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ABSTRACT: 
 
 Quantifying the sensitivity - how a quantity of interest (QoI) varies with respect to a parameter – 
and response – the representation of a QoI as a function of a parameter - of a computer model of 
a parametric dynamical system is an important and challenging problem.   Traditional methods 
fail in this context since sensitive dependence on initial conditions implies that the sensitivity and 
response of a QoI may be ill-conditioned or not well-defined.  If a chaotic model has an ergodic 
attractor, then ergodic averages of QoIs are well-defined quantities and their sensitivity can be 
used to characterize model sensitivity.  The response theorem gives sufficient conditions such 
that the local forward sensitivity – the derivative with respect to a given parameter - of an 
ergodic average of a QoI is well-defined.  We describe a method based on ergodic and response 
theory for computing the sensitivity and response of a given QoI with respect to a given 
parameter in a chaotic model with an ergodic and hyperbolic attractor.  This method does not 
require computation of ensembles of the model with perturbed parameter values.  The method is 
demonstrated and some of the computations are validated on the Lorenz 63 and Lorenz 96 
models. 
 
INTRODUCTION AND EXECUTIVE SUMMARY OF RESULTS:  
 
Understanding the response of a quantity of interest (QoI) (the representation of the QoI as 
function of a given parameter) and its local forward sensitivity (the derivative of the QoI with 
respect to a parameter) is critical in computer models of dynamical systems.  Henceforth, we use 
whenever we shall use sensitivity and local forward sensitivity interchangeably. Traditional 
methods for computing sensitivities struggle in chaotic models, where sensitive dependence on 
initial conditions leads to ill-conditioning and associated convergence and stability issues.  This 
has lead to the development of various modern methods for computing sensitivities of QoIs in 
chaotic models.  Modern approaches characterize the sensitivity of a QoI in a chaotic model by 
determining the sensitivity of its ergodic time average which is well-defined and well-
conditioned so long as the model has a hyperbolic ergodic attractor.  The two main approaches 
are based on shadowing of dynamical systems (see e.g. shadowing (Ni and Wang, 2017), (Ni et 
al., 2019), (Chater et al. 2017) and see (Palmer, 2000) for an introduction to shadowing) and 
response theory (see e.g. (Abramov and Majda, 2007), (Eyink et al. 2004), (Lea et al. 2000), 
(Sliwiak and Wang, 2022) and see (Ruelle, 2009) for an introduction to response theory).  
Approaches based on shadowing typically compute shadowing trajectories via some 
minimization or zero-finding procedure and then approximate sensitivities in terms of an 
unperturbed trajectory and a shadow trajectory.  Approaches based on response theory typically 
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approximate the sensitivity using the linear response formula or some approximation or 
derivation of it. 
 
The R&D undertaken is this work is to develop an algorithm to approximate the response and  
sensitivity based on ergodic and response theory.  Our approach is different from the literature in 
that, rather than relying on approximating an expression of the sensitivity in terms of the linear 
response formula, we approximate the sensitivity directly using approximations of ergodic 
integrals.  To approximate these integrals, we use a box-covering algorithm that represents the 
attractor as a union of nearly disjoint (except on a set of Lebesgue measure zero) generalized 
rectangles that enable the development of accurate and efficient quadrature rules for functions 
defined on an attractor.  These accurate quadrature rules are then used to compute the response – 
the representation of an ergodic average of a QoI as a function of a parameter – from which 
sensitivities can be obtained using standard methods based on finite differences.  The algorithms 
we develop and associated results (see the proceeding two sections) demonstrate that we have 
been successful in developing methods that can compute the response and sensitivity of low-
dimensional chaotic models.  We are able (see Figures 1-2 that present the results of our 
experiments) to accurately reconstruct the response function of several QoIs for the Lorenz 63 
and Lorenz 96 models and can validate the ergodic average calculations.   Implementations for 
our algorithms can be found at https://gitlab-ex.sandia.gov/asteyer/crtfd.  Below, we present 
some theory necessary to develop algorithms and present the results of experiments in the 
proceeding two sections. 
 
We now briefly review the linear response and ergodic theory that is necessary for the 
development of our methods.  Let 𝑑 and 𝑝 be positive integers and let ∥⋅∥ be some norm on ℝ!.  
Let 𝜑 ∈ 𝐶"(ℝ! × 𝑂,ℝ!)  where 𝑂 ⊆ ℝ# is an open set such that 𝜑$ ≔ 𝜑(⋅, 𝑎) is a 
diffeomorphism for each 𝑎 ∈ 𝑂.  Denote by 𝐷%𝜑 and 𝐷$𝜑 the derivative of 𝜑 = 𝜑(𝑢, 𝑎) with 
respect to 𝑢 and 𝑎, respectively.  Consider the following discrete-time dynamical system: 
 𝑢&'( = 𝜑(𝑢&'(, 𝑎), 𝑢& ∈ ℝ! 	, 𝑎 ∈ 𝑂. (Eq 1) 

Let 𝑢 = 𝑢(𝑚; 𝑢), 𝑎) denote the solution of (Eq 1) with initial condition 𝑢(0; 𝑢), 𝑎) = 𝑢).  We 
assume throughout the remainder of this paper that for some 𝑎) ∈ 𝑂 there exists a compact set 
𝐶(𝑎)) ⊂ ℝ! that is invariant: 
 𝑢) ∈ 𝐶 ⟹ 𝑢(𝑚; 𝑢), 𝑎)) ∈ 𝐶			∀𝑚 ∈ ℤ,	

 
(Eq 2) 

attractive: there exists an open set 𝑈 ⊆ ℝ! with 𝐶 ⊂ 𝑈 so that: 
 𝑣) ∈ 𝑈 ⟹ lim

&→+
sup
%!∈-

∥ 𝑢) − 𝑢(𝑚; 𝑣), 𝑎)) ∥= 0,		

 

(Eq 3) 
and hyperbolic: there exists 𝐾(, 𝐾", 𝜆(, 𝜆" > 0 and subspaces 𝐸.⨁𝐸% = ℝ! so that 

∥ [𝐷%𝜑(𝑢), 𝑎))]/𝜉 ∥≤ 𝐾(𝜆(/ ,			𝜉 ∈ 𝐸.,
∥ [𝐷%𝜑(𝑢), 𝑎))]0/𝜉	 ∥≤ 𝐾"𝜆"/ ,			𝜉 ∈ 𝐸%.

 

 

(Eq 4) 

Basic results on the theory of hyperbolic sets (see e.g. (Palmer, 2000)) imply that for all 𝑎 ∈ 𝑂 is 
sufficiently near to 𝑎), there is a unique compact set 𝐶(𝑎) that is invariant, attractive, and 



 
 
hyperbolic with respect to (Eq 1) and such that 𝐶(𝑎) is close to 𝐶(𝑎)) in the 𝐶(-topology.  This 
is the theoretical basis for our sensitivity and response algorithms. 
 
If (Eq 1) is chaotic and 𝑄 ∈ 𝐶)(𝐶, ℝ), then it is challenging to determine the sensitivity of 
𝑄P𝑢(⋅; 𝑢), 𝑎)Q since sensitive dependence on initial conditions implies that 𝑢(𝑚; 𝑢), 𝑎)) and 
𝑢(𝑚; 𝑢), 𝑎) will decorrelate as 𝑚 → ∞ regardless of how close 𝑎 is to 𝑎).  We therefore take the 
traditional approach of characterizing QoIs of chaotic systems in terms of their time-averages, 
which are typically well-behaved under the assumptions (Eq 2)-(Eq 4) taken above.  For each 
𝑢) ∈ 𝐶 and 𝑎 ∈ 𝑂 we define the following time-averaged quantities: 

																																									𝐽(𝑢), 𝑎) = limsup
&→+

	
1
𝑚V𝑄P𝑢(𝑗; 𝑢), 𝑎)Q.

&

12)

 

	

 
           (Eq 5) 

The assumptions on 𝐶(𝑎)) imply (see Theorem 1 of (Young, 2002)) that for all 𝑎 ∈ 𝑂 
sufficiently close to 𝑎), there exists a unique 𝜑$-invariant probability measure 𝜇$, referred to as 
the SRB measure of 𝐶(𝑎), such that the following holds for any 𝑄 ∈ 𝐶)(𝐶, ℝ): 
 

𝐽(𝑢), 𝑎) = Y 𝑄(𝑥)𝑑𝜇$
$

3∈-($)
		for	a. e.		𝑢) ∈ 𝐶.	 

(Eq 6) 

(Eq 6) implies that 𝐶(𝑎) is an ergodic attractor.  Without loss of generality, ergodicity of 𝐶(𝑎) 
implies that we can write 𝐽 = 𝐽(𝑢), 𝑎) = 𝐽(𝑎).  We refer to the function 𝑎 ↦ 𝐽(𝑎), locally 
defined for 𝑎 ≈ 𝑎), as the response of (Eq 1) near 𝑎).  The SRB measure 𝜇$ is said to be mixing 
if the following limit holds for sets 𝐴, 𝐵 ⊆ 𝐶 that are Borel measurable with respect to 𝜇$:  

lim
&→+

𝜇$(𝜑$0&(𝐴) ∩ 𝐵) = 	𝜇$(𝐴)𝜇$(𝐵).	
If 𝐽 is differentiable in a neighborhood of 𝑎) ∈ 𝑂, then we define the linear response 𝑅 of 𝐽 as: 

𝑅(𝑎):= 𝐽(𝑎)) + 𝐽6(𝑎))𝑎 (Eq 7) 
which is of course defined for all 𝑎 sufficiently close to 𝑎).  We refer to the derivative of  𝐽6(𝑎)) 
as the sensitivity of 𝑄 at 𝑎).  Linear response theory (LRT) characterizes the change of the 
ergodic averages 𝐽 = 𝐽(𝑎) in terms of the linear approximation of (Eq 7).  The main result of 
LRT is the following theorem, proved in (Ruelle, 1997) and (Jiang, 2012), giving sufficient 
conditions such that 𝑅 is well-defined and 𝐽 is differentiable with respect to the parameter 𝑎: 
 
Theorem 1.  Assume that 𝜑$! ∈ 𝐶

7(𝐶(𝑎)), 𝐶(𝑎))) and that the SRB measure 𝜇$! is mixing.  
Then 𝐽 = 𝐽(𝑎) is differentiable in a neighborhood of 𝑎). 
 
Under the assumptions of Theorem 1, an expression for 𝐽′(𝑎)) is proved in (Ruelle, 1997) and 
(Jiang, 2012).  We do not make use of the formula is this paper due to issues related to stably and 
accurately computing the divergence terms associated with the stable and unstable subspaces 
required by this expression.  In the next section we describe algorithms based on the above 
theory that we use to compute ergodic averages, sensitivities, and response. 



 
 
 
DETAILED DESCRIPTION OF RESEARCH AND DEVELOPMENT AND 
METHODOLOGY:.  
 
Recall that the response 𝐽 of a QoI 𝑄 of (Eq 1) is without loss of generality represented as: 
 

𝐽(𝑎) = Y 𝑄(𝑥)𝑑𝜇$
$

3∈-($)
		for	all	𝑎 ≈ 𝑎).	 

We can therefore approximate 𝐽′(𝑎)) by taking finite differences of integrals of the form 
∫ 𝑄(𝑥)𝑑𝜇$
$
3∈-($) . The main advantage of using the space integral expression for 𝐽 rather than the 

time-average defining 𝐽 is that by using the space average we can avoid the serial bottleneck of 
time-stepping.  This is discussed in more detail after Algorithm 2. 
 
To compute the space integral representation of 𝐽 we develop algorithms based on box-covering 
methods which we now describe below.  A generalized rectangle (GR) centered at 𝑐 =
(𝑐(, … , 𝑐!)8 ∈ ℝ! with side-lengths 𝑟 = (𝑟(, … , 𝑟!)8 ∈ ℝ! is defined by 
 𝑅(𝑐, 𝑟) = {𝑦 = (𝑦(, … , 𝑦!)8 ∈ ℝ!: |𝑐1 − 𝑦1| ≤ 𝑟1 , 𝑗 = 1,… , 𝑑}  

A box-covering 𝐵(𝑎) of the attractor 𝐶(𝑎) is a collection of GRs such that every pairwise 
intersection of elements of 𝐵(𝑎) has Lebesgue measure zero and 𝐶(𝑎) ⊆ 𝐵(𝑎).  We now present 
an algorithm based on subdivision for computing a box-covering of 𝐶(𝑎) from a set of points 
𝐸(𝑎) contained in a neighborhood of 𝐶(𝑎).  
 
Algorithm 1  
Inputs: initial set of points 𝐸(𝑎) contained in a small neighborhood of 𝐶(𝑎) and a number 𝜅 <
|𝐸(𝑎)| that defines termination criterion. 
  Step 1.  Let 𝑅(𝑐, 𝑟) be a GR such that 𝐸(𝑎) ⊆ 𝑅(𝑐, 𝑟) and let 𝐵 = {𝑅(𝑐, 𝑟)} 
  Step 2.  Set 𝑘 = |𝐸(𝑎)| 
  Step 3.  While 𝑘 ≥ 𝜅 
                For 𝑗 = 1,… , 𝑑 

(i) For each 𝑅 ∈ 𝐵 let 𝑅 = 𝑅( ∪ 𝑅" where 𝑅( and 𝑅" are the two GRs that result 
from dividing 𝑅 into two rectangles with respect to the 𝑗9: coordinate. 

(ii) 𝐵 = 𝐵\{𝑅}. 
(iii) If 𝑅; ∩ 𝐸(𝑎) ≠ ∅, then 𝐵 = 𝐵 ∪ {𝑅;} for 𝑙 = 1,2. 
(iv) 𝑘 = |𝐸(𝑎)|/|𝐵|. 
End For 
End While 

Outputs:  Box-covering 𝐵(𝑎) of 𝐶(𝑎). 
 
 



 
 
The results of (Dellnitz and Hohmann, 1997) imply convergence of the output box-covering 
𝐵(𝑎) in Algorithm 1 to 𝐶(𝑎), in the sense 𝐵(𝑎) contains 𝐶(𝑎) and the size of the GRs 
comprising 𝐵(𝑎) goes to zero as 𝜅 → ∞.  The convergence depends on the constants defining the 
hyperbolicity of 𝐶(𝑎).  Our implementation of Algorithm 1 is a modification of the 
implementation of Molteno’s box-counting algorithm (Molteno, 1993) in DynamicalSystems.jl 
(Datseris, 2018).   Implementations for our algorithms can be found at https://gitlab-
ex.sandia.gov/asteyer/crtfd 
 
Using a box-covering of 𝐶(𝑎), we can approximate 𝐽 = 𝐽(𝑎) with a simple quadrature rule as 
follows.  Let 𝐵 be a box-covering of 𝐶(𝑎).  We then approximate: 
 

𝐽(𝑎) = Y 𝑄(𝑥)𝑑𝜇$
$

3∈-($)
= VY 𝑄(𝑥)𝑑𝜇$

$

<∈=
≈ V𝑄(𝑑)|𝐷|

=∈>

,			𝑑 ∈ 𝐷.
=∈>

 
(Eq 8) 

Here we take |𝐷| to represent the Lebesgue measure of the GR 𝐷.		The approximation in (Eq 8) 
is validated in the Results and Discussion section.  Using Algorithm 1 and (Eq 8) we develop the 
following algorithm to compute the sensitivity and response.   
 
Algorithm 2.  Inputs: initial parameter value 𝑎) ∈ ℝ#; set of parameters 𝐴 ⊂ ℝ# that are all near 
𝑎); box-covering termination criterion 𝜅; QoI 𝑄. 
  Step 1.  Compute an initial ensemble 𝑈(𝑎)) of (Eq 1) whose elements are contained in a small 
neighborhood of 𝐶(𝑎)). 
  Step 2.  Compute a box-covering 𝐵(𝑎)) of 𝐶(𝑎)) with Algorithm 1 using 𝐸(𝑎)) = 𝑈(𝑎)) with 
termination criterion 𝜅. 
  Step 3. Compute 𝐽(𝑎)) using (Eq 8). 
  Step 4.  For each 𝑎 ∈ 𝐴: 

(i) Set 𝑈(𝑎) ← 𝑈(𝑎)). 
(ii) Iteratively compute 𝑈(𝑎) ← 𝜑(𝑈(𝑎), 𝑎) until 𝑈(𝑎) is contained in a small. 

neighborhood of 𝐶(𝑎). 
(iii) Compute a box-cover 𝐵(𝑎) of 𝐶(𝑎). 
(iv) Compute 𝐽(𝑎) using (Eq 8). 

  Step 5. (optional)  Compute sensitivities using finite differences.  
Outputs: Approximation to 𝐽(𝑎) for each 𝑎 ∈ 𝐴 ∪ {𝑎)} and (optionally) 𝐽′(𝑎) for each 𝑎 ∈ 𝐴 ∪
{𝑎)}. 
 
The implementation of Algorithm 2 only requires time-stepping to compute the initial ensemble 
𝑈(𝑎)).  Once this initial ensemble is formed we can obtain box-coverings of 𝐶(𝑎) for 𝑎 ≈ 𝑎) by  
by parallel iterations of 𝜑$ applied to the initial ensemble 𝑈(𝑎)).  This requires few iterations 
due to exponentially fast convergence of points near the attractor 𝐶(𝑎).  Therefore, our 
Algorithm 2 can be efficiently implemented without running time-stepping ensembles of 
perturbed parameter values.  



 
 
 
 
 
RESULTS AND DISCUSSION:  
 
In this section we present the results of some experiments of our implantation of Algorithms 1-2 
(implentations can be found at https://gitlab-ex.sandia.gov/asteyer/crtfd).  We present results for 
two models:  the Lorenz 63 (Lorenz, 1963) model and Lorenz 96  (Lorenz, 1996) models which 
are widely used as low-dimensional testbeds for numerical methods applied to chaotic problems.  
The Lorenz 63 model is defined by the following three-dimensional differential equation: 

𝑥̇ = 𝜎(𝑦 − 𝑥)
𝑦̇ = 𝑥(𝜌 − 𝑧) − 𝑦
𝑧̇ = 𝑥𝑦 − 𝛽𝑧.

 

 

(Eq 9) 

The three parameters of the Lorenz 1963 models have the following standard parameter values 
𝜌 = 28, 𝜎 = 10, 𝛽 = 8/3 that are known to lead to chaotic behavior in numerical discretizations 
of (Eq 9).  We refer to these values as the standard parameter values for Lorenz 63.  The 
parameter 𝜌 is taken to be the parameter that we vary in our experiments (𝜌 = 𝑎 and 𝑎) = 28).  
We make use of the following QoIs for our tests of the Lorenz 63 system: 

𝑄631(𝑥, 𝑦, 𝑧) = 𝑧, 𝑄632(𝑥, 𝑦, 𝑧) = (𝑥" + 𝑦" + 𝑧")/2		 (Eq 11) 
 The Lorenz 96 model is defined by the following 𝑑-dimensional differential equation: 

𝑢̇1 = P𝑢1'( − 𝑢10"Q𝑢1 + 𝐹,				𝑗 = 1,… , 𝑑.	 (Eq 12) 
The standard value for the forcing parameter is 𝐹 = 8 and is known to lead to chaotic behavior 
in numerical discretizations of (Eq 12).  We refer to 𝐹 = 8 as the standard parameter value of 
Lorenz 1996.  The parameter 𝐹 is taken to be the parameter that we vary in our experiments 
(𝐹 = 𝑎 and 𝑎) = 8) and we set 𝑑 = 20.  We use the following QoIs for our tests of the Lorenz 
1996 system: 

𝑄961(𝑢(, … , 𝑢!) = 𝑢! , 𝑄962(𝑥, 𝑦, 𝑧) = (𝑢(" +⋯𝑢!")/2		 (Eq 13) 
To obtain discrete-time models of the form of (Eq 1) we discretize (Eq Y1) and (Eq Y2) with the 
standard fourth order RK4 time-integration method with a fixed time-step of Δ𝑡 = 100".  We 
remark here that results for computed sensitivities are dependent on both the time-stepping 
algorithm and on the time-step used – we leave detailed investigation of this for future work. 
 
We first validate the box-covering algorithm (Algorithm 1) and the quadrature rule that 
approximates the spatial integral from the right-hand side of (Eq 6).  To accomplish this we 
define two quantities (where 𝑄 denotes any continuous QoI, 𝐵(𝑎) represents some box-covering 
of 𝐶(𝑎), and 𝑑= represents some value contained in 𝐷 ∈ 𝐵(𝑎)): 



 
 

𝑇𝐴(𝑚,𝑄, 𝑢)) =
1
𝑚V𝑄(𝑢(𝑗; 𝑢), 𝑎)))

&

12)

, 𝑆𝐴(𝐵) = V𝑄(𝑑=)|𝐷|
=∈>

,			 
(Eq Y4) 

Ergodicity implies that 𝑇𝐴(𝑚, 𝑞, 𝑢)) and 𝑆𝐴(𝐵) should be nearly equal for a randomly chosen 
𝑢) ∈ 𝐶(𝑎), 𝑚 sufficiently large, and box-covering with sup

=∈>
|𝐷| sufficiently small.  To show this 

is the case, first we randomly select 100 initial conditions 𝑢) ∈ 𝐶(𝑎) and compute an ensemble 
of trajectories on 𝐶(𝑎).  Next, we use Algorithm 1 with 𝐸(𝑎) given by the union of the points of 
all the ensemble trajectories and using 𝜅 = 10 to compute the box-covering 𝐵(𝑎) of 𝐶(𝑎).   
Finally, we compute the maximum of |𝑇𝐴(𝑚, 𝑄, 𝑢)) −SA(B)| over all initial conditions 𝑢) from 
the ensemble for increasing values of 𝑚 and using 𝑄 ∈ {𝑄631, 𝑄632, 𝑄961, 𝑄962}.  In Figure 1 
we show the results of a validation experiment for the Lorenz 63 and Lorenz 96 models.  The 
standard parameter values are used for both models.  It is clear from these figures that with 
increasing time (equivalently 𝑚 since time is given by 𝑚Δ𝑡) the difference between the time-
average and space-average goes to zero for each of the randomly chosen initial conditions and 
each of the tested QoIs.  This serves as validation that these models are ergodic and therefore that 
we can obtain the correct values for the sensitivities by taking finite differences of the spatial 
integrals approximated as 𝑆𝐴(𝐵). 

 
Figure 1.  Approximate value of the maximum of |TA(m,Q,u_0)-SA(B(a)| for an ensemble with 100 elements with randomly 
chosen initial conditions on vs time (𝑚Δ𝑡) for Lorenz 63 (left) and Lorenz 96 (right) for the QoIs defined in (Eq 11) and (Eq 13).   

Our second main result is the computation of the response from Algorithm 2.  An ensemble of 
100 initial conditions is run to compute 𝑈(𝑎)) where 𝑎) is the standard parameter values of 
Lorenz 63 or Lorenz 96.  We use 𝐴 = {𝑎) − 100", 𝑎) + 100"} with the value of 𝜅 = 10 for the 
stopping criterion for the box-covering algorithms in both models and 20 iterations of 𝜑$ are 
applied to the initial ensemble to ensure 𝑈(𝑎) is contained in a small neighborhood of 𝐶(𝑎).  
After this, Algorithm 2 is reapplied using the perturbed parameter values 𝑎) ← 𝑎) ± 100" as the 
new initial parameter values and new perturbed parameter values 𝐴 = {𝑎) ± 100"}, but we avoid 
computing an initial ensemble by using the earlier computed sets 𝑈(𝑎) from the previous run.  
The results (Figure 2) show that we obtain approximations to 𝐽(𝑎) for values of 𝑎 quite far from 



 
 
𝑎). Sensitivities can be obtained from simple finite-differencing methods from the compute 
values of 𝐽(𝑎). 

 
Figure 2.  Approximate value 𝐽(𝑎) vs time where 𝑎 = 𝜌 for Lorenz 63 (left) and 𝑎 = 𝐹 for Lorenz 96.  

 
ANTICIPATED OUTCOMES AND IMPACTS: This should be > 700 words (no 
upper limit) without any addendum materials. If the impact is well articulated in the Addendum 
section, then the word count can be reduced to >300 words. The impact should include a 
description of next step(s), summary of publications and anticipated publications, conference 
presentations, potential new R&D deriving from what was learned, IP development, potential 
impact and path forward for NNSA and DOE, etc.   
 
The main direct impact of this project is to contribute to the foundational knowledge base for 
methods to compute sensitivities and response in chaotic models in the CIS Mathematics, 
Algorithms, and Simulation (MAS) Core Research Area.   This knowledge resulted in the 
development of new algorithms to compute sensitivity and response (Algorithm 2) as well as an 
algorithm (Algorithm 2) to validate ergodicity in low-dimensional chaotic models.  Concretely, 
this work and new knowledge resulted in a software package (implementation located at 
https://gitlab-ex.sandia.gov/asteyer/crtfd) and an invited presentation A box-covering method for 
computing forward sensitivities in low-dimensional chaotic models" at the KU Computational 
and Applied Math Seminar (April 2022).  This work has enhanced basic algorithms and 
capabilities for computing forward sensitivities in chaotic models. 
 
Secondarily, the knowledge gained from this project has lead to staff development to prepare 
future proposals and contributions.  This can be leveraged for LDRD, ASCR, Early Career, or 
AI/ML for Science and Security proposals.  This knowledge has already had some limited 
impact since aspects of the LDRD Idea 23-0308 "Geometric Deep Learning Framework for 
Physics-Informed Reduced Order Modeling” were motivated by what was learned in this project.  
Next steps after this project would be presenting this work at various conferences and seminars, 



 
 
preparing a peer-reviewed publication, and potentially developing a full LDRD proposal or early 
career proposal based on this work. 
 
This work has also pointed to new research directions.  First, there are several important aspects 
to consider including how to develop higher order quadrature rules to compute the spatial 
ergodic average and how the time-discretization affects Algorithms 1-2.  Second and more 
importantly, it remains to be shown how to efficiently compute box-coverings of attractors of 
high-dimensional problems that arise in applied problems since box-covering algorithms scale 
badly with dimension.  For problems that have low-dimensional attractors (such as fluid and 
plasma problems) embedded in a high dimensional space, it should be possible to efficiently 
apply a box-covering method using a representation of the embedding that preserves geometric 
properties of the attractor (this motivated some aspects of the LDRD Idea 23-0308).   
 
 
CONCLUSION:  
 
Computing the sensitivity and response of chaotic dynamical systems remains a challenging and 
important problem with implications for models arising in climate, fluid dynamics, plasma 
modeling, and structural mechanics.  In this report we have derived a new algorithm for 
computing the response and sensitivity of low-dimensional chaotic models based on ergodic and 
response theory.  Results from experiments indicate that these methods are promising, and that 
additional R&D effort is needed to develop similar algorithms that can efficiently compute 
response and sensitivity for high-dimensional problems. 
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