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ABSTRACT:

Quantifying the sensitivity - how a quantity of interest (Qol) varies with respect to a parameter —
and response — the representation of a Qol as a function of a parameter - of a computer model of
a parametric dynamical system is an important and challenging problem. Traditional methods
fail in this context since sensitive dependence on initial conditions implies that the sensitivity and
response of a Qol may be ill-conditioned or not well-defined. If a chaotic model has an ergodic
attractor, then ergodic averages of Qols are well-defined quantities and their sensitivity can be
used to characterize model sensitivity. The response theorem gives sufficient conditions such
that the local forward sensitivity — the derivative with respect to a given parameter - of an
ergodic average of a Qol is well-defined. We describe a method based on ergodic and response
theory for computing the sensitivity and response of a given Qol with respect to a given
parameter in a chaotic model with an ergodic and hyperbolic attractor. This method does not
require computation of ensembles of the model with perturbed parameter values. The method is
demonstrated and some of the computations are validated on the Lorenz 63 and Lorenz 96
models.

INTRODUCTION AND EXECUTIVE SUMMARY OF RESULTS:

Understanding the response of a quantity of interest (Qol) (the representation of the Qol as
function of a given parameter) and its local forward sensitivity (the derivative of the Qol with
respect to a parameter) is critical in computer models of dynamical systems. Henceforth, we use
whenever we shall use sensitivity and local forward sensitivity interchangeably. Traditional
methods for computing sensitivities struggle in chaotic models, where sensitive dependence on
initial conditions leads to ill-conditioning and associated convergence and stability issues. This
has lead to the development of various modern methods for computing sensitivities of Qols in
chaotic models. Modern approaches characterize the sensitivity of a Qol in a chaotic model by
determining the sensitivity of its ergodic time average which is well-defined and well-
conditioned so long as the model has a hyperbolic ergodic attractor. The two main approaches
are based on shadowing of dynamical systems (see e.g. shadowing (Ni and Wang, 2017), (Ni et
al., 2019), (Chater et al. 2017) and see (Palmer, 2000) for an introduction to shadowing) and
response theory (see e.g. (Abramov and Majda, 2007), (Eyink et al. 2004), (Lea et al. 2000),
(Sliwiak and Wang, 2022) and see (Ruelle, 2009) for an introduction to response theory).
Approaches based on shadowing typically compute shadowing trajectories via some
minimization or zero-finding procedure and then approximate sensitivities in terms of an
unperturbed trajectory and a shadow trajectory. Approaches based on response theory typically
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approximate the sensitivity using the linear response formula or some approximation or
derivation of it.

The R&D undertaken is this work is to develop an algorithm to approximate the response and
sensitivity based on ergodic and response theory. Our approach is different from the literature in
that, rather than relying on approximating an expression of the sensitivity in terms of the linear
response formula, we approximate the sensitivity directly using approximations of ergodic
integrals. To approximate these integrals, we use a box-covering algorithm that represents the
attractor as a union of nearly disjoint (except on a set of Lebesgue measure zero) generalized
rectangles that enable the development of accurate and efficient quadrature rules for functions
defined on an attractor. These accurate quadrature rules are then used to compute the response —
the representation of an ergodic average of a Qol as a function of a parameter — from which
sensitivities can be obtained using standard methods based on finite differences. The algorithms
we develop and associated results (see the proceeding two sections) demonstrate that we have
been successful in developing methods that can compute the response and sensitivity of low-
dimensional chaotic models. We are able (see Figures 1-2 that present the results of our
experiments) to accurately reconstruct the response function of several Qols for the Lorenz 63
and Lorenz 96 models and can validate the ergodic average calculations. Implementations for
our algorithms can be found at https://gitlab-ex.sandia.gov/asteyer/crtfd. Below, we present
some theory necessary to develop algorithms and present the results of experiments in the
proceeding two sections.

We now briefly review the linear response and ergodic theory that is necessary for the
development of our methods. Let d and p be positive integers and let ||-|| be some norm on R%.
Let ¢ € C?(R% x 0,R%) where O € RP is an open set such that ¢, == @(-,a) isa
diffeomorphism for each a € 0. Denote by D, ¢ and D, ¢ the derivative of ¢ = ¢(u, a) with
respect to u and a, respectively. Consider the following discrete-time dynamical system:

Un+1 = (p(um+1,a), Unp € Rd ,a €0. (Eq 1)
Let u = u(m; uy, @) denote the solution of (Eq 1) with initial condition u(0; uy, a) = u,. We
assume throughout the remainder of this paper that for some a, € O there exists a compact set
C(ay) c R? that is invariant:

Uy € C = u(m;uy,a,) €EC Ymel, (Eq2)
attractive: there exists an open set U € R% with C c U so that:
vo € U= lim sup Il up — u(m; vy, ae) =0, (Eq 3)
and hyperbolic: there exists Ky, K,, A1, A, > 0 and subspaces ES@®E* = R% so that
I [Dug(uo, ag)]“¢ IS K;2Y, & € E®, (Eq4)

I [Dyo(ug, ag)] %€ 1< K25, & € E™

Basic results on the theory of hyperbolic sets (see e.g. (Palmer, 2000)) imply that for all a € O is
sufficiently near to a,, there is a unique compact set € (a) that is invariant, attractive, and
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hyperbolic with respect to (Eq 1) and such that C(a) is close to C(a,) in the C1-topology. This
is the theoretical basis for our sensitivity and response algorithms.

If (Eq 1) is chaotic and Q € C°(C, R), then it is challenging to determine the sensitivity of
Q(u(-; U, a)) since sensitive dependence on initial conditions implies that u(m; u,, a,) and
u(m; ugy, a) will decorrelate as m — oo regardless of how close a is to a,. We therefore take the
traditional approach of characterizing Qols of chaotic systems in terms of their time-averages,
which are typically well-behaved under the assumptions (Eq 2)-(Eq 4) taken above. For each

Uy € C and a € O we define the following time-averaged quantities:

m
1
JGato, @) = limsup — " Q(u(js g, @) (Eq5)
m—oo
j=0

The assumptions on C(a,) imply (see Theorem 1 of (Young, 2002)) that for all a € O
sufficiently close to a,, there exists a unique ¢, -invariant probability measure y,, referred to as
the SRB measure of C(a), such that the following holds for any Q € C°(C,R):

J(uy,a) = f Q(x)du, fora.e. uy € C.

x€C(a)

(Eq 6)

(Eq 6) implies that C(a) is an ergodic attractor. Without loss of generality, ergodicity of C(a)
implies that we can write | = J(ugy, a) = J(a). We refer to the function a - J(a), locally
defined for a = a,, as the response of (Eq 1) near a,. The SRB measure p, is said to be mixing
if the following limit holds for sets A, B € C that are Borel measurable with respect to p,:
Aim 1 (0a™(A) N B) = e (A)ita(B).

If J is differentiable in a neighborhood of a, € O, then we define the linear response R of ] as:

R(a):=J(ay) +]'(ap)a (Eq7)
which is of course defined for all a sufficiently close to a,. We refer to the derivative of J'(a,)
as the sensitivity of Q at ay. Linear response theory (LRT) characterizes the change of the
ergodic averages /| = J(a) in terms of the linear approximation of (Eq 7). The main result of
LRT is the following theorem, proved in (Ruelle, 1997) and (Jiang, 2012), giving sufficient
conditions such that R is well-defined and J is differentiable with respect to the parameter a:

Theorem 1. Assume that ¢, € C3(C(ay), C(ay)) and that the SRB measure i, is mixing.
Then J = J(a) is differentiable in a neighborhood of a,.

Under the assumptions of Theorem 1, an expression for /'(a,) is proved in (Ruelle, 1997) and
(Jiang, 2012). We do not make use of the formula is this paper due to issues related to stably and
accurately computing the divergence terms associated with the stable and unstable subspaces
required by this expression. In the next section we describe algorithms based on the above
theory that we use to compute ergodic averages, sensitivities, and response.
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DETAILED DESCRIPTION OF RESEARCH AND DEVELOPMENT AND
METHODOLOGY:.

Recall that the response | of a Qol Q of (Eq 1) is without loss of generality represented as:
J(a) = f Q(x)du, foralla = a,.
x€C(a)

We can therefore approximate J'(a,) by taking finite differences of integrals of the form
fxe c@) Q(x)du,. The main advantage of using the space integral expression for J rather than the

time-average defining J is that by using the space average we can avoid the serial bottleneck of
time-stepping. This is discussed in more detail after Algorithm 2.

To compute the space integral representation of /] we develop algorithms based on box-covering
methods which we now describe below. A generalized rectangle (GR) centered at ¢ =
(c1, e cg)T € R? with side-lengths r = (74, ..., 74)T € R¢ is defined by

Rie,r) ={y =0 .. yd)" ER%:|c;—y;| <1,j=1,..,d}
A box-covering B(a) of the attractor C(a) is a collection of GRs such that every pairwise
intersection of elements of B(a) has Lebesgue measure zero and C(a) S B(a). We now present
an algorithm based on subdivision for computing a box-covering of C(a) from a set of points
E (a) contained in a neighborhood of C(a).

Algorithm 1
Inputs: initial set of points E (a) contained in a small neighborhood of C(a) and a number k <
|E(a)| that defines termination criterion.
Step 1. Let R(c,r) be a GR such that E(a) € R(c,r) and let B = {R(c, 1)}
Step 2. Setk = |E(a)|
Step 3. While k > k
Forj=1,..,d
(1) Foreach R € B let R = R; U R, where R; and R, are the two GRs that result
from dividing R into two rectangles with respect to the j** coordinate.
(i) B = B\{R}.
(iii)) IfR,NE(a)# @,then B =B U{R;}forl =1,2.
(iv) k=[E(@)I/|B|.
End For
End While
Outputs: Box-covering B(a) of C(a).
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The results of (Dellnitz and Hohmann, 1997) imply convergence of the output box-covering
B(a) in Algorithm 1 to C(a), in the sense B(a) contains C(a) and the size of the GRs
comprising B(a) goes to zero as k — oo. The convergence depends on the constants defining the
hyperbolicity of C(a). Our implementation of Algorithm 1 is a modification of the
implementation of Molteno’s box-counting algorithm (Molteno, 1993) in DynamicalSystems.jl
(Datseris, 2018). Implementations for our algorithms can be found at https://gitlab-
ex.sandia.gov/asteyer/crtfd

Using a box-covering of C(a), we can approximate | = J(a) with a simple quadrature rule as
follows. Let B be a box-covering of C(a). We then approximate:

J@=]  wdi =Y [ 0Gddux ) e@Ipl, dep,
x€C(a) pep ”PED DEB
Here we take | D] to represent the Lebesgue measure of the GR D. The approximation in (Eq 8)
is validated in the Results and Discussion section. Using Algorithm 1 and (Eq 8) we develop the
following algorithm to compute the sensitivity and response.

(Eq 8)

Algorithm 2. Inputs: initial parameter value a, € RP; set of parameters A c RP? that are all near
ay; box-covering termination criterion k; Qol Q.
Step 1. Compute an initial ensemble U(a,) of (Eq 1) whose elements are contained in a small
neighborhood of C(ay).
Step 2. Compute a box-covering B(a,) of C(ay) with Algorithm 1 using E(a,) = U(a,) with
termination criterion K.
Step 3. Compute J(a,) using (Eq 8).
Step 4. For each a € A:
) Set U(a) < U(ay).
(i)  Tteratively compute U(a) < ¢ (U(a), a) until U(a) is contained in a small.
neighborhood of C(a).
(iii)  Compute a box-cover B(a) of C(a).
(iv)  Compute J(a) using (Eq 8).
Step 5. (optional) Compute sensitivities using finite differences.
Outputs: Approximation to J(a) for each a € A U {a,} and (optionally) J'(a) for eacha € AU

{ao}.

The implementation of Algorithm 2 only requires time-stepping to compute the initial ensemble
U(ay). Once this initial ensemble is formed we can obtain box-coverings of C(a) for a = ay by
by parallel iterations of ¢, applied to the initial ensemble U(ay). This requires few iterations
due to exponentially fast convergence of points near the attractor C(a). Therefore, our
Algorithm 2 can be efficiently implemented without running time-stepping ensembles of
perturbed parameter values.
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RESULTS AND DISCUSSION:

In this section we present the results of some experiments of our implantation of Algorithms 1-2
(implentations can be found at https://gitlab-ex.sandia.gov/asteyer/crtfd). We present results for
two models: the Lorenz 63 (Lorenz, 1963) model and Lorenz 96 (Lorenz, 1996) models which
are widely used as low-dimensional testbeds for numerical methods applied to chaotic problems.
The Lorenz 63 model is defined by the following three-dimensional differential equation:

x=0(y—x) (Eq9)
y=x(p—2)—y
z=xy—pz.

The three parameters of the Lorenz 1963 models have the following standard parameter values
p = 28,0 = 10, f = 8/3 that are known to lead to chaotic behavior in numerical discretizations
of (Eq 9). We refer to these values as the standard parameter values for Lorenz 63. The
parameter p is taken to be the parameter that we vary in our experiments (p = a and ay = 28).
We make use of the following Qols for our tests of the Lorenz 63 system:

0631(x,y,2) =7, Q632(x,y,2) = (x* +y* + 72)/2 (Eq 11)
The Lorenz 96 model is defined by the following d-dimensional differential equation:
u] = (uj+1 - uj_z)uj + F, ] = 1, ,d (Eq 12)

The standard value for the forcing parameter is F = 8 and is known to lead to chaotic behavior
in numerical discretizations of (Eq 12). We refer to F = 8 as the standard parameter value of
Lorenz 1996. The parameter F is taken to be the parameter that we vary in our experiments
(F = aand a, = 8) and we set d = 20. We use the following Qols for our tests of the Lorenz
1996 system:

Q961(uy, ..., uyg) = uy, Q962(x,y,z) = (U2 +---u?)/2 (Eq 13)
To obtain discrete-time models of the form of (Eq 1) we discretize (Eq Y1) and (Eq Y2) with the
standard fourth order RK4 time-integration method with a fixed time-step of At = 1072, We
remark here that results for computed sensitivities are dependent on both the time-stepping
algorithm and on the time-step used — we leave detailed investigation of this for future work.

We first validate the box-covering algorithm (Algorithm 1) and the quadrature rule that
approximates the spatial integral from the right-hand side of (Eq 6). To accomplish this we
define two quantities (where Q denotes any continuous Qol, B(a) represents some box-covering
of C(a), and dj, represents some value contained in D € B(a)):
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1< (Eq Y4)
TAGm,Qu) = — > Quliuea)),  SAB) = ) Q(dp)ID]
j=0 DEB
Ergodicity implies that TA(m, q, u,) and SA(B) should be nearly equal for a randomly chosen

uy € C(a), m sufficiently large, and box-covering with sup |D| sufficiently small. To show this
DeB

is the case, first we randomly select 100 initial conditions uy € C(a) and compute an ensemble
of trajectories on C(a). Next, we use Algorithm 1 with E(a) given by the union of the points of
all the ensemble trajectories and using k = 10 to compute the box-covering B(a) of C(a).
Finally, we compute the maximum of |[TA(m, Q, u,) —SA(B)| over all initial conditions u, from
the ensemble for increasing values of m and using Q € {Q631, 9632, (0961, Q962}. In Figure 1
we show the results of a validation experiment for the Lorenz 63 and Lorenz 96 models. The
standard parameter values are used for both models. It is clear from these figures that with
increasing time (equivalently m since time is given by mAt) the difference between the time-
average and space-average goes to zero for each of the randomly chosen initial conditions and
each of the tested Qols. This serves as validation that these models are ergodic and therefore that
we can obtain the correct values for the sensitivities by taking finite differences of the spatial
integrals approximated as SA(B).

Approximate value of |[SA-TA| vs time Approximate value of |SA-TA| vs time
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Figure 1. Approximate value of the maximum of |TA(m,Q,u_0)-SA(B(a)| for an ensemble with 100 elements with randomly
chosen initial conditions on vs time (mAt) for Lorenz 63 (left) and Lorenz 96 (right) for the Qols defined in (Eq 11) and (Eq 13).

Our second main result is the computation of the response from Algorithm 2. An ensemble of
100 initial conditions is run to compute U(a,) where a, is the standard parameter values of
Lorenz 63 or Lorenz 96. We use A = {a, — 1072, a, + 1072} with the value of k = 10 for the
stopping criterion for the box-covering algorithms in both models and 20 iterations of ¢, are
applied to the initial ensemble to ensure U(a) is contained in a small neighborhood of C(a).
After this, Algorithm 2 is reapplied using the perturbed parameter values a, < a, + 1072 as the
new initial parameter values and new perturbed parameter values A = {a, + 1072}, but we avoid
computing an initial ensemble by using the earlier computed sets U(a) from the previous run.
The results (Figure 2) show that we obtain approximations to /(a) for values of a quite far from
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a,. Sensitivities can be obtained from simple finite-differencing methods from the compute
values of J(a).

2% J(rho) vs rho J(F) vs F
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Figure 2. Approximate value J(a) vs time where a = p for Lorenz 63 (left) and a = F for Lorenz 96.

ANTICIPATED OUTCOMES AND IMPACTS: This should be > 700 words (no
upper limit) without any addendum materials. If the impact is well articulated in the Addendum
section, then the word count can be reduced to >300 words. The impact should include a
description of next step(s), summary of publications and anticipated publications, conference
presentations, potential new R&D deriving from what was learned, IP development, potential
impact and path forward for NNSA and DOE, etc.

The main direct impact of this project is to contribute to the foundational knowledge base for
methods to compute sensitivities and response in chaotic models in the CIS Mathematics,
Algorithms, and Simulation (MAS) Core Research Area. This knowledge resulted in the
development of new algorithms to compute sensitivity and response (Algorithm 2) as well as an
algorithm (Algorithm 2) to validate ergodicity in low-dimensional chaotic models. Concretely,
this work and new knowledge resulted in a software package (implementation located at
https://gitlab-ex.sandia.gov/asteyer/crtfd) and an invited presentation A box-covering method for
computing forward sensitivities in low-dimensional chaotic models" at the KU Computational
and Applied Math Seminar (April 2022). This work has enhanced basic algorithms and
capabilities for computing forward sensitivities in chaotic models.

Secondarily, the knowledge gained from this project has lead to staff development to prepare
future proposals and contributions. This can be leveraged for LDRD, ASCR, Early Career, or
AI/ML for Science and Security proposals. This knowledge has already had some limited
impact since aspects of the LDRD Idea 23-0308 "Geometric Deep Learning Framework for
Physics-Informed Reduced Order Modeling” were motivated by what was learned in this project.
Next steps after this project would be presenting this work at various conferences and seminars,
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preparing a peer-reviewed publication, and potentially developing a full LDRD proposal or early
career proposal based on this work.

This work has also pointed to new research directions. First, there are several important aspects
to consider including how to develop higher order quadrature rules to compute the spatial
ergodic average and how the time-discretization affects Algorithms 1-2. Second and more
importantly, it remains to be shown how to efficiently compute box-coverings of attractors of
high-dimensional problems that arise in applied problems since box-covering algorithms scale
badly with dimension. For problems that have low-dimensional attractors (such as fluid and
plasma problems) embedded in a high dimensional space, it should be possible to efficiently
apply a box-covering method using a representation of the embedding that preserves geometric
properties of the attractor (this motivated some aspects of the LDRD Idea 23-0308).

CONCLUSION:

Computing the sensitivity and response of chaotic dynamical systems remains a challenging and
important problem with implications for models arising in climate, fluid dynamics, plasma
modeling, and structural mechanics. In this report we have derived a new algorithm for
computing the response and sensitivity of low-dimensional chaotic models based on ergodic and
response theory. Results from experiments indicate that these methods are promising, and that
additional R&D effort is needed to develop similar algorithms that can efficiently compute
response and sensitivity for high-dimensional problems.
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2 | PURPOSE, GOALS AND APPROACH

Purpose: Develop methods and algorithms based on linear response and ergodic theory to
compute forward sensitivities and uncerrainties in chaotic models where there is presently a lack
of general purpose methods that are accurate/ efficient/ robust.

Goals: Develop methods to compute forward sensitivities and uncertainties more efficiently
than existing methods.

Approach: Use methods and techniques from linear response and ergodic theory to develop
robust methods based on rigorous mathematical theory.
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PI's PROJECT LEGACY

Summary:

*Investigared use of linear response formula and ergodic theory to compute forward sensitiviies.

* Dieveloped method and software to compute forward sensinvities of low-dimensional chactic models usi odic spatial
averages computed from a box-covering approximation of the attractor, implementation found at :|.'|.I:I:':::!x:_.|‘l gﬁb-
ex sandia gov fasteyer/crefd).

= Above methed was validated for Lorenz 63 and 96 models by companng time- and space-averages.

*Dietermined potential to leverage modern ideas (machine learning, autodiff) to more accurately and efficiendy compute

forward sensitvides.
Ky aspects and resules:

*Found that direct application of linear response formula for dynamical systems with a hyperbolic atrractor requires: (1)
evaluation of an expensive integral (2) computing some representadon of the attracror.

*Found that ergodic theory can be accurately computed and wsed o approximare forward sensitivines.

*Challenging o ger convergence of methods thar direcdy approximate the linear response integrals.

*Remains o be seen: can ergodic-theory based methods be developed thar are more efficient than existing approaches?
Impact:

*Some aspects of the LDRD idea 23-0308 "Geometric Deep Learning Framework for Physics-Informed Reduced Order
Modeling™ were moovated by what was learned in this project.

*Knowledge: Limitations of linear response formula implies focus needs to be on efficient methoeds to compute representations
of antractors, use of ergodic theory to compute forward sensitivities with some acouracy.

“Mext 1-2 fiscal years: more proposals (LDRD, ASCR, early carcer) related to the knowledge thar was leamned.

PROJECT OUTPUTS

* Knowledge and methods related to computing sensitivities in chaotic models with linear
response and ergodic theory that can be leveraged for future LDRD, ASCR, Early
Career, or Al/ML for Science and Security proposals.

¢ Software: https://gitlab-ex.sandia.gov/asteyer/crtfd.

* Presentation:
¢ "A box-covering method for computing forward sensitivities in low-dimensional

chaotic models" at the KU Computational and Applied Math Seminar (April 2022).
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5 | CAPABILITIES DEVELOPMENT

* Knowledge and expertise in linear response and ergodic theory and computing
sensitivities in chaotic models.

* Validation method for computing ergodic averages in low-dimensional models.
* New algorithm to compute forward sensitivities with box-covering method.

* Software: https:/ /gitlab-ex.sandia.gov/asteyer /crtfd.

* Ideas for future proposals (LDRD, ASCR, Early Career, AI/ML for Science and
Security proposals).

| Sensitivity and response for Lorenz models
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Results for the Lorenz 63/96 models integrated with RK4 using At = 1072 with a final time of 10%. (Left) Response of Lorenz 63
with respect to changes in p for p = 28. (Right) Response of Lorenz 96 with respect to changes in F for F= 8. Sensitivities are computed

by using second-order centered differences of spatial averages obtained from a box-covering algorithm of the aftractor.

Lorenz 63 (3D, 3 meters
( par ) Lorenz 96 (arbitrary dimension, one parameter)

x=o(y—x)
y=x(p—z)—vy i = (Uje1—w-z)Ju; + F, j=1,..,20
i=xy —fz QoI1- (resp. Qol1((x,y,2)) = z and Qol1(w) = uy)

Qol2 - (resp. Qol2((x,y,2)) = (x* + y* + 2%)/2 and . Qol2(u) = u"u/2)
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| Validation Algorithm: does time-average equal space-average a.e.!

7

“Time average” = TA(T) = %f: Q(ult;uq))dt, “Space average” = SA(B) = ijA Q(x)du(x)
- are these equal regardless of initial condition?

10° ___Approximate value of [SATA| vs time w0 Approximate value of |SATA| vs time
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Approximate value [SA-TA| vs time for Lorenz 63 (left) and Lorenz 96 (right) for an ensemble with 100 elements
with randomly chosen initial conditions on the attractor. Spatial average computed using a box-covering of the
altractor. Q631((x,y,2)) = z and Q961 (xt) = uy

Q632((x,y,2)) = (x + ¥* + 2%)/2 and Q962 (1) = u"u/2

IA/PM PROJECT LEGACY

Important Lesson: Efficiently computing sensitivides of chaotic models using the linear response formula
requires computing structures relared to the artractor,

Key results useful to current, future projects:

*Presentation: “A box covering method for computing forward sensitivities in low-dimensional chaotic
models™ at University of Kansas Computational and Applicd Math Seminar (April 2022),

*Algorithm to validate numerical approximation of ergodic averages in low-dimensional models.
IA contribution:

*Contributed to foundational knowledge base in the CIS Mathematics, Algorithms, and Simulation (MAS)
Core Research Area.

*Enhanced capabilitics for computing forward sensitivities in chaotic models.

+Staff development to help prepare you for future proposals, including LDRD and ASCR.
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Computational response theory for dynamics
Pl: Andrew Steyer, PM: Jim Stewart

Eroject goali(s)

Investigate use of linear r s& and ergodic theory
to compute forward sensitvities and uncertainties in
low-dimensional chaotic models.

Develops methods and algorithms based on this
inwestigation.

Compare these methods against the current state-of-
the-science.

Technical Accomplishments

Implemented and validated methods for computing
ergodic averages of the Lorenz 63/96 models.

Developed new algorithms to compute forward
sensitivities in low-dimensional medels and

demonstrated these methods on Lorenz 63/96 models.

Mission impact

Developed expertise and knowledge base in linear
response and ergodic theory for computing forward
sansitivities.

MNew algorithm for computing forward sensitivities
in low-dimensional models.

Staff development for future LDRD, ASCR, Early
Career proposals.

Legacy

Springboard for new LDRD idea(s) for FY24 as
well as other project proposals such for ASCR,
early career, or AVML for Science and Security.

Presentation: “A box covering method for

computing forward sensitivities in low-dimensional

chaotic models” at University of Kansas [
Computational and Applied Math Seminar {April

2022).




