste
e Ettringite and Hydrogarnet formation in OPC paste

* Thaumasite formation in rocks (limestone and marl)

*C052 concentrations are dissolved porewater concentrations

Depth of altered cement is
controlled by porewater
carbonate gradient and

porosity/tortuosity? (¢/t?) ratio
of the rocks

11



OPC paste Interfaces With NS
Il N A&

Oil Shale/Marl/Limestone

70
. . @ oil shale simulation results Qil shale projection
Long-term scenarios (saturated conditions):  marl simulation results © marl projection
. 60 - M limestone simulation results Olimesone projection
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50 - @
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MicroCT Sectioning
Aging
1-3
s |
epoxy
SEM/EDS Surface Roughness Polishing

(Triboindenter)

Micro/Nanoindentation

& Fiducial Placement LA-ICP-MS laser depth &
micro - rocks + cement image co-registration concentration profiling
nano — cement with SEM/EDS

13



Carlos F. Jove Colon, Carlos M. Lopez, Kris Kuhlman, Ed Matteo (SNL)

4

rd

Objective: To represent a leaching experiment (EPA Method 1315) of a marl
rock sample with a 1D reactive transport model using PFLOTRAN** that
captures episodic changes of solution chemistries at leaching intervals.

Problem Setup:

« Mesh discretization: One cell for the leaching/bath solution (top); 43 cells
for the solid monolith (bottom)

«  Marl porosity (~32%), estimated from constituent mineral fractions (XRD)
« Darcy permeability = 1016 m?
«  Marl minerals (vol. fractions):

e Calcite (0.64) - Constrained from XRD

« Kaolinite (0.021) ) - Constrained from XRD

¢ Quartz (7 x 10-3) ) - Constrained from XRD

«  Halite (7.5 x 10-4) - From fitting experimental [Na+] profile

«  Sylvite (2.7 x 10-5) - From fitting experimental [K+] profile

«  Other phases allowed to form

Small pressure perturbations in leaching solution cell (top): Resulted in
minor effects to the solute concentration profiles

/4ne-Dimensional Reactive Transport Modeling with PFLOTRAN: Marl Leaching*

F i

Experimental Sample Setup

Yy %,
Solution Z:
0.7882 cm
Sample Z:
2.12cm
¥
B

Sample Meshed Domain

* Jove Colon et al (2021). Evaluation of nuclear spent fuel disposal in clay-bearing rock-process model development and experimental studies. Sandia National Labs (SNL), Albuquerque, NM

(United States). SAND2021-13578 R

National Lab. (LANL), Los Alamos, NM (United States); http://documentation.pflotran.org.

** Lichtner, P.C,, Hammond, G.E,, et al. (2019). PFLOTRAN user manual: A massively parallel reactive flow and transport model for describing surface and subsurface processes. Los Alamos‘



P/ Preliminary Results: [Na], [K], [Ca], pH vs. time profiles
/4

/

« The overall temporal
[Na*] and [K*] profiles
are well represented by
using halite (NaCl) &
sylvite (KCl) as reactant
phases in marl.

- Both profiles were used
to constrain a diffusion
coefficient value to
2.5 x 1070 cm?/s.

« Some discrepancies in
[Ca] and pH predictions
with experiments at
early times. Closer
agreement is attained at
later times.
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OPC paste

OPC paste

: e /M8 Oil Shale
Limestone

* Provides information about contact area and void volume at interface

* Helps identify features of interest and precise locations for sectioning and
characterization



Sample Preparation VA
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doped oil shale/OPC
interface

doped limestone/OPC
interface

Challenges:

* two materials polish at
different rates, so minimizing L—
sample size and hard edges is
necessary

* dopants reduce polish ability f
ot
of the rocks ‘

15
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* Large area mapping utilized to investigate
microstructure, morphology, and chemistry
(major elemental concentrations)

ESEM imaging conditions:
15kV, spot size 3.5, 130 Pa, 600x, pixel dwell time 30us,
resolution 1024x874

EDS collection conditions:
Montaged Map Data pixel dwell time 30us, frame count 20, process time 5,
resolution 1024x874
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Layered S OPC paste

Oil Shale

500um
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Layered S OPC paste
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Nano and Micromechanical
Testing

Scanning Probe Microscopy (SPM)

* Provides verification of surface roughness
prior to indentation

* Used to map sample surface features

Microindentation

* Investigate mechanical properties across
interfaces and as a function of sample depth

Nanoindentation

Accelerated Property Mapping (XPM) to investigate hardness and modulus in
close proximity to interfaces

Analyze cement phase distribution [upcoming]
- limited to cement due to dopant influence on rock’s ability to polish
- phase deconvolution will help understand impact of trace constituents

19



Microindentation A \=Y5
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e More indents in cement than rock

. : Reduced Modulus from OPC paste to limestone
to capture potential mechanical

: 40
gradients .
35
T
30
§ 25 <
E o
3 20 ° @)
3 G
1My, R - 3
= 10 - @ sI.o
5 Q .
OPC Paste 3] Limestone
0 hw
-3000 -2500 -2000 -1500 -1 -500 S 500 1000
c

L e . Distance from Interface (um)
Triboindenter Conditions

Berkovich tip
peak load 75 mN o
10-15-10 sec — trapezoidal load function

No defined mechanical changes observed
at the interface between OPC paste and
limestone

20
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Reduced Modulus from Cement to Oil Shale (constant force)
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OPC Paste
10 1 3
©
0 I E
Triboindenter Conditions =00 20 2000 o 1090 00, =

Distance from Interface (um)

Berkovich tip
peak load 75 mN
10-15-10 sec — trapezoidal load function

e Within 300 um of the interface there is a
30% reduction in average moduli of the
OPC paste

21



Accelerated Property NIV
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Mapplng (XPM) ational Nuclear Security Administration
—

* Series of square grids
(85 x 85 um) crossing over

interface region

Triboindenter Conditions

Berkovich tip
peak load 2 mN
3-5-3 sec — trapezoidal load function

Modulus (GPa)

200.0

Z% *%21 e Nanoscale tip shows
g © gradually reducing modulus
2 00|  valuesin a nearly identical
alteration zone as the micro-
o o0 indentation data

1.000

-500 -400 -300 -200 -100 0 100

distance from interface (um) 22



| AFTER 1 YEAR OF EXPOSURE:
OPC-0il Shale Interface

" From Simulations = Experiments

e Simulation results: an alteration zone of 500 um is estimated

T YA [ =37
Il VA" &~

National Nuclear Security Administration

* Laboratory experiments, chemical data: elemental gradients in Ca, Si, Al,
and S in the OPC paste form an alteration zone of ~300 um

* Laboratory experiments, mechanical data: suggests reduced moduli values
in OPC paste at a depth of 300 um + 20 um from the interface

OPC-Limestone Interface

* Experiments confirm simulation data showing no chemical or mechanical

alteration zone

Oil shale — OPC paste interface

SEM-EDS Microindentation/XPM Simulation
(elemental gradients) (reduced moduli) results
300 um 300 um 500 um

23
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Laser Ablation NYSH

Preliminary Results: Limestone-OPC Interface ~
S

AR7 > > — A Ca4d3 - moving away from interface
12000 RS R6
R6 > > 10000 R1 R2 R3
R5 > > ﬁ 8000
£ £
3| R4 > > — g o0
o (&)
o 4000
o
ﬁ
R3 > > 2000
]50 m 0 50 100 150 200 250 300 350 400
R1 75 um > H > ) Distance from interface (um)
J
25 um i Las‘;fﬁm‘j'tw"s U238 - moving away from interface
nergy: cm
Frequency: 4 Hz 120000
Spot Size: 10 um 00000
Scan Speed: 5 um/s !
80000
E 60000
o
! 55-5? o
s 40000
g 1S
gﬁ.‘uﬁ-"” 20000
o 0 50 100 150 200 250 300 350 400
W - y .%
250um ' Distance from interface (um)

24



| N ' USh

53 Future Directions NS
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Experimental:

e Currently in advanced stages of designing approach to laser ablation
measurements

— provides quantitation of the dopant concentrations as a function of
distance from the interface

e Perform grid nanoindentation and analyze data to get mechanical
information on the cementitious phases through the alteration zone

 Complete characterization of aged low pH cement interfaces for
comparison to OPC pastes

Modeling:

* Rock-cement interface simulations with dopants (Li, Ce, Cr and U)

e Simulations of unsaturated conditions and moisture transport

25
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