
MCNP6.3 Workshop

Michael E. Rising and Avery Grieve, XCP-3, LANL

14th International Conference on Radiation Shielding and 21st Topical Meeting of the
Radiation Protection and Shielding Division (ICRS14/RPSD-2022)

Sunday, September 25, 2022

LA-UR-22-29859

Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

Slide ICRS-RPSD-Workshop-2 of 147

Acknowledgements

This work is supported by the Department of Energy through Los Alamos National
Laboratory (LANL) operated by Triad National Security, LLC, for the National
Nuclear Security Administration (NNSA) under Contract No.
89233218CNA000001.

This work is supported by the LANL MCNP Site Support Project, the LANL LDRD
Program, the LANL ISTI Program, the Department of Energy (DOE) Advanced
Scientific Computing Program, the DOE Nuclear Criticality Safety Program, and the
DOE NA-22 Nuclear Nonproliferation R&D Program.

Thanks to the ICRS14/RPSD-2022 Topical meeting organizers for including us
here.

Thanks to those who provided content to this workshop, including Jennifer Alwin,
Jerawan Armstrong, Simon Bolding, Forrest Brown, Jeffrey Bull, Alexander Clark,
Micky Dzur, Jeff Favorite, Colin Josey, Joel Kulesza, Scott Mosher, Sriram
Swaminarayan, and Mara Watson.

Thanks to Jeremy Sweezy for reviewing the content of this workshop.

Slide ICRS-RPSD-Workshop-3 of 147

MCNP® Trademark

MCNP® and Monte Carlo N-Particle® are registered trademarks owned by Triad
National Security, LLC, manager and operator of Los Alamos National Laboratory.
Any third party use of such registered marks should be properly attributed to Triad
National Security, LLC, including the use of the ® designation as appropriate.
I Please note that trademarks are adjectives and should not be pluralized

or used as a noun or a verb in any context for any reason.
I Any questions regarding licensing, proper use, and/or proper attribution

of Triad National Security, LLC marks should be directed to
trademarks@lanl.gov.

Slide ICRS-RPSD-Workshop-4 of 147

Outline

MCNP6.3 Overview

Qt-based Geometry and Tally Plotter

HDF5, MCNPTools, and New PTRAC Options

New Tally Features

Unstructured Mesh Improvements

Physics and Data Changes

Verification and Validation Framework

Q&A

Slide ICRS-RPSD-Workshop-5 of 147

MCNP6.3 Overview

Slide ICRS-RPSD-Workshop-6 of 147

New Features

I Fission-matrix-based convergence testing and acceleration
I Multigroup cross section tallies for reactor analysis
I Doppler broadening resonance correction
I Stochastic S(α, β) temperature mixing
I Mixed-material treatment for structured meshes
I New FMESH tally backend options
I Parallel PTRAC support
I CMake build system
I HDF5-formatted output files and XDMF support

Covered or partially discussed in this workshop

Slide ICRS-RPSD-Workshop-7 of 147

Improvements

I New Qt-based plotter preview available for alpha-testing
I All of the MCNP code meets Fortran 2008 and C++ 17 standard

requirements
I Preliminary support for upcoming ENDF/B-VIII.1 data changes

I For new S(α, β) format options
I For photonuclear physics

I Upgrade to use open-source version of CGMF 1.1.1
I Improved unstructured mesh input file processing
I Added unstructured mesh quality metrics and reporting
I Decrease of delayed-gamma-line memory usage
I Various deprecated features with plans for future removal

Covered or partially discussed in this workshop

Slide ICRS-RPSD-Workshop-8 of 147

Fission Matrix Convergence Testing and Acceleration

I Automated acceleration of the convergence of the fission
source distribution
I Eliminates user intervention and trial-and-error testing
I Saves computational cost

I More robust statistical convergence and population testing
I Ensuring the simulation has converged

stabilization acceleration,
autoconvergence standard power iterationinitial

block

Multiplication factor convergence

Fission source distribution convergence

1.
7-

9

.0
02

5.
5-

8

.0
00

00
18

.0
00

06

 0
6/

14
/2

1
10

:0
6:

48
Fu

ll
 c

or
e

cr
it

ic
al

 a
ss

em
bl

y
wi

th
 i

ni
ti

al
 s

rc
 g

ue
ss

pr
ob

id
 =

06

/1
4/

21
 1

0:
04

:4
1

ba
si

s:

 X
Y

(
1.

00
00

00
,

0.
00

00
00

,
0.

00
00

00
)

(
0.

00
00

00
,

1.
00

00
00

,
0.

00
00

00
)

or
ig

in
:

(

0.

00
,

0.
00

,

 8
5.

00
)

ex
te

nt
 =

 (

80

.0
0,

80
.0

0)

Me
sh

 T
al

ly

4

kc
od

e
cy

cl
e

1
ru

nt
pe

 =
 c

ri
t1

.r
.h

5
du

mp

 2

3.
9-

10

.0
00

43

1.
3-

8

4.
1-

7

.0
00

01
3

 0
6/

14
/2

1
10

:1
2:

07
Fu

ll
 c

or
e

cr
it

ic
al

 a
ss

em
bl

y
wi

th
 i

ni
ti

al
 s

rc
 g

ue
ss

pr
ob

id
 =

06

/1
4/

21
 1

0:
11

:1
3

ba
si

s:

 X
Y

(
1.

00
00

00
,

0.
00

00
00

,
0.

00
00

00
)

(
0.

00
00

00
,

1.
00

00
00

,
0.

00
00

00
)

or
ig

in
:

(

0.

00
,

0.
00

,

 8
5.

00
)

ex
te

nt
 =

 (

80

.0
0,

80
.0

0)

Me
sh

 T
al

ly

4

kc
od

e
cy

cl
e

2
ru

nt
pe

 =
 c

ri
t2

.r
.h

5
du

mp

 2

2.
2-

10

.0
00

12

6.
-9

1.
6-

7

.0
00

00
45

 0
6/

14
/2

1
10

:1
6:

15
Fu

ll
 c

or
e

cr
it

ic
al

 a
ss

em
bl

y
wi

th
 i

ni
ti

al
 s

rc
 g

ue
ss

pr
ob

id
 =

06

/1
4/

21
 1

0:
15

:2
5

ba
si

s:

 X
Y

(
1.

00
00

00
,

0.
00

00
00

,
0.

00
00

00
)

(
0.

00
00

00
,

1.
00

00
00

,
0.

00
00

00
)

or
ig

in
:

(

0.

00
,

0.
00

,

 8
5.

00
)

ex
te

nt
 =

 (

80

.0
0,

80
.0

0)

Me
sh

 T
al

ly

4

kc
od

e
cy

cl
e

5
ru

nt
pe

 =
 c

ri
t5

.r
.h

5
du

mp

 2

8.
6-

10

.0
00

04
2

1.
3-

8

1.
9-

7

.0
00

00
28

 0
6/
14
/2
1
10
:2
2:
27

Fu
ll
 c
or
e
cr
it
ic
al
 a
ss
em
bl
y
wi
th

 i
ni
ti
al
 s
rc
 g
ue
ss

pr
ob
id
 =

06
/1
4/
21
 1
0:
19
:1
0

ba
si
s:

 X
Y

(
1.
00
00
00
,
0.
00
00
00
,
0.
00
00
00
)

(
0.
00
00
00
,
1.
00
00
00
,
0.
00
00
00
)

or
ig
in
:

(

0.
00
,

0.
00
,

 8
5.
00
)

ex
te
nt
 =
 (

80
.0
0,

80
.0
0)

Me
sh
 T
al
ly

4

kc
od
e
cy
cl
e

 5
0

ru
nt
pe
 =
 c
ri
t5
0.
r.
h5

du
mp

 2

Slide ICRS-RPSD-Workshop-9 of 147

Features for Advanced Reactor Analysis

I Unstructured mesh developments for high-fidelity reactor simulations
I MCNP material properties based on element sets
I Developed MCNP and ABAQUS based Reactor Multiphysics (MARM)

framework for high temperature reactor analysis [1]
I Multigroup cross section tallies computed for coupling to deterministic,

time-dependent reactor feedback codes [2]

Slide ICRS-RPSD-Workshop-10 of 147

Mesh Tally Backend Improvements Enabling
Extreme-scale, High-fidelity Simulations [3]

I History and batch statistics
I Advanced MPI parallelism

options
I Better performance on

current problems
I Scaling to extreme scale for

higher resolution future
problems
I E.g., full core reactor

depletion

12.2 billion tally region problem run with new FMESH
capability

Slide ICRS-RPSD-Workshop-11 of 147

Improved Particle Track Outputs for More Efficient
Advanced Detector Response Simulations [4]

I New implementation produces a new file format that makes the particle
track output information far simpler and more accessible to users
I Improving workflow and reduces processing errors

I Particle track outputs are now parallel, removing a computational
bottleneck

Subcritical Multiplication Analysis and Visualization

Subcritical BeRP Ball

Multiplicity Detectors

Slide ICRS-RPSD-Workshop-12 of 147

Introduction of the New File Formats (1)

I Introduced a flexible, Hierarchical Data Format (HDF5) to replace legacy
binary and ASCII files
I Permits natural organization
I Parallel input/output can provide substantial performance
I Parallel data transfer and distribution provides extensive mesh tally

scalability
I Intrinsic data-compression capability can provide 10–100× file size

savings
I Accessible via C, C++, Fortran, Python, Matlab, etc.

I The restart file (runtpe) now an HDF5 file in MCNP6.3.
I The ptrac file and unstructured mesh model / elemental edit files all now

have an HDF5 option in MCNP6.3.

Slide ICRS-RPSD-Workshop-13 of 147

Introduction of the New File Formats (2)

I XDMF visualization through openly
available software (e.g., ParaView,
VisIt)
I XML-formatted ASCII XDMF file

can be easily interrogated via
standard text editor

I Permits many geometric
representations: structured,
unstructured, polyhedral, etc.

I Low-overhead roadmap into the
aforementioned HDF5 data file(s)

I HDF5+XDMF: directly accessible
data files providing immediate
visualization

Mesh Tally Results Visualized via ParaView

Slide ICRS-RPSD-Workshop-14 of 147

Simple Godiva Example (1)

Include last line if running with MCNP6.3, otherwise exclude.

Listing 1: godiva.inp
1 Godiva Solid Bare HEU sphere HEU -MET -FAST -001
2 1 100 4.7984e-02 -10 imp:n=1
3 2 0 10 imp:n=0
4
5 10 so 8.7407
6
7 kcode 5000 1.0 50 250
8 ksrc 0 0 0
9 c

10 m100 92234.00c 4.9184e-04
11 92235.00c 4.4994e-02
12 92238.00c 2.4984e-03
13 c
14 fmesh4:n geom=xyz origin =-10 -10 -10
15 imesh =10 iints =200
16 jmesh =10 jints =200
17 kmesh =10 kints =200
18 out=xdmf $ New out option in MCNP6 .3

Slide ICRS-RPSD-Workshop-15 of 147

Simple Godiva Example (2)

MCNP6.2
I Execution command:
mcnp6 i=godiva.inp n=godiva. tasks 8

I Directory listing:

/
|- godiva.inp
|- godiva.o
|- godiva.r
|- godiva.s
|- godiva.msht

I ∼ 78 M Histories / hr

MCNP6.3
I Execution command:
mcnp6 i=godiva.inp n=godiva. tasks 8

I Directory listing:

/
|- godiva.inp
|- godiva.o
|- godiva.r.h5
|- godiva.s
|- godiva.msht.xdmf

I .h5 file extension for new HDF5
files

I .xdmf file extension for new
XDMF files

I ∼ 710 M Histories / hr

Slide ICRS-RPSD-Workshop-16 of 147

Bug Fixes

I Allow S(α, β) cross section to be applied to fissile isotopes
I Cacheing of S(α, β) cross section in a material
I Electron scattering angle distribution with multiple elements
I Energy deposition fixes below energy cutoff (non-n/p/e particles)
I Various source sampling and normalization fixes
I Energy-dependent perturbation (PERT) error
I Fix mwhere treatment on WWP card

Note that there are many more features, code enhancements, and bug fixes both
within the code and the separate utilities not discussed in this workshop. The
MCNP6.3 release notes exhaustively cover all of the important changes.

Slide ICRS-RPSD-Workshop-17 of 147

Energy Deposition Improvements

In MCNP6.3, there are three primary changes to energy deposition:

1. Consistent treatment of particle energy deposition as they pass through
or are born below the energy cutoff
I Particles crossing below the energy cutoff contribute the remainder of

their energy to the local energy deposition tally
I Particles born below energy cutoff contribute their energy to the local

energy deposition tally

2. Fixed charged-particle TMESH tally energy deposition in a magnetic field

3. Added warning message about electron energy deposition in a magnetic
field
I Due to the electron energy straggling, the proper fix is complicated and

may require some refactoring and algorithmic changes

Slide ICRS-RPSD-Workshop-18 of 147

Energy-dependent PERT Card Fixed

I Energy-dependent perturbations and/or sensitivities calculated with the
PERT card can be significantly wrong in MCNP6.2 (fixed in MCNP6.3).
pert004:n cell=1 mat=2 rho=9.6E-02 rxn=2 erg=0.1 1.0 method=2

I At a collision point, the incident energy of a particle placed in the bank
was not cached properly, making contributions to the wrong energy bin.

Before (left) and After (right) PERT Bugfix

Thanks to Jeff Favorite (XCP-7, LANL) for finding this bug and providing substantial
details to make fixing this issue straightforward.

Slide ICRS-RPSD-Workshop-19 of 147

Deprecated Features

I FMESH output formats
I Legacy unstructured mesh EEOUT file formats
I Embedded geometry background and matcell flexibility
I Legacy PTRAC file formats
I PTRAC options COINC and CAP
I Legacy unstructured mesh utilities
I MCNPUM and GMV UM file formats
I TIR, TIC, PI, MPN input cards

Covered or partially discussed in this workshop

Slide ICRS-RPSD-Workshop-20 of 147

Removed Features

I Random number generator options only set through RAND card, not
DBCN

I Removed HTAPE utility
I Removed MCNP_RANDOM utility
I Removed built-in fluence-to-dose response functions

Covered or partially discussed in this workshop

Slide ICRS-RPSD-Workshop-21 of 147

Built-in Response Functions Extracted (1)

I Due to both copyright concerns
and maintainability of the built-in
fluence-to-dose response
functions, the IC=10–40 built-in
DE/DF functions are no longer
available in the MCNP source code.

I The fluence-to-dose response
functions are available in the
Response Functions Appendix of
the MCNP6.3 user manual.

Slide ICRS-RPSD-Workshop-22 of 147

Built-in Response Functions Extracted (2)

I Both table listings and plots are available in the Response Functions
Appendix

Neutron ICRP74-1996 Anterior-Posterior AP dedf Cards and Plots

10−8 10−6 10−4 10−2 100 102

Energy [MeV]

101

102

F
lu

en
ce

-t
o-

d
os

e
C

on
ve

rs
io

n
F

ac
to

r
[p

S
v
·cm

2
] Logarithmic-Linear Interpolation

Logarithmic-Logarithmic Interpolation

Slide ICRS-RPSD-Workshop-23 of 147

Extracted Response Function Example (1)

I In addition to the discussions, tables, and plots, the fluence-to-dose
response functions are included as attachments to the user manual PDF.

I Save the attached (to the user manual and this presentation)
NEUTRON_ICRP74-1996_ANTERIOR-POSTERIOR_AP_DEDF.TXT file to
use immediately as input.

Slide ICRS-RPSD-Workshop-24 of 147

Extracted Response Function Example (2)

I Can easily use READ card to include extracted DE/DF cards in problem
input

Listing 2: shield.inp
1 c ### tally specification
2 fc2 1 m from shield , source rate = 3e8 neutrons
3 f2:n 10.1
4 fm2 3.e8 $ source strength 3.e8 n/s
5 c
6 read file=Neutron_ICRP74 -1996 _Anterior -Posterior_AP_dedf.txt

I Take care when using these attached fluence-to-dose response functions
as you may want to modify which problem-specific tally you want to apply
the conversion functions to.

Slide ICRS-RPSD-Workshop-25 of 147

Qt-based Geometry and Tally
Plotter

Slide ICRS-RPSD-Workshop-26 of 147

Outline

I Geometry Plotter
I Introduction of new features
I Brief look at each panel
I Live demo

I Tally Plotter
I New viewport
I Live demo

Slide ICRS-RPSD-Workshop-27 of 147

New Plotter Features

I Qt-based render window (no
X-Server required)

I Modern buttons (geometry plotter)
I Command box supporting > 29

characters
I Mouse control to pan, zoom, and

rotate slices
I New plotter view file formats (png,

pdf)
I Macro support
New plotter is shipping with MCNP6.3

Slide ICRS-RPSD-Workshop-28 of 147

Geometry Plotter First Look

Slide ICRS-RPSD-Workshop-29 of 147

Control Pane (1)

Slide ICRS-RPSD-Workshop-30 of 147

Control Pane (2)

I “My Macros” functionality
I Similar to reading a COM file on the execution line
I More later

I “Last View” expands on limitations of “Restore” button
I Resets all parameter(s) to previous parameter(s) instead of a select few

I “Tips” button allows user to hover over a feature for quick help text
I “Save PDF” button

I Available as a new command: savepdf
I Raster PDF functionality to come

Slide ICRS-RPSD-Workshop-31 of 147

Information Pane

I Contains all information present in
X-based plotter by default
I Basis, Extent, Origin

I Click in a cell for more information
on that cell.
I Old plotter only showed what

was selected in the right-hand
control panel

I Now shows all information
relevant to problem

I Will also show information on an
overlaid FMESH mesh
I Runtape information, tally

value/error of selected voxel,
voxel indices

Slide ICRS-RPSD-Workshop-32 of 147

Input Pane

I The old “Click here or picture or
menu” box only supported 29
characters of input
I or 10.045 20.345 0 ex 10 ba

.4863 .23018 .84294 1 1 1
I New input is “infinite” for all

practical one-liners
I Also supports command recall

with up- and down-arrows
I Messy history can be cleared with

“Clear History” button, but
command recall with arrow keys
still works

I Error messages are still presented
in the command-prompt window

Slide ICRS-RPSD-Workshop-33 of 147

Viewport Pane

I Can now interact directly with keyboard and mouse:
I Click and drag to pan
I Shift-Click and drag to rotate
I Ctrl-Click and drag to zoom in and out
I Ctrl-[Arrow Key] to pan

I Ctrl-Shift-[Arrow Key] to pan more
I Ctrl-[+/-] to zoom at origin

I Ctrl-Shift-[+/-] to zoom more
I Status bar now tells you when the plotter is working

These features will be shown in the demo

Slide ICRS-RPSD-Workshop-34 of 147

Geometry Plotter Live Demo

I Show macro functionality with lost particle use-case
I Demo more complex geometry

I Compare X-plotter speed
I Show new savepdf, savepng commands

Slide ICRS-RPSD-Workshop-35 of 147

Tally Plotter Viewport

I Largely the same look as the old tally plotter, though modernized

Slide ICRS-RPSD-Workshop-36 of 147

Tally Plotter Live Demo

I Show classic tallies
I Arrow key recall

I Show FMESH tally
I Tie into geometry plotter

Slide ICRS-RPSD-Workshop-37 of 147

HDF5, MCNPTools, and New
PTRAC Options

Slide ICRS-RPSD-Workshop-38 of 147

HDF5 Overview

Slide ICRS-RPSD-Workshop-39 of 147

Motivation

I MCNP output exists in many forms with various uses
I Output file (outp)

I Human-readable collection of relevant results
I Data files (EEOUT, mctal, meshtal, runtpe, ptrac, etc.)

I Uniquely formatted to support post-processing (plots, tables, etc.)
I Several of the data files can be written as binary

I Fast, efficient storage
I Non-standard formats; hard to parse (needs custom applications)

I MCNP data files are migrating toward HDF5 to eliminate this downside
I Mesh tally (fmesh), ptrac, runtape, and UM output are implemented
I Other files undergoing development and implementation

Slide ICRS-RPSD-Workshop-40 of 147

Introduction to HDF5

I HDF: Hierarchical Data Format
I Developed by The HDF Group – Non-profit organization

I Spun off from Nat’l Center for Supercomp. Appl. at Univ. of Illinois
I Central authority to ensure quality and prevent fragmentation

I BSD-like license, freely available, portable, numerous APIs
I Official APIs: C, C++, Fortran, Java
I Unofficial APIs: Julia, Matlab, Mathematica, Perl, Python, R

I Developed with speed and scalability in mind
I Binary format, which requires a program or API to read the data
I Three major objects: groups, datasets, and attributes

Groups Containers for datasets or other groups (like a file system)
Datasets Homogeneous n-dimensional arrays

I Can contain complex objects, e.g., images
Attributes Can be added to either groups or datasets

Slide ICRS-RPSD-Workshop-41 of 147

History of HDF5

I 1987: work to develop all-encompassing hierarchical object-oriented file
I 1990 and 1992: NSF grants provided crucial funding

I NSF wanted to harmonize netCDF and HDF formats
I Drove improved V&V basis
I NASA selected HDF as its standard data and information system

I 1996: major redesign: went to current group & dataset approach
I More information in videos at: https://www.hdfgroup.org/about-us/

I HDF4 is older but actively supported
I HDF5 is current (and actively supported)

I Attempts to address some HDF4 limitations

https://www.hdfgroup.org/about-us/

Slide ICRS-RPSD-Workshop-42 of 147

HDF5 is Binary, but Easily Interrogated

I Each group (e.g., /ptrack/) is like a filesystem directory
I Each dataset (e.g., Bank) is just an array of data that can be processed

h5ls and h5dump for terminal usage

h5ls -r ptrac2.txtp.h5
/ Group
/ptrack Group
/ptrack/Bank Dataset {0/Inf}
/ptrack/Collision Dataset {12920729/Inf}
/ptrack/RecordLog Dataset {12923729/Inf}
/ptrack/Source Dataset {3000/Inf}
/ptrack/SurfaceCrossing Dataset {0/Inf}
/ptrack/Termination Dataset {0/Inf}

HDFView for graphical exploration

Slide ICRS-RPSD-Workshop-43 of 147

GUI Options: HDFView, HDF Compass, and ViTables

Slide ICRS-RPSD-Workshop-44 of 147

PTRAC Overview

Slide ICRS-RPSD-Workshop-45 of 147

Introduction to Particle Track Output (PTRAC) (1)

I PTRAC output details the physical processes each particle underwent
during the simulation, allowing for advanced post-processing

I Includes data for source, termination, collision, bank, and surface events
I Secondary particles’ events are not in chronological order
I Reconstructed branching of histories is typically possible, but onerous

I User-specified filters control when events are written, per event or history
I Limits the size of output files and memory usage

I Example MCNP6.2 input card
I PTRAC EVENT=SRC,COL,TER CELL=1 FILTER=1,14,ERG FILE=BIN
I Write events with energy of 1–14 MeV, for histories that traversed cell 1

I Example MCNP6.3 input card
I PTRAC EVENT=SRC,COL,TER CELL=1 FILTER=1,14,ERG FILE=HDF5 FLUSHNPS=1E5
I Same behavior as before, different output file format

Slide ICRS-RPSD-Workshop-46 of 147

Introduction to Particle Track Output (PTRAC) (2)

I PTRAC is often used for advanced detector responses, where correlated
or time-dependent analysis is needed

I The PTRAC file is used as input for custom post-processing software
I Examples include Advanced detector response simulation framework

DRiFT [5]
I Subcritical multiplicity experiments

Subcritical Multiplication Analysis and Visualization

Subcritical BeRP Ball

Multiplicity Detectors

Slide ICRS-RPSD-Workshop-47 of 147

PTRAC Input Card (1)

I For separate output file printing of all or partial (filtered) histories and
events from a transport calculation

I Allows greater user control for specialized result processing when
standard and special treatment tallies are inadequate

I Use PTRAC input card and keyword-value pairs (more on next slide):

keyword value(s) description

file bin, asc, hdf5 bin=binary, asc=ASCII, hdf5=HDF5
max integer maximum of number of events written

write pos, all pos=x,y,z particle info only,
all=x,y,z,u,v,w,wgt,tme,erg info

coinc col print tally scores by history (need tally keyword
also)

flushnps integer controls write frequency for HDF5 output file
type

red = deprecated in MCNP6.3, blue = new in MCNP6.3

Slide ICRS-RPSD-Workshop-48 of 147

PTRAC Input Card (2)

I Event-based filtering on the PTRAC input card:

keyword value(s) description

event src, bnk, sur, col,
ter, cap

event-type filter: src=source, bnk=bank,
sur=surface, col=collision, ter=termination,

cap=coincident capture
filter PBL particle state variables
type P particle-type filter

I History-based filtering on the PTRAC input card:

keyword value(s) description

nps integer range of nps history numbers
cell integer list of cell numbers

surface integer list of surface numbers
tally integer list of tally numbers
value float list of tally contribution thresholds

red = deprecated in MCNP6.3, blue = new in MCNP6.3

Slide ICRS-RPSD-Workshop-49 of 147

MCNPTools PTRAC Interface

Slide ICRS-RPSD-Workshop-50 of 147

MCNPTools Background

I MCNPTools was born out the continual need to process MCNP outputs
I A collection of Python and C++ post-processing software

I Version 3.8 released with MCNP6.2
I Latest version now available as open source at

https://github.com/lanl/mcnptools
I The MCNPTools library provides easy access to events in simulation

order (HDF5 and legacy)
I While file formats in MCNP6 may change over time, the MCNPTools

interface will require minimal changes
I Example processing:

https://github.com/lanl/mcnptools

Slide ICRS-RPSD-Workshop-51 of 147

MCNPTools Ptrac Overview

I The Ptrac class
I Manages data for MCNP’s ptrac files
I Can handle all file format versions (assumes binary as default)

I The PtracHistory class manages data for an individual history
I The PtracNps class handles the starting information for a history
I The PtracEvent class handles information for particle events

Slide ICRS-RPSD-Workshop-52 of 147

MCNPTools Ptrac Class Accessors

I ReadHistories(NUM)
I Reads NUM histories and all associated events into memory as a list
I Allows “chunk” processing of a file without filling memory

Slide ICRS-RPSD-Workshop-53 of 147

MCNPTools PtracHistory Class Accessors

I GetNPS()
I Return a PtracNPS class to the history (NPS) information

I GetNumEvents()
I Return the number of events recorded for the history

I GetEvents(NUM)
I Return a PtracEvent class to the history’s NUMth event

Slide ICRS-RPSD-Workshop-54 of 147

MCNPTools PtracNps Class Accessors

I NPS()
I Return the history number

I Cell()*
I Return the filter cell from CELL keyword (if present)

I Surface()*
I Return the filtering surface from SURFACE keyword (if present)

I Tally()
I Return the filter tally from TALLY keyword (if present)

I Value()
I Return the tally score from TALLY keyword (if present)

*Not currently present in the HDF5 output file

Slide ICRS-RPSD-Workshop-55 of 147

MCNPTools PtracEvent Class Accessors

I Type()
I Return the event type

I Has(DATA)
I Return TRUE if the event has type DATA

I Get(DATA)
I Return the value of the data type DATA

Slide ICRS-RPSD-Workshop-56 of 147

New Parallel PTRAC

Slide ICRS-RPSD-Workshop-57 of 147

HDF5-formatted PTRAC (1)

I HDF5 PTRAC simulations can be executed in parallel
I Removes a significant computational bottleneck
I Even in serial, HDF5 PTRAC is faster for large problems

I Organized output structure makes post-processing more accessible
I Reduces processing errors of legacy formats
I More flexible, so it can be extended in the future

I The MCNP6.3 release notes provide more detail on the feature
I Several PTRAC bug fixes
I Legacy formats and two infrequently used features are DEPRECATED
I Improved interface for event-wise cell and surface features

Slide ICRS-RPSD-Workshop-58 of 147

HDF5-formatted PTRAC (2)

I HDF5 PTRAC files can be produced with MPI, threads, or both
I MPI-parallel PTRAC requires an MPI enabled installation of HDF5
I Thread-parallel PTRAC (tasks option) works with any HDF5 build

I Each process buffers data into memory over multiple histories
I Periodically all processes write data to the file
I Provides greater speed than writing semicontinuously

I The buffers’ memory usage can be very large
I A std::bad_alloc error will appear if memory is exhausted

I Memory swapping may occur instead
I Prevented with the FLUSHNPS option detailed on next slide

Slide ICRS-RPSD-Workshop-59 of 147

HDF5-formatted PTRAC (3)

I FLUSHNPS controls how much data is buffered in memory between writes

I FLUSHNPS is the maximum number of histories between file writes
I User values of FLUSHNPS vary greatly with simulation and computer size

I An estimate of maximum PTRAC memory usage is printed by MCNP6
I Only includes PTRAC memory usage, so must balance with problem size
I Writes may occur more frequently from other rendezvous

I As a rule of thumb (for current hardware) use FLUSHNPS = 100000
I Check the memory usage is less than 1–2 GB per computational

resource
I Higher memory usage than this will not substantially improve efficiency

I When in doubt, write more often than necessary

Slide ICRS-RPSD-Workshop-60 of 147

HDF5-formatted PTRAC (4)

I Several important MPI-parallel HDF5 considerations
I Intended for use on parallel file systems, e.g., Lustre
I Will be slow or hang on most Network File Systems (NFS)

I The MCNP code cannot detect or predict this misbehavior

I Can use thread-based parallelism on any file system

I Always try a quick initial run to verify that a file is written correctly

Slide ICRS-RPSD-Workshop-61 of 147

Hierarchical and Structured Layout

I The data for each type of event are a separate dataset array
I Have direct access to all events, for each event category

I Each entry in a dataset is a compound data type
I Contains all particle data: x, y, z, energy, etc.
I Contains event specific data: collision type, bank type, etc.

Slide ICRS-RPSD-Workshop-62 of 147

Event Ordering from the RecordLog

I The RecordLog dataset
I Provides the event-by-event order of entries in the event arrays
I Uses the history identifier NPS
I Similar to foreign keys of relational databases

Slide ICRS-RPSD-Workshop-63 of 147

Safeguards Example for Simple Neutron Detector
Coincident Counting (1)

I With our LANL nuclear safeguards
colleagues in NEN-1, we developed a
new MCNP safeguards-specific class

I Exercises include a simplified neutron
detector system for coincident neutorn
counting
I 4 He-3 tubes
I High Density Polyethylene (HDPE)
I Cf-252 spontaneous fission (SF)

source
I Example safeguards.inp MCNP6.3

input file is attached

Slide ICRS-RPSD-Workshop-64 of 147

Safeguards Example for Simple Neutron Detector
Coincident Counting (2)

I Consider the options on how a coincident neutron counting simulation
can be done

1. Using the pulse-height tally capture (CAP) special treatment option
I Note that this option automatically turns off implicit capture

2. Using PTRAC data card that writes all particle data
I Need to turn off implicit capture (otherwise capture events will

NEVER occur and appear in a PTRAC file)
I Could use an event-based collision filter (i.e., EVENT=COL)
I Could use an event-based particle cell filter (i.e.,
filter=21,24,cel) within the detector cells

Slide ICRS-RPSD-Workshop-65 of 147

Safeguards Example for Simple Neutron Detector
Coincident Counting (4)

Let’s take a look at the attached ptrac_mcnptools.py.txt script

Slide ICRS-RPSD-Workshop-66 of 147

Safeguards Example for Simple Neutron Detector
Coincident Counting (5)

Slide ICRS-RPSD-Workshop-67 of 147

Safeguards Example for Simple Neutron Detector
Coincident Counting (6)

Slide ICRS-RPSD-Workshop-68 of 147

Safeguards Example for Simple Neutron Detector
Coincident Counting (7)

I Executing MCNP6.3
I mcnp6 i=safeguards.inp ptrac=ptrac.p.h5 tasks 8

I And then executing the provided Python script
I python3 ptrac_mcnptools.py.txt

I Results in:
I python3 ptrac_mcnptools.py.txt
I Count Outcome = 0, Total Counts = 65662
I Count Outcome = 1, Total Counts = 1348
I Count Outcome = 2, Total Counts = 19

Slide ICRS-RPSD-Workshop-69 of 147

Summary of New PTRAC Capabilities and Workflows

I The PTRAC capability in MCNP6.3 has seen a massive overhaul since
MCNP6.2

I The new HDF5 file format allows for both MPI- and thread-based
parallelism

I MCNPTools has been updated to handle the new HDF5 PTRAC format
and is now open-sourced on GitHub

I Built-in capabilities, such as the pulse-height tally coincident capture
special treatment, can largely be replicated through separate
postprocesing scripts that leverage both PTRAC and MCNPTools
I Allows for greater flexibility in user-specified and controlled detector

response functionality, ultimately using the MCNP code for what it is
best at (i.e. particle transport)

Slide ICRS-RPSD-Workshop-70 of 147

New Tally Features

Slide ICRS-RPSD-Workshop-71 of 147

FMESH Upgrades and HDF5+XDMF

Slide ICRS-RPSD-Workshop-72 of 147

Introduction

Since 6.2, FMESH has undergone a substantial revision in capabilities.
I The default FMESH configuration was heavily optimized.
I 3 new tally backends were added for various needs (mainly, larger tallies).
I MESHTAL is deprecated and replaced with an HDF5 + XDMF output

format.
(This format allows for much faster and easier postprocessing and
analysis)

Slide ICRS-RPSD-Workshop-73 of 147

Tally Algorithms

It started as a side project - can we use MPI remote memory access to scale
further than ever before?

Implemented 4 algorithms:

History Basic history statistics without optimization.

Fast History A tuned version of 6.2’s FMESH algorithm, tracks changed indices to
reduce memory bandwidth usage.

Batch Threads share a tally array, so memory usage is reduced.

Batch RMA The Batch algorithm, but using MPI-3 RMA to distribute tallies over all
MPI ranks.

Slide ICRS-RPSD-Workshop-74 of 147

Infrastructure Changes

The MCNP code didn’t support batch statistics in any way. A number of changes
had to be made:
I NPS now has a batch size option.
I When any batch tallies are enabled, KCODE will resample the fission bank

to a fixed size.

This means the RNG sequence will change if batch tallies are added!

Slide ICRS-RPSD-Workshop-75 of 147

Performance

I Tested on a k-eigenvalue problem with a 10-cm, 10-g/cc ball of 235U.
I Maximizes the effect of tally performance on the problem.
I Mesh was scaled from 50× 50× 50 to 1600× 1600× 1600
I Neutrons/hr and memory usage tallied
I Tested on 6 nodes of a cluster with 2 sockets, 18 cores each, 128 GB

memory.
I Ran combinations of MPI, OpenMP.

Note: OpenMPI 3.1.6 + Omni-Path does not support MPI_THREAD_MULTIPLE, so
threading performance is poor for Batch RMA.

Slide ICRS-RPSD-Workshop-76 of 147

Performance

105 106 107 108 109

Number of Tallies

102

103

M
illi

on
 N

eu
tro

ns
 /

Ho
ur

Performance Comparison, Threads = 1

No Tally
Stock
Fast History
Batch
Batch RMA
History

Slide ICRS-RPSD-Workshop-77 of 147

Performance

100 101

Threads per Rank

102

103

104
M

illi
on

 N
eu

tro
ns

 /
Ho

ur
Performance Comparison, 200x200x200 Mesh - Fixed Total Threads

No Tally
Stock
Fast History
Batch
Batch RMA

Slide ICRS-RPSD-Workshop-78 of 147

Memory

105 106 107 108 109

Number of Tallies

102

103

104

105

By
te

s p
er

 T
al

ly

Memory Usage Comparison, Threads = 1
Stock
Fast History
Batch
Batch RMA
History

Batch RMA has high overhead that dissipates for large problems.

Slide ICRS-RPSD-Workshop-79 of 147

Memory

100 101

Threads per Rank

102

103

104
By

te
s p

er
 T

al
ly

Memory Usage Comparison, 200x200x200 Mesh - Fixed Total Threads

Stock
Fast History
Batch
Batch RMA

Slide ICRS-RPSD-Workshop-80 of 147

File Formats

Previous versions of the MCNP code used the MESHTAL format:
I ASCII output results in large file sizes.
I The binary to ASCII conversion was generally slow.
I It is tricky to bring into other tools (needs a processing script).

Version 6.3 uses HDF5 + XDMF:
I Binary file format for smaller sizes and faster IO.
I Trivial to load into ParaView, VisIt1, Python, etc.
I (Optional) parallel HDF5 for even faster performance.

1 Note that VisIt uses HDF5 1.8 at the time of this writing. MCNP outputs files that use the 1.10
format. Future versions of VisIt will use 1.10+. For now, h5repack can be used to convert to a 1.8
file.

Slide ICRS-RPSD-Workshop-81 of 147

File IO Performance

216 million cell mesh, Lustre filesystem, 8 stripes, 1M stripe size, 8 MPI Ranks:

Method Time (s) File Size

MESHTAL 617.5 12 GB
HDF5 + XDMF 18.1 3.2 GB (in runtape)

Parallel HDF5 + XDMF 7.5 3.2 GB (in runtape)

Slide ICRS-RPSD-Workshop-82 of 147

ParaView Example

Make sure to open with “XDMF Reader”, which is the reader for XDMF version 2
files.

Slide ICRS-RPSD-Workshop-83 of 147

ParaView Example - Point Source on Cube Corner

Slide ICRS-RPSD-Workshop-84 of 147

Python Example

Listing 3: Python 3.6+ Example for Reading FMESH
1 import h5py
2 import numpy
3
4 def read_fmesh(filename , tally_id):
5 with h5py.File(filename , ’r’) as handle:
6 group = handle[f"/results/mesh_tally/mesh_tally_{tally_id}"]
7
8 data = {}
9 # Transpose converts indices to x, y, z, e, t

10 data["mean"] = numpy.transpose(group["mean"][()])
11 data["relative_standard_error"] = \
12 numpy.transpose(group["relative_standard_error"][()])
13 data["grid_x"] = group["grid_x"][()]
14 data["grid_y"] = group["grid_y"][()]
15 data["grid_z"] = group["grid_z"][()]
16 data["grid_energy"] = group["grid_energy"][()]
17 data["grid_time"] = group["grid_time"][()]
18
19 return data
20
21 data = read_fmesh("runtpe.h5", 4)

By slicing group[“mean”] instead of using [()], one can load a portion into
memory without loading all of it.

Slide ICRS-RPSD-Workshop-85 of 147

Summary

I New FMESH outperforms 6.2’s in most workloads.
I New modes allow for much lower memory usage for large problems.
I File formats are fast and easy to work with.
In the future, we expect to extend this capability to more parts of the MCNP code.

Slide ICRS-RPSD-Workshop-86 of 147

Special Tally Treatments for Multigroup Cross Sections

Slide ICRS-RPSD-Workshop-87 of 147

Motivation

I Historically, MCNP development has not been focused on nuclear reactor
applications.

I Recent institutional investiments through the LANL Laboratory Directed
Research & Development (LDRD) Program have focused on developing
capabilities for nuclear reactor applications.

I A new special tally treatment for multigroup cross section
calculations is in production for MCNP6.3

I Work is continuing in this area, with a currect focus on improved tracking
algorithms (i.e., Delta tracking), improved energy deposition and
burn-up/activation tallies, and new tooling to support efficient workflows
for nuclear reactor applications
I Note that several of these newly developed tools and/or improved

capabilities will likely have an impact outside of nuclear reactor
applications (e.g., radiation protection and shielding, criticality safety)

Slide ICRS-RPSD-Workshop-88 of 147

Multigroup Cross Section Tally Options

Four new tally special treatment options (FT card) have been added to assist with
reactor analyses:

SPM Collision exit energy-angle scatter probability matrices

MGC Flux weighted multigroup cross sections

FNS Induced fission neutron spectra

LCS Legendre coefficients for scatter reactions

These new multigroup tally capabilities have been thoroughly described and
verified via code-to-code comparisons [2].

Slide ICRS-RPSD-Workshop-89 of 147

Flux-weighted Multigroup Cross Sections

FTn MGC fg
MGC Flux weighted multigroup cross sections
fg Flag for microscopic (barns) or macroscopic (1/cm) cross section

calculation

Description of the Multiplier Bins for the MGC FT Option.

Bin # Units Values

1 n/(cm2 · s) Flux (used as a divisor for the other bins)

2 sh/cm Inverse velocity

3 barns Total cross section

4 barns Absorption cross section

5 barns Fission cross section

6 barns Total or prompt fission production cross section

7 barns Delayed fission production cross section

8 barns Fission heat production cross section

9 barns Capture cross section (Absorption + Fission)

10 barns Scatter cross section [Total − (Absorption + Fission)]

Slide ICRS-RPSD-Workshop-90 of 147

Flux-weighted Scattering Matrices and Fission Spectra

Multigroup scattering matrix options

FTn SPM na (cosine-binned scattering matrices)

SPM Collision exit energy-angle scatter probability matrices

na Integer number of equally-spaced cosine bins

FTn LCS lo (Legendre coefficient scattering matrices)

LCS Legendre coefficients for scatter reactions

lo Integer number of maximum Legendre scattering order

Multigroup fission energy spectra

FTn FNS nt

FNS Induced fission neutron spectra

nt Integer number of delayed neutron time bins
I If nt is not specified, then a T card needs to be used to

specify time binning to separate various prompt and delayed
neutrons emitted from fission.

Slide ICRS-RPSD-Workshop-91 of 147

Code-to-code Verification Efforts (1)

I Compared new multigroup special treatments to those produced using
NJOY
I Calculated a fine-group energy weighting spectrum with MCNP
I Inserted the weighting spectrum into NJOY
I Compared NJOY multigroup data to MCNP multigroup data

I Compared to other Monte Carlo codes that calculate multigroup cross
sections

Multigroup Cross Section MGC Option Verification

Slide ICRS-RPSD-Workshop-92 of 147

Code-to-code Verification Efforts (2)

Legendre Scattering Coefficient LCS Option Verification

Slide ICRS-RPSD-Workshop-93 of 147

Code-to-code Verification Efforts (3)

Delayed Fission Spectra FNS Option Verification

Slide ICRS-RPSD-Workshop-94 of 147

Summary

I The SPM and LCS options were compared to each other for internal
consistency

I Besides any issues using NJOY with a fine-enough weighting spectrum
and dealing with the statistical noise in the Monte Carlo tallies, everything
looks good between NJOY and MCNP

I Some reactor pin-cell-like problems were used to compare to multigroup
capabilities in other Monte Carlo codes

Prompt Fission Spectra FNS Option Verification

Slide ICRS-RPSD-Workshop-95 of 147

Unstructured Mesh Improvements

Slide ICRS-RPSD-Workshop-96 of 147

Overview of Unstructured Mesh in MCNP6.3

I Significant refactoring and modernization work done to clean-up existing
and unused code paths

I Added mesh element quality assessment to the MCNP6.3 code
I Additional regression, verification, and validation testing with additional

comment, warning, and fatal error messages
I New HDF5 input format option and HDF5+XDMF elemental edit output

format option
I The Abaqus input format can be used to produce the new HDF5 input

format with the MCNP input (mcnp6 i ...) processing option
I The elemental edit HDF5+XDMF output builds on top of the input

HDF5 format such that it can be used as input for an initial calculation
or for a restart calculation

I Reduced mesh input processing times and memory consumption
I Deprecated legacy UM Fortran utilities in favor of new Python-based

scripts

Slide ICRS-RPSD-Workshop-97 of 147

UM Element Quality Assessment

Slide ICRS-RPSD-Workshop-98 of 147

Mesh Elemental Quality Assessment

I Recent review MCNP UM quality assessment and reporting work [6]
I Detailed discussion on calculating element quality [7, 8]
I Mesh-element quality is a thoroughly studied topic, e.g., [7, 9–11]

I Also: International Meshing Roundtable [https://imr.sandia.gov]
I Origins in mesh generation: calculate metrics and remesh toward

optima
I The MCNP um_pre_op utility [12] has an “element checker”

I Evaluates elemental Jacobian matrix determinant: go/no-go criterion
I Must be run/inspected manually by a user; not implicitly in workflow
I Invoked as, e.g., um_pre_op -ec -o inp1034.ec.out um1034.abaq
I Looking for final line: “Total number of failed elements: 0”

I MCNP6.3 Advances in mesh quality assessment
I Quality metrics implemented for MCNP UM element types

I Reproduced um_pre_op capability
I Most-commonly used elements emphasized
I Default enabled, opt-out available via embed card elementchk toggle

https://imr.sandia.gov

Slide ICRS-RPSD-Workshop-99 of 147

Approach to UM Quality Assessment (1)

I Start by focusing on linear tetrahedra and hexahedra
I Most commonly used elements by MCNP UM practitioners
I Most thoroughly studied elements by mesh-quality community
I Identify metrics that can be characterized versus recommended ranges
I All metrics exist on continua (i.e., no discrete and/or Boolean metrics)
I Recommended ranges usually support FEA mesh-quality needs
I This may lead to overly conservative recommended min/max values
I Most consolidated source identified: Verdict library

Slide ICRS-RPSD-Workshop-100 of 147

Approach to UM Quality Assessment (2)

I Provide enough information to know if more information is needed
I Provide information implicitly; don’t require more workflow tasks
I Ability to opt out in case mesh is “known to be good”
I Elemental quality metric distribution information (a balancing act)
I Number of elements inside / outside recommended ranges
I Ample warning that more attention may be needed
I Conservatism, until better guidance is available, is good
I Education on how to learn more about mesh quality

I Warnings and Output Tables
I Functional approach: warnings (below) and output tables

I Warnings in standard output prompt user to inspect output tables
I Output tables inform whether additional, external, study is necessary

I (Conservative) warnings sent to standard output and output file...

Slide ICRS-RPSD-Workshop-101 of 147

UM Performance Improvements

Slide ICRS-RPSD-Workshop-102 of 147

Reduction in UM Initialization Computational Time

I For efficient particle tracking, the UM input processing includes a step to
store neighbor-to-neighbor element information

I In MCNP6.2 this step is O(N2) and in MCNP6.3 this step is O(N)
I For large UM models, this is a significant improvement

I For example, a city-sized UM model with 700k+ linear hexahedral
element model had a 20x speedup in input processing time

UM Input Processing Times for MCNP6.2 (left) vs. MCNP6.3 (right)

Slide ICRS-RPSD-Workshop-103 of 147

Reduction in UM Memory Consumption

I In MCNP6.2, UM models with many parts that have a large variance in
the number elements can lead to excessive amounts of unnecessary
memory allocated

I This can be especially important when running MPI parallel calculations
with a large number of ranks

I The example below is using an UM model of the ORNL PCA Problem

UM Memory Usage for MCNP6.2 (Devel) vs. MCNP6.3 (Mem)

Slide ICRS-RPSD-Workshop-104 of 147

UM Validation

Slide ICRS-RPSD-Workshop-105 of 147

MCNP Unstructured Mesh Geometry

I The MCNP unstructured mesh (UM) feature was implemented to allow
MCNP to read in an Abaqus mesh file, generated by Abaqus, a
multiphysics and finite element analysis code.

I The use of a mesh in MCNP allows a multiphysics code such as Abaqus
to be used in tandem to perform neutronics analysis with MCNP and
other analyses such as heat transfer with a separate code.

I Mesh Quality is important
I Mass/volume may not be preserved
I Especially important for criticality calculations

I It is possible to generate a mesh, which reflects the geometry adequately
for most purposes, and yet does not properly preserve mass and/or
volume to the degree necessary for correct alidation efforts using
criticality safety benchmarks and shielding benchmarks.

Slide ICRS-RPSD-Workshop-106 of 147

Shielding Benchmark Example: Oktavian Experiments

I The Oktavian suite of shielding experiments consist of inner and outer
spherical steel shells encasing some shielding sample.

I The experiments used a D-T fusion source at the center of the shield,
with an aperture leading to a hollow interior containing a tritium target. A
deuteron beam was fired through the aperture to strike the target and
cause fusion.

Slide ICRS-RPSD-Workshop-107 of 147

Initial Oktavian Meshing

I In general, hex meshing can be difficult, requiring a geometry to be split
into simpler components to be meshed.

I CUBIT was used for this task, a meshing software developed by Sandia
National Labs. Requires a model to be split into pieces that can be
“swept”, a meshing algorithm that CUBIT employs.

I The method used for the Oktavians was to cut a core out of the center
using the cylindrical aperture as a guide. The remaining spherical
components could then be cut into eighths and the entire model then
meshed.

Slide ICRS-RPSD-Workshop-108 of 147

UM vs. CSG Oktavian Verification Work
I Hex meshed four Oktavian models using CUBIT for processing in MCNP
I Repeated using a tet mesh, allowing for an easier meshing process, but

requiring greater computational time
I Both meshing methods to be compared to CSG models from MCNP

VERIFICATION_SHLD_SVDM

Slide ICRS-RPSD-Workshop-109 of 147

UM Oktavian Mesh Quality and Size

Aluminum Silicon Copper Molybdenum
Volume Difference (%) 0.13 0.21 0.27 0.07
Number of Elements 195848 111200 93788 702800

Average Quality 0.85 0.84 0.70 0.80

Slide ICRS-RPSD-Workshop-110 of 147

UM Oktavian Paraview Visualization

I Mesh geometries allow the placement of elemental edits on meshes,
functioning similarly to a tally

I HDF5 elemental edit output (eeout) files created by MCNP6.3 allow
results to be viewed using a program such as Paraview

Slide ICRS-RPSD-Workshop-111 of 147

Aluminum Oktavian UM vs. CSG Comparison

I Plots comparing the F1 tally results
from the hex, tet, and CSG models,
as well as comparing the error of
these three tally results.

I The graph in red shows the percent
relative error between the hex
mesh and CSG models.

Slide ICRS-RPSD-Workshop-112 of 147

UM Verification and Validation Summary

I In the past couple of years, a dedicated UM verification and validation
effort has been ongoing

I Focused on CSG vs. UM comparisons to ultimately understand the mesh
quality requirements to obtain comparable results to a proper CSG
benchmark model

I Both criticality safety benchmarks (not shown here) and shielding
benchmarks have been studied

I UM V&V will continue and ultimately become part of the vnvstats efforts
in the future

Slide ICRS-RPSD-Workshop-113 of 147

Physics and Data Changes

Slide ICRS-RPSD-Workshop-114 of 147

CGMF 1.1.1 Upgrade

Slide ICRS-RPSD-Workshop-115 of 147

Motivation for Correlated Fission in MCNP6

I Limitations
I Expected secondary production of

particles
I Good for criticality safety,

shielding, reactor physics
applications, etc.

I Cannot correlate incident reaction
with secondary production

I Cannot perform time-coincident
detector response calculations

I Previous workarounds
I Sampling P(n) in MCNP
I LLNL fission library
I Detector response simulations in

MCNPX-PoliMi

Integrated “low-energy” fission
physics models to simulate
event-by-event nuclear reactions.

Slide ICRS-RPSD-Workshop-116 of 147

CGMF on GitHub (1)

Includes source code, data, and Python Jupyter notebooks and tools
I https://github.com/lanl/cgmf

https://github.com/lanl/cgmf

Slide ICRS-RPSD-Workshop-117 of 147

CGMF on GitHub (2)

I ReadTheDocs documentation published online

Physics and user manual published in Computer Physics Communications [13]

https://cgmf.readthedocs.io/en/latest/index.html

Slide ICRS-RPSD-Workshop-118 of 147

Updates for the MCNP6.3 Release (1)

CGMF updates (new fission systems in red)
I Spontaneous fission

I Pu-238, -240, -242, -244, and
Cf-252, -254

I Neutron-induced fission
I U-233, -234, -235, -238, Np-237, and

Pu-239, -241
I Late-time prompt fission gamma rays
I Fission fragment angular distributions
I Pre-equilibrium neutron emission

CGMF-MCNP Integration Updates
I Through the new MCNP CMake build system (find_package)
I Built as a library, linked to MCNP executable
I Same library can also be linked to make the CGMF executable

Slide ICRS-RPSD-Workshop-119 of 147

Updates for the MCNP6.3 Release (2)

I Verification of the integrated CGMF code and MCNP interface
I Done with new HDF5 PTRAC and MPI

No change to MCNP input options. To use CGMF → FMULT METHOD=7

Slide ICRS-RPSD-Workshop-120 of 147

Additional Minor Updates

I For MCNP6.3
I The logic in MCNP6.2 to handle the combination of prompt neutrons

from the correlated fission models (CGMF, FREYA, and LLNL Fission
Library) and delayed neutrons from ACE data tables is flawed. This has
been corrected in MCNP6.3.

I For CGMF 1.1
I A patch to fix data file reading in mixed Windows/Linux environments

(e.g. WSL) was pushed to GitHub. This patch version CGMF 1.1.1 was
released in April 2022.

I Moving forward with MCNP6.3 + CGMF 1.1.x should be easy to manage
if you have the MCNP6.3 source code
I The CGMF 1.1.x interface will not change
I Therefore, future patch releases of CGMF 1.1.x should be drop-in

replacements without changes required to the MCNP6.3 source code
itself

Slide ICRS-RPSD-Workshop-121 of 147

Summary and Future Plans

I As a result of a multi-year NA-22 project,
I CGMF was integrated into MCNP6.2 and publicly released
I CGMF was open-sourced and publicly released
I MCNP6.3 was updated to include the latest version and is in the

process of being publicly released

I Current and future plans
I A.E. Lovell was awarded a LANL Early Career LDRD to work on global

optimization and uncertainty quantification within CGMF
I D. Neudecker and A.E. Lovell have been working on model parameter

fitting such that CGMF may be used in ENDF/B evaluations
I T. Kawano and M.E. Rising are collaborating with RPI to improve both

standalone and MCNP-integrated CGM (non-fission) simulations

Contact the LANL CGMF Developers at cgmf-help@lanl.gov

Slide ICRS-RPSD-Workshop-122 of 147

Nuclear Data Downloading Tool

Slide ICRS-RPSD-Workshop-123 of 147

Motivation: Making Nuclear Data More Accessible (1)

Nuclear Data Available to Download - https://nucleardata.lanl.gov/

https://nucleardata.lanl.gov/

Slide ICRS-RPSD-Workshop-124 of 147

Motivation: Making Nuclear Data More Accessible (2)

I Nuclear data libraries have historically been shipped with the MCNP code
I Getting updated nuclear data usually required

I Waiting for new MCNP code release
I Downloading the ENDF-format nuclear data and doing the NJOY

processing manually

I Nuclear data team at LANL (XCP-5) have made available several nuclear
data libraries on their website (https://nucleardata.lanl.gov/)
I More easily provide nuclear data libraries
I More timely delivery of nuclear data updates

I Colin Josey (XCP-3) has developed a Python tool for downloading and
installing specific nuclear data libraries
I Makes it simple to install and uninstall specific nuclear data library(ies)
I Generates the nuclear data directory (XSDIR) file with user-specified

ordering

Slide ICRS-RPSD-Workshop-125 of 147

nd_manager Usage: Initial Configuration

I The Python script, nd_manager.py, and required atomic weight ratio data
will ship with the MCNP code

I On first run, the script will generate a configuration file and define where
to get nuclear data and where it will be installed

Slide ICRS-RPSD-Workshop-126 of 147

nd_manager Usage: Downloading Nuclear Data

I Straightforward to view all available libraries and choose which ones to
install

I Can choose to download nuclear data libraries either by name (e.g.
“Lib80x”) or using the “--all available” or “--all production” flags

Slide ICRS-RPSD-Workshop-127 of 147

nd_manager Usage: Installing Nuclear Data

I Once downloaded, the script is used to install the nuclear data and
generate an XSDIR file

I Specifying the “--all available” or “--all production” flags will install the
corresponding nuclear data libraries that were previously downloaded

I Order of libraries in the XSDIR file is set in the config
I Order of repositories in config, then order of libraries in each repository
I Updated whenever new nuclear data libraries are installed/uninstalled

Slide ICRS-RPSD-Workshop-128 of 147

nd_manager Usage: XSDIR File Creation

I XSDIR file for MCNP usage can be generated, based on what was
downloaded and installed

Slide ICRS-RPSD-Workshop-129 of 147

nd_manager Summary

I Allowing the LANL Nuclear Data and Monte Carlo teams to work and
distribute their products independently

I Updates, fixes (errata), and newly released data will be made available in
a much faster timescale than ever before

I Demo (if time permits)

Slide ICRS-RPSD-Workshop-130 of 147

Verification and Validation
Framework

Slide ICRS-RPSD-Workshop-131 of 147

MCNP Testing

All of these techniques are used during MCNP development, either daily or weekly,
in the pursuit of ultimately providing a robust MCNP product.

Regression With saved templates of output and result files, the current execution
of the MCNP code is compared to these stored templates to ensure
nothing changed unexpectedly. Intended to run quickly, so there is no
sense in trying to understand any statistical convergence or
aggregate behavior of the code.

Verification Where analytical and semi-analytical solutions to the transport
equation may exist, we want to ensure that MCNP is solving the
correct equations

Validation Combination of code (MCNP) and nuclear data (ENDF/NJOY/ACE)
work together to produce results comparable to reality

Long-standing reputation can be linked to extensive verification and validation
(V&V). The remainder of this presentation will focus on V&V.

Slide ICRS-RPSD-Workshop-132 of 147

Previously Released V&V Suites

V&V Suites in MCNP6.1, MCNP6.1.1, and MCNP6.2

KOBAYASHI 3-D fixed-source streaming problems [14]

VERIFICATION_KEFF Analytic k-effective test problems [15]

VERIFICATION_SHLD_SVDM Various shielding benchmarks from SINBAD [16]

VALIDATION_CRITICALITY 31 ICSBEP criticality benchmarks [17]

VALIDATION_CRIT_EXPANDED 119 ICSBEP criticality benchmarks [18]

VALIDATION_SHIELDING Neutron and photon fixed-source benchmarks [19]

Additional V&V Suites in MCNP6.1 and MCNP6.1.1

VALIDATION_CEM Differential tests of the high-energy physics code CEM [20]

VALIDATION_LAQGSM Differential tests of the high-energy physics code LAQGSM [21]

VALIDATION_ROSSI_ALPHA Integral tests of the 13 ICSBEP benchmarks with Rossi-α

measurements [22]

Slide ICRS-RPSD-Workshop-133 of 147

Limitations of the Previously Released V&V Suites

I Mixture of Makefile, Perl, Windows .bat scripts used to execute problems
(ALL)
I Missing execution scripts entirely (CEM and LAQGSM)

I Problems cannot be run directly without preprocessing or suite-specific
XSDIR files (VALIDATION_CRITICALITY and
VALIDATION_CRIT_EXPANDED)

I Misleading suite not doing actual verification
(VERIFICATION_SHLD_SVDM)

I Postprocessing results scripts inconsistent and/or missing
(VALIDATION_SHIELDING, CEM and LAQGSM)

I No job submission / cluster support (ALL)
I Plotting / visualization support missing, broken, or incomplete (ALL)
I Any sort of documentation requires manual intervention (ALL)

Slide ICRS-RPSD-Workshop-134 of 147

New Python-based Framework

I Consistency across suites
I Extensible to more suites and

problem types
I Automated for all steps

I Setup
I Execute
I Postprocess
I Document

I Requires Python3 (and various
standard packages)

I Requires MCNPTools
I Runs on Linux, MacOS, and

Windows

Listing 4: Sample description.json File
1 {
2 "general_info ": {
3 "name": "GODIVA",
4 "icsbep_name ": {
5 "material ": "HEU",
6 "form": "MET",
7 "spectrum ": "FAST",
8 "number ": "001",
9 "case": ""

10 },
11 "description ": "Bare HEU sphere"
12 },
13 "execution_info ": {
14 "arguments ": {
15 "i": "GODIVA",
16 "n": "GODIVA"
17 },
18 "outputs ": {
19 "outp": "GODIVAo",
20 "mctal": "GODIVAm"
21 },
22 "inputs ": {
23 "inp": "GODIVA"
24 }
25 },
26 "experiment_data ": {
27 "k-eff": {
28 "val": 1.0,
29 "std": 0.001
30 }
31 }
32 }

Slide ICRS-RPSD-Workshop-135 of 147

New Python-based Framework

I Can be immediately used for
any version of the code (input
and data options must be
considered)

I For developers
I Can test code and data

frequently
I V&V reports are essential

for a release
I For everyone else

I Can add
application-specific V&V
suites

I Can support SQA needs

Listing 5: vnvstats Directory Structure
1 vnvstats /
2 |- README.md
3 |- support /
4 |- mcnpvnv.py (MCNP -specific V&V functionality)
5 |- vnv / (Generic V&V functionality)
6 |- README.md
7 |- __init__.py
8 |- benchcalc.py (Benchmark/experiment handling)
9 |- commandline.py (Command line parser/execution)

10 |- compare.py (Compare results)
11 |- plotndoc.py (Tables , plots and docs)
12 |- slurmin.py (Support SLURM submission)
13 |- validation /
14 |- criticality /
15 |- README.md
16 |- VnV.py (Drives criticality suite)
17 |- experiments /
18 |- GODIVA /
19 |- GODIVA (Benchmark model)
20 |- description.json (Experiment info)
21 |- ...
22 |- pulsed_spheres /
23 |- lockwood /
24 |- ...
25 |- verification /
26 |- keff /
27 |- kobayashi /
28 |- ...

Slide ICRS-RPSD-Workshop-136 of 147

New Python-based Framework

List - Query test suite for available test
problems

$ python VnV.py list

Listing 6: vnvstats Listing Example
1 criticality $ python VnV.py list
2 All available tests in validation criticality:
3 BAWXI2
4 BIGTEN
5 FLAT23
6 FLAT25
7 FLATPU
8 FLSTF1
9 GODIVA

10 GODIVR
11 HISHPG
12 ICT2C3
13 IMF03
14 IMF04
15 JEZ233
16 JEZ240
17 JEZPU
18 LST2C2
19 ORNL10
20 ORNL11
21 PNL2
22 PNL33
23 PUBTNS
24 PUSH2O
25 SB25
26 SB5RN3
27 STACY36
28 THOR
29 TT2C11
30 UH3C6
31 UMF5C2
32 ZEBR8H
33 ZEUS2

Slide ICRS-RPSD-Workshop-137 of 147

New Python-based Framework

Setup - Creates a calculation tree of
benchmarks selected

$ python VnV.py setup \
$ --calcdir_name testA

Example of calculation tree with only listed
benchmarks:

$ python VnV.py setup \
$ --calcdir_name testB GODIVA JEZPU

Slide ICRS-RPSD-Workshop-138 of 147

New Python-based Framework

Execute - Runs all problems in existing calculation directory

$ python VnV.py execute --calcdir_name testA

I Option examples
I --executable_name mcnp6
I --jobs 2 (concurrent execution)
I --ntrd 8 (threads for each job)
I --nmpi 4 (ranks for each job)

I Builds command line from
execution_info group

Listing 7: Sample description.json Exe-
cution Info

1 "execution_info ": {
2 "arguments ": {
3 "i": "GODIVA",
4 "n": "GODIVA"
5 },

Slide ICRS-RPSD-Workshop-139 of 147

New Python-based Framework

Execution Submission - Submits all problems in existing calculation directory via
slurm/sbatch

$ python VnV.py execute_slurm --calcdir_name testA

I Option examples
I --nodes 1 (node allocation)
I --time 120 (time allocation in minutes)
I --stride 8 (jobs per sbatch job submitted)
I --wait (flag to wait for execution to complete before proceeding)
I --pre_cmd and --post_cmd

(commands to run before and/or after MCNP execution within sbatch
submission script)

Slide ICRS-RPSD-Workshop-140 of 147

New Python-based Framework

Postprocess - Reads calculation output files and processes results into calculation
description.json

$ python VnV.py postprocess --calcdir_name testA

I Adds calculation_data and
calculation_info objects to
JSON file

I experiment_data and
calculation_data directly
comparable

I All suites will likely postprocess
MCNP results differently

I Using MCNPTools wherever
possible

Listing 8: Sample description.json Calcu-
lation Data and Info

1 "calculation_data ": {
2 "k-eff": {
3 "val": 1.00002 ,
4 "std": 0.000283388
5 }
6 },
7 "calculation_info ": {
8 "code": "mcnp6",
9 "version ": "6",

10 "date": "05/04/22 23:40:20"
11 }

Slide ICRS-RPSD-Workshop-141 of 147

New Python-based Framework

Documentation - Retrieves experiment
and simulation results from calculation
description.json and prepares
documentation

$ python VnV.py document \
$ --calcdir_name testA

I Results are tabulated into text and
LaTeX form

I Plots are generated into PNG
outputs

I Between LaTeX text, tables, and
PNG plots, a V&V report is nearly
done

0.98 0.99 1.00 1.01 1.02 1.03
k-effective +/- 1

FLAT25
GODIVA
GODIVR
ORNL10
TT2C11
UH3C6
ZEUS2

BIGTEN
ICT2C3
IMF03
IMF04

BAWXI2
LST2C2

STACY36
PNL33

ZEBR8H
FLATPU
HISHPG
JEZ240
JEZPU
PNL2

PUBTNS
PUSH2O

THOR
FLAT23
FLSTF1
JEZ233

ORNL11
SB25

SB5RN3
UMF5C2

Be
nc

hm
ar

ks

Exp. k-eff MCNP63 endf80 Calc. k-eff

Slide ICRS-RPSD-Workshop-142 of 147

New Python-based Framework

Nominal workflow - Setup, execute, postprocess, and document a suite of test
problems

1. python VnV.py setup --calcdir_name MCNP63_VV
2. python VnV.py execute --calcdir_name MCNP63_VV
3. python VnV.py postprocess --calcdir_name MCNP63_VV
4. python VnV.py document --calcdir_name MCNP63_VV

Slide ICRS-RPSD-Workshop-143 of 147

Additional Test Suite(s)

I Beyond the actual MCNP input files, two ingredients are required to
create a new suite:
I description.json files, each benchmark (easy)

I execution_info : maps to MCNP command line options/arguments
and input/output files

I experiment_data : benchmark results used to compare to
calculation results

I VnV.py script, each suite (medium/hard)
I list : same for all test suites
I setup : same for all test suites
I execute : same for all test suites
I execute_slurm : same for all test suites
I postprocess : unique to every test suite
I document : unique to every test suite

Slide ICRS-RPSD-Workshop-144 of 147

Additional Test Suite(s)

I Finished incorporating Lockwood validation test suite
I Electron transport energy deposition

I Condensed history algorithm
I Single event electrons

I Several materials, 334 separate MCNP inputs
I Reasonably computationally expensive (need cluster / high

performance computing)

Slide ICRS-RPSD-Workshop-145 of 147

Additional Test Suite(s)

I Resurrecting LAQGSM validation
test suites
I No Makefile or other scripts to

execute code and/or postprocess
results

I Gaining experience through old
tests, documentation and trail of
bread crumbs. . .

102 103

Momentum, p [MeV/c]

10−5

10−3

10−1

101

103

105

In
va

ri
an

t
C

ro
ss

S
ec

ti
on

,
E

d
3
σ
/
(d
p

3
)

[m
il
li
b

ar
n

s
·s

r−
1
·G

eV
−

2
·c

3
]

30◦ (×100)

45◦ (×10−1)

60◦ (×10−2)

90◦ (×10−3)

130◦ (×10−4)

Calc. ±1σ

Slide ICRS-RPSD-Workshop-146 of 147

Summary

I All MCNP team supported V&V test suites are now developed in a
separate repository from the MCNP source code within a Python-based
framework including:
I Python tools and scripts
I Benchmark inputs and description JSON files

I This entire framework will be distributed with the MCNP6.3 release
I Most V&V test suites distributed with MCNP6.2 will be distributed in new

framework
I New V&V test suites have been added for the MCNP6.3 release
I Looking forward to feedback and potential contributions

Slide ICRS-RPSD-Workshop-147 of 147

Q&A

Slide ICRS-RPSD-Workshop-A-1 of 62

Backup Slides

Slide ICRS-RPSD-Workshop-A-2 of 62

References

[1] V. K. Mehta, J. Armstrong, D. V. Rao, and D. Kotlyar, “Capturing Multiphysics
Effects in Hydride Moderated Microreactors using MARM,” Annals of Nuclear
Energy, vol. 172, p. 109067, 2022.

[2] R. B. Wilkerson, G. McKinney, M. E. Rising, and J. A. Kulesza, “MCNP
Reactor Multigroup Tally Options Verification,” Tech. Rep. LA-UR-20-27819,
Los Alamos National Laboratory, Oct. 2020.

[3] C. J. Josey and J. A. Kulesza, “Improved FMESH Capabilities in the MCNP
6.3 Code,” Tech. Rep. LA-UR-21-26363, Los Alamos National Laboratory, July
2021.

[4] S. R. Bolding, J. A. Kulesza, M. J. Marcath, and M. E. Rising, “Particle Track
Output (PTRAC) Improvements, Parallelism, and Post-Processing,” Tech. Rep.
LA-UR-21-26562, Los Alamos National Laboratory, Aug. 2021.

[5] M. T. Andrews, C. R. Bates, E. A. Mckigney, A. D. Mullen, S. F. Woldegiorgis,
M. E. Rising, M. J. Marcath, and A. Sood, “DRiFT - RELEASE 1.0.0
ORGANIC SCINTILLATORS,” Tech. Rep. LA-UR-21-29114, Los Alamos
National Laboratory, Sept. 2021.

Slide ICRS-RPSD-Workshop-A-3 of 62

References

[6] J. A. Kulesza, J. C. Armstrong, T. C. McClanahan, and S. Swaminarayan,
“MCNP Unstructured Mesh Elemental Quality Assessment,” Tech. Rep.
LA-UR-21-26362, Los Alamos National Laboratory, Los Alamos, NM, USA,
July 2021. MCNP User Symposium Presentation.

[7] C. J. Stimpson, C. D. Ernst, P. K. and. P. P. Pébay, and D. Thompson, “The
Verdict Geometric Quality Library,” Tech. Rep. SAND2007-1751, Sandia
National Laboratories, Albuquerque, NM ,USA, Mar. 2007.

[8] J. A. Kulesza, “MCNP Code Version 6.3.0 Unstructured-mesh Quality Metrics
& Assessment,” Tech. Rep. LA-UR-20-27150, Los Alamos National
Laboratory, Los Alamos, NM, USA, Sept. 2020.

[9] P. M. Knupp, “Achieving Finite Element Mesh Quality Via Optimization of the
Jacobian Matrix Norm and Associated Quantities. Part II—A Framework for
Volume Mesh Optimization and the Condition Number of the Jacobian Matrix,”
International Journal for Numerical Methods in Engineering, vol. 48,
pp. 1165–1185, May 2000.

Slide ICRS-RPSD-Workshop-A-4 of 62

References

[10] P. M. Knupp, “Algebraic Mesh Quality Metrics for Unstructured Initial Meshes,”
Finite Elements in Analysis and Design, vol. 39, pp. 217–241, Jan. 2003.

[11] P. P. Pébay, D. Thompson, J. Shepherd, P. Knupp, C. Lisle, V. A. Magnotta,
and N. M. Grosland, “New Applications of the Verdict Library for Standardized
Mesh Verification Pre, Post, and End-to-End Processing,” in Proceedings of
the 16th International Meshing Roundtable (M. L. Brewer and D. Marcum,
eds.), (Seattle, WA, USA; October 15–17), pp. 535–552, 2008.

[12] R. L. Martz, “The MCNP6 Book On Unstructured Mesh Geometry: User’s
Guide For MCNP 6.2,” Tech. Rep. LA-UR-17-22442, Los Alamos National
Laboratory, Los Alamos, NM, USA, Mar. 2017.

[13] P. Talou, I. Stetcu, P. Jaffke, M. E. Rising, A. E. Lovell, and T. Kawano, “Fission
Fragment Decay Simulations with the CGMF Code,” Computer Physics
Communications, vol. 269, p. 108087, 2021.

[14] K. Kobayashi, N. Sugimura, and Y. Nagaya, “3D Radiation Transport
Benchmark Problems and Results for Simple Geometries with Void Region,”
Progress in Nuclear Energy, vol. 39, no. 2, pp. 119–144, 2001.

Slide ICRS-RPSD-Workshop-A-5 of 62

References

[15] A. Sood, R. A. Forster, and D. K. Parsons, “Analytical Benchmark Test Set for
Criticality Code Verification,” Progress in Nuclear Energy, vol. 42, no. 1,
pp. 55–106, 2003. Also: LA-UR-01-3082.

[16] I. A. Kodeli and E. Sartori, “SINBAD – Radiation Shielding Benchmark
Experiments,” Annals of Nuclear Energy, vol. 159, p. 108254, 2021.

[17] R. D. Mosteller, “Comparison of Results from the MCNP(TM) Criticality
Validation Suite Using ENDF/B-VI and Preliminary ENDF/B-VII Nuclear Data,”
AIP Conference Proceedings, vol. 769, May 2005.

[18] R. D. Mosteller, F. B. Brown, and B. C. Kiedrowski, “An Expanded Criticality
Validation Suite for MCNP,” July 2011.

[19] B. C. Kiedrowski, F. B. Brown, N. A. Gibson, A. S. Bennett, and M. A.
Gonzales, “MCNP6 Shielding Validation Suite: Past, Present, and Future,”
Transactions of the American Nuclear Society, vol. 105, pp. 559–561, 2011.

Slide ICRS-RPSD-Workshop-A-6 of 62

References

[20] S. G. Mashnik, “Validation and Verification of MCNP6 Against High-Energy
Experimental Data and Calculations by Other Codes. I. The CEM Testing
Primer,” Tech. Rep. LA-UR-11-05129, Los Alamos National Laboratory, Los
Alamos, NM, USA, 2011.

[21] S. G. Mashnik, “Validation and Verification of MCNP6 Against High-Energy
Experimental Data and Calculations by Other Codes. II. The LAQGSM Testing
Primer,” Tech. Rep. LA-UR-11-05627, Los Alamos National Laboratory, Los
Alamos, NM, USA, 2011.

[22] R. D. Mosteller and B. C. Kiedrowski, “The Rossi Alpha Validation Suite for
MCNP,” July 2011.

[23] U. Ayachit, The ParaView Guide. Kitware, Inc., community ed., June 2018.

[24] J. A. Kulesza and T. C. McClanahan, “A Python Script to Convert MCNP
Unstructured Mesh Elemental Edit Output Files to XML-based VTK Files,”
Tech. Rep. LA-UR-19-20291, Rev. 2, Los Alamos National Laboratory, Los
Alamos, NM, USA, Nov. 2019.

Slide ICRS-RPSD-Workshop-A-7 of 62

References

[25] J. A. Kulesza, J. L. Alwin, J. D. Hutchinson, E. F. Shores, and R. C. Little,
“l3d2vtk: An MCNPTools Utility to Enable LNK3DNT File Visualization &
Post-processing,” in Transactions of the Winter 2019 American Nuclear
Society Meeting, vol. 121, pp. 1233–1236, Nov. 2019.

[26] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire,
K. Biagas, M. Miller, C. Harrison, G. H. Weber, H. Krishnan, T. Fogal,
A. Sanderson, C. Garth, E. W. Bethel, D. Camp, O. Rübel, M. Durant, J. M.
Favre, and P. Navrátil, “VisIt: An End-User Tool For Visualizing and Analyzing
Very Large Data,” in High Performance Visualization–Enabling Extreme-Scale
Scientific Insight, pp. 357–372, Oct. 2012.

[27] J. A. Clarke and E. R. Mark, “Enhancements to the eXtensible Data Model
and Format (XDMF),” in HPCMP User’s Group Conference 2007. High
Performance Computing Modernization Program: A Bridge to Future Defense,
(Pittsburgh, PA, USA; June 18–21), pp. 322–327, 2007.

[28] “XDMF Model and Format.” Website, Mar. 2019.

Slide ICRS-RPSD-Workshop-A-8 of 62

MCNP6.3 Visualization
Approaches

Slide ICRS-RPSD-Workshop-A-9 of 62

How to Use These Slides

I Intended to be useful as a reference
I Can be used independent of ParaView [23] being open

I GUI elements labeled to establish nomenclature
I When “clicks” are necessary, steps are numbered to give click order
I Additional information in lower-right “callout” boxes

I Recommended approach: focus on presentation and experiment after
I Prevents “getting lost” while the presentation is underway
I Experimentation is how skill and “muscle memory” is built

Slide ICRS-RPSD-Workshop-A-10 of 62

ParaView Introduction

I Open-source & cross-platform software
I Maintained by Kitware Inc.

I Kitware also maintains CMake, VTK, etc.
I Supported by, among others:

I Advanced Simulation and Computing Program
I Army Research Laboratory
I Los Alamos National Laboratory
I Sandia National Laboratories

I Getting it: https://www.paraview.org/download
I Getting help with it: https://www.paraview.org/community-support
I Issues: https://gitlab.kitware.com/paraview/paraview/-/issues

https://www.paraview.org/download
https://www.paraview.org/community-support
https://gitlab.kitware.com/paraview/paraview/-/issues

Slide ICRS-RPSD-Workshop-A-11 of 62

ParaView Interface Overview—Main Components

PipelinePipeline

Properties PaneProperties Pane
Information PaneInformation Pane

Render ViewRender View

Orientation TriadOrientation Triad

Progress BarProgress Bar

Slide ICRS-RPSD-Workshop-A-12 of 62

Views other than the Render View

Close orClose or
open newopen new

to seeto see
optionsoptions

Slide ICRS-RPSD-Workshop-A-13 of 62

ParaView Interface Overview—Toolbars

VCR ControlsVCR Controls

RepresentationRepresentation

Camera ControlsCamera Controls
Center Axis ControlsCenter Axis ControlsCommon FiltersCommon Filters

Active Variable ControlsActive Variable Controls

The ParaView interface has been described
as seeming like an airplane cockpit. But,
don’t be afraid to crash it—even if that might
(rarely) happen from time to time...

Slide ICRS-RPSD-Workshop-A-14 of 62

ParaView Interface Overview—Properties Pane

Apply ChangesApply Changes

AdvancedAdvanced
OptionsOptions

Delete from PipelineDelete from Pipeline

Slide ICRS-RPSD-Workshop-A-15 of 62

Render View Colors (Settings, Color Palette Tab)

AdvancedAdvanced
OptionsOptions

Background ColorBackground Color

Complement the Background,Complement the Background,
As AppropriateAs Appropriate

macOS: ParaView Menu→Preferences
Windows/Linux: Edit Menu→Settings

Slide ICRS-RPSD-Workshop-A-16 of 62

Loading (Example) Data to View

(1) Packaged Examples(1) Packaged Examples

(2) A “Canned” Example...(2) A “Canned” Example...

(3) Load by Clicking "OK"(3) Load by Clicking "OK"

Access from the File menu, Open... entry.
Some simple data files are provided with
ParaView that can be used for familiariza-
tion and/or experimentation.

Slide ICRS-RPSD-Workshop-A-17 of 62

Moving Around / Controls

Data in PipelineData in Pipeline

(1) Click “Apply” to Load(1) Click “Apply” to Load

Variables to Initially LoadVariables to Initially Load

Nothing showed up because ParaView is
giving an opportunity to deselect some
data/geometry before loading it. This can
save time/memory.

Slide ICRS-RPSD-Workshop-A-18 of 62

Moving Around / Controls (Properties Tab)

(1) Color by Block(1) Color by Block

Note the "Open" EyeballNote the "Open" Eyeball

Unavailable when AppliedUnavailable when Applied

(2) Scroll through the Properties Pane(2) Scroll through the Properties Pane
to get a Sense of the Amount ofto get a Sense of the Amount of
(Advanced) Options(Advanced) Options

Not a Can...Not a Can...
(3) Click and Drag to Rotate View(3) Click and Drag to Rotate View

(4) Advance Timesteps(4) Advance Timesteps
with VCR Controlswith VCR Controls

Slide ICRS-RPSD-Workshop-A-19 of 62

Moving Around / Controls (Information Tab)

(1) Click Button and Note New Orientation(1) Click Button and Note New Orientation

InformationInformation

Slide ICRS-RPSD-Workshop-A-20 of 62

Moving Around / Controls (Coloring & Legends)

(2) Representation(2) Representation(1) Edit Color Map(1) Edit Color Map

LegendLegend

(4) Edit Legend Properties(4) Edit Legend Properties

Discrete ColoringDiscrete Coloring
Materials, Parts, etc.Materials, Parts, etc.

(3) Name Blocks(3) Name Blocks

Slide ICRS-RPSD-Workshop-A-21 of 62

Edit Color Map
Simple / AdvancedSimple / Advanced

Orientation & PositionOrientation & Position
(Useful for Reproducible Plots)(Useful for Reproducible Plots)

LATEX Markup (Generally) AvailableLATEX Markup (Generally) Available

Few Font Choices (cf. LATEX Font)Few Font Choices (cf. LATEX Font)

SizingSizing
(Useful for Reproducible Plots)(Useful for Reproducible Plots)

Slide ICRS-RPSD-Workshop-A-22 of 62

Common MCNP Output
Operations / Manipulations

Slide ICRS-RPSD-Workshop-A-23 of 62

Motivating Calculation Geometry & Results

I Focus: UM geometry and results
I EEOUT file converted to an ASCII Unstructured VTK File (.vtu) [24]
I HDF5+XDMF output files (not available in MCNP6.2 and earlier)

I Focus: FMESH-based mesh tallies
I MESHTAL file converted to an ASCII Structured VTK File (.vts)
I HDF5+XDMF output files (not available in MCNP6.2 and earlier)

I The needed HDF5+XDMF files are provided
I Conversion processes shown next for completeness

I Other possibilities (not covered here)
I Particle tracks
I Point data (collisions, fissions, etc.)
I Voxelized CSG representations [25]
I Weight-window mesh files

Slide ICRS-RPSD-Workshop-A-24 of 62

MCNP UM File Format Conversion

I MCNP6.2 and earlier: use conversion script electronically attached to [24]
I MCNP6.3: direct embed XDMF+HDF5 output via hdf5file=filename
I Example conversion execution looks like:

1 > ./ Convert_MCNP_eeout_to_VTK.py caas_hybrid.mcnp.eeout
2 Processing caas_hybrid.mcnp.eeout ...
3 Found 1 edit(s).
4 Processing ENERGY_6 edit ...
5 Processing & Validating EDIT_6_RESULT_ ...
6 Maximum value: 1.19052e-02
7 Minimum positive value: 3.21896e-14
8 Minimum value: 0.00000e+00
9 Processing & Validating EDIT_6_ERROR_ ...

10 Maximum value: 1.00000e+00
11 Minimum positive value: 8.86076e-04
12 Minimum value: 8.86076e-04

I Resulting file: caas_hybrid.mcnp.eeout.vtu

Slide ICRS-RPSD-Workshop-A-25 of 62

MCNP Mesh Tally File Format Conversion

I MCNP6.2 and earlier: use meshtal2vtk script with MCNPTools 5.2.1+
I MCNP6.3: direct fmesh XDMF+HDF5 output via out=xdmf
I Example meshtal2vtk execution looks like:

1 > meshtal2vtk meshtal
2 Processing mesh tally: 14 -> meshtal_14.vts
3 Smallest non -zero tally value: 1.58150e-03
4 Largest tally value: 3.57728e-02

I As before: the values are useful for setting log-scaled colorbar bounds

Slide ICRS-RPSD-Workshop-A-26 of 62

Introduction to XDMF [27, 28]

I ASCII, XML-formatted, file
I Standard, albeit not actively developed, file format
I Supports various structured and unstructured geometries
I Can contain data and/or contain pointers into HDF5 files

I Cross-platform & open-source support (direct visualization of output)
I ParaView [23]
I VisIt [26]

I No additional MCNP library dependencies
I MCNP outputs are XDMF version 2

Slide ICRS-RPSD-Workshop-A-27 of 62

Loading XDMF Version 2 Files

Slide ICRS-RPSD-Workshop-A-28 of 62

After Loading, Check the File “Information”

Ensure Memory Use is ViableEnsure Memory Use is Viable

Validate SizeValidate Size

Available Cell Data ArraysAvailable Cell Data Arrays

Slide ICRS-RPSD-Workshop-A-29 of 62

Logarithmically Scaled Coloring & Rename Legend

(1) Rename Legend(1) Rename Legend

(3) Enable Log Scaling(3) Enable Log Scaling

(2) Set Custom Range(2) Set Custom Range
(9e-13 < D < 1.2e-2)(9e-13 < D < 1.2e-2)

(or 1e-12 < D < 1e-2)(or 1e-12 < D < 1e-2)

(4) Choose Different Color Map(4) Choose Different Color Map

Select Edit 6 values to color by.
Units are calculated as gray from

MeV/g ×1.6022 × 10−10 Gy · g/MeV × 2.9 fission−1 × 1015 fissions.

Slide ICRS-RPSD-Workshop-A-30 of 62

Color Map Selection

Lots of Options!Lots of Options!(1) Search for, and select, “Plasma”(1) Search for, and select, “Plasma”

Divergent Color MapDivergent Color Map

Ramped Color MapRamped Color Map

(2) Apply Color Map(2) Apply Color Map

Can Import Custom JSON-formatted MapsCan Import Custom JSON-formatted Maps

Slide ICRS-RPSD-Workshop-A-31 of 62

UM Feature-edges Only

Deselect ceiling grid, change UM representation to "Feature Edges",
color as black, set line width to 3.

(1) Manually Specify Camera(1) Manually Specify Camera

Slide ICRS-RPSD-Workshop-A-32 of 62

Specify Camera Settings

(2) Save Camera Preset(2) Save Camera Preset

(1) Specify Camera Settings(1) Specify Camera Settings

Slide ICRS-RPSD-Workshop-A-33 of 62

Operations of Interest

I Clips and slices
I Isocontours

I Cell-to-point data conversion
I Lighting considerations
I Overlaying relative fractional uncertainties
I Probing & manually annotating values

I Assessing mesh quality
I Segregating and finding particular elements

Slide ICRS-RPSD-Workshop-A-34 of 62

Clip (Hide Half Space)

(1) Click “Clip” Filter(1) Click “Clip” Filter
(or Select from “Filter” Menu)(or Select from “Filter” Menu)

(2) Disable Plane to Avoid Accidents(2) Disable Plane to Avoid Accidents

(3) Specify Position & Orientation(3) Specify Position & Orientation

Useful OptionsUseful Options

For subsequent mesh tally plots, we use a distinct, custom, color palette.

Slide ICRS-RPSD-Workshop-A-35 of 62

Slice

(1) Delete Clip & Apply “Slice” Filter(1) Delete Clip & Apply “Slice” Filter

(2) Specify Position & Orientation(2) Specify Position & Orientation

Slide ICRS-RPSD-Workshop-A-36 of 62

Another Slice (x, y, z = 0,−825, 130 ⊥ x)

Slide ICRS-RPSD-Workshop-A-37 of 62

Isocontours & Lighting
Considerations

Slide ICRS-RPSD-Workshop-A-38 of 62

Apply Contour Filter and “Contour By” Value

(1) Convert Cell Data to Point Data (via Filter)(1) Convert Cell Data to Point Data (via Filter)
(2) Apply Contour Filter(2) Apply Contour Filter

(3) Contour by Values(3) Contour by Values

Slide ICRS-RPSD-Workshop-A-39 of 62

Choose Isocontour Values

(1) Remove Existing Value(s)(1) Remove Existing Value(s)

(2) Generate Number Series for Contour Levels(2) Generate Number Series for Contour Levels

(3) Enter Upper/Lower Extreme Values(3) Enter Upper/Lower Extreme Values
(4) Select Spacing(4) Select Spacing

(5) Select Number of Levels(5) Select Number of Levels

(6) Generate to Create The Levels(6) Generate to Create The Levels

(7) Apply(7) Apply

Also adjust coloring by value to be consistent with contour range.

Slide ICRS-RPSD-Workshop-A-40 of 62

Observe Isocontour Results & Trends

(1) Apply Clip Filter ⊥ z = 25(1) Apply Clip Filter ⊥ z = 25

Peak and emanations about source. Significant attenuation in walls

Can also overlay other results (particle tracks, etc.).

Slide ICRS-RPSD-Workshop-A-41 of 62

Clip Isocontour & Observe Shadows

Clipping about the source shows a peak; however, it is not compara-
ble to the top of the legend. This is because of diffuse lighting (which
gives shadows but “darkens” the colors).

Diffuse Lighting SettingsDiffuse Lighting Settings

Slide ICRS-RPSD-Workshop-A-42 of 62

Adjust from Diffuse to Ambient Lighting

Shadows are lost but colors in the image are now faithful to the leg-
end. Next, add relative fractional uncertainties to give perspective on
results.

Set Ambient to 1, Set Diffuse to 0Set Ambient to 1, Set Diffuse to 0

Slide ICRS-RPSD-Workshop-A-43 of 62

Add Relative Fractional Uncertainties

(1) Apply Slice Filter to Contour(1) Apply Slice Filter to Contour

(2) Select Tally “Errors”(2) Select Tally “Errors”

(3) Ensure Consistent Position with Earlier Clip(3) Ensure Consistent Position with Earlier Clip

(4) Set Appropriate Range of Values(4) Set Appropriate Range of Values

(5) Set Ambient to 1, set Diffuse to 0,
set line width to 2.

Slide ICRS-RPSD-Workshop-A-44 of 62

2D Plan View

(1) Select Plan View(1) Select Plan View

(2) Select 2D Projection(2) Select 2D Projection

Gives a more “traditional” representation of geometry and results.

Slide ICRS-RPSD-Workshop-A-45 of 62

Assessing Mesh Quality

Slide ICRS-RPSD-Workshop-A-46 of 62

What is “Mesh Quality”

I Mesh element “quality” can be assessed by a variety of metrics
I Deterministically calculated
I Useful for mesh-generation algorithms
I Useful for deterministic engineering calculations

I Body of knowledge mainly for linear tetrahedra and hexahedra
I Verdict library [7] summarizes these metrics
I ParaView incorporates Verdict

I Useful for Monte Carlo transport to identify undesirable elements
I Negative-Jacobian elements have negative volume

I Problematic for edits
I “Paper-thin” elements can challenge particle tracking

Slide ICRS-RPSD-Workshop-A-47 of 62

Mesh Quality Filter & Finding Elements

(1) Add Mesh Quality Filter(1) Add Mesh Quality Filter

(2) Select Metric(2) Select Metric

(3) Select Coloring, Scaling, etc.(3) Select Coloring, Scaling, etc.

Identify elements with high Radius Ratios (poorest qual-
ity). To do this: (4) Edit menu: Find Data.

Hide all other pipeline components.

Slide ICRS-RPSD-Workshop-A-48 of 62

Find Data Dialog Use

(1) Select Pipeline Item(1) Select Pipeline Item

(2) Select Data Set & Conditions(2) Select Data Set & Conditions

(3) Execute Selection(3) Execute Selection

(4) Extract Selection.

Note that this dialog may need to be scrolled vertically to expose all elements.

Slide ICRS-RPSD-Workshop-A-49 of 62

Viewing & Interrogating Specific Elements

(1) Select Hover Cells(1) Select Hover Cells

(2) Hover Over Cell(2) Hover Over Cell

Information on the extracted data is in the Properties
pane. One can also hover on points to get location infor-
mation.

Slide ICRS-RPSD-Workshop-A-50 of 62

Other (Advanced?) ParaView Topics

Slide ICRS-RPSD-Workshop-A-51 of 62

Brief Overview of Other Topics

I MPI Parallelism
I Toggling Geometry via Blocks
I Saving ParaView State
I Camera Linking
I Recording Traces (Macros)
I Client-server Connections
I Animation

Slide ICRS-RPSD-Workshop-A-52 of 62

MPI Parallelism (Settings, General Tab)

Search to FindSearch to Find
AdvancedAdvanced
OptionsOptions

Check to Enable, Restart to UseCheck to Enable, Restart to Use

Maximum Processes to UseMaximum Processes to Use

Requires MPI on your system (and running). Also, depend-
ing on your system firewall settings, you may see a number
of MPI processes launch and be forced to dismiss allow/block
requests. This means: start with a few processes to see how
your system behaves.

Slide ICRS-RPSD-Workshop-A-53 of 62

Saving ParaView State (File Menu)

Can Reduce ReworkCan Reduce Rework

Can Also Load State and Select Different DataCan Also Load State and Select Different Data

Slide ICRS-RPSD-Workshop-A-54 of 62

Camera Linking (Tools Menu)

(1) Select A Render View, and Click This(1) Select A Render View, and Click This

(2) Name the Link(2) Name the Link

Copy/Paste Properties to Propagate SettingsCopy/Paste Properties to Propagate Settings

Slide ICRS-RPSD-Workshop-A-55 of 62

Recording Macros (Traces, Tools Menu)

Stop TraceStop Trace

Slide ICRS-RPSD-Workshop-A-56 of 62

Client-server Connections

I Negates downloading data
I Provide parallel processing via MPI
I Institution-specific configuration
I LANL uses a PVSC configuration file
I https://hpc.lanl.gov/paraview_usage
I Remote memory monitoring

I View: Memory Inspector

https://hpc.lanl.gov/paraview_usage

Slide ICRS-RPSD-Workshop-A-57 of 62

Animation

(1) Enable View(1) Enable View

(2) Select Track(2) Select Track

(3) Select Type(3) Select Type

Python tracks can perform scripted actions every frame (every tick).

Slide ICRS-RPSD-Workshop-A-58 of 62

Qt Plotter Technology Preview

Slide ICRS-RPSD-Workshop-A-59 of 62

Qt Plotter Technology Preview

I Why a new plotter?
I “Flat” interface elements: text drawn on a window
I Missing “basic” features: command history, mouse click & drag
I Less-than-optimal performance
I Relies on X11, which is unconventional on MS Windows

I Notable new features
I Mouse-based interaction for translation and zoom
I Standard UI elements:

I Buttons/menus for common tasks
I Checkboxes to control and indicate state

I Comprehensive cell-property information
I Nested menus for particle-type queries
I Direct button export to PDF file (also: saveps/savepng/savepdf)
I Command history (i.e., use an up arrow to recall last typed command)
I Customizable and retrievable view information via “My Macros”

Slide ICRS-RPSD-Workshop-A-60 of 62

Interface Overview

Torn-off “My Macros” MenuTorn-off “My Macros” Menu

Slide ICRS-RPSD-Workshop-A-61 of 62

UM EEOUT Extreme-value Identifier
61_Users_mrising_xdocs_LANL_Presentations_2022_RPSD–Workshop_Seattle_vis_get_eeout_value_range.py

1 #!/usr/bin/env python
2
3 """A utility to find the range of values for MCNP UM edits."""
4
5 import sys
6
7 import h5py
8 import numpy as np
9

10
11 def get_eeout_size_range(filename):
12 """ Find range of EEOUT values."""
13
14 class H5Datasets:
15 """ Provide recursive method and container to find/store dataset names."""
16
17 def __init__(self):
18 """ Prepare to store names of datasets."""
19 self.names = []
20
21 def __call__(self , name , node):
22 """If a dataset node is found , then append its name."""
23 if isinstance(node , h5py.Dataset) and not name in self.names:
24 self.names.append(name)
25
26 datasets = H5Datasets ()
27 values = np.infty * np.ones (3)
28 values [-1] *= -1 # Flip sign on last entry.
29 with h5py.File(filename , "r") as myfile:
30 myfile.visititems(datasets)
31
32 for name in datasets.names:
33 if "value" not in name:
34 continue
35 tmp = myfile[name][()]
36 values [0] = np.min((np.min(tmp), values [0]))
37 values [1] = np.min((np.min(tmp[np.nonzero(tmp)]), values [1]))
38 values [2] = np.max((np.max(tmp), values [2]))
39 return values [0], values [1], values [2]
40
41
42 infilename = sys.argv [1]
43 val_min , val_min_nonzero , val_max = get_eeout_size_range(infilename)
44
45 print(f"Maximum value: {val_max :.3e}")
46 print(f"Minimum non -zero value: {val_min_nonzero :.3e}")
47 print(f"Minimum value: {val_min :.3e}")

This script is electronically attached to this PDF file.

Slide ICRS-RPSD-Workshop-A-62 of 62

Runtape Repacking Script
62_Users_mrising_xdocs_LANL_Presentations_2022_RPSD–Workshop_Seattle_vis_repack_runtape.py

1 #!/usr/bin/env python
2
3 """A utility to repack datasets as compressed."""
4
5 import logging
6 import os
7 import subprocess
8 import sys
9

10 import h5py
11
12 logging.basicConfig(level=logging.INFO)
13
14
15 def repack_runtape(filename , compression="gzip", compression_opts =4):
16 """ Delete non -results groups and compress remaining datasets."""
17 filesize = os.path.getsize(filename)
18 logging.info(f"Original size of {filename }: {filesize} bytes.")
19
20 class H5Datasets:
21 """ Provide recursive method and container to find/store dataset names."""
22
23 def __init__(self):
24 """ Prepare to store names of datasets."""
25 self.names = []
26
27 def __call__(self , name , node):
28 """If a dataset node is found , then append its name."""
29 if isinstance(node , h5py.Dataset) and not name in self.names:
30 self.names.append(name)
31
32 datasets = H5Datasets ()
33 with h5py.File(filename , "a") as myfile:
34 # Delete non -results and non -QA groups.
35 for group in ["fixed", "header", "restart", "variable"]:
36 if group in myfile.keys():
37 del myfile[group]
38
39 # Find and compress remaining datasets.
40 myfile.visititems(datasets)
41 for name in datasets.names:
42 tmp = myfile[name][()]
43 del myfile[name]
44 myfile.create_dataset(
45 f"{name}_compressed",
46 data=tmp ,
47 compression=compression ,
48 compression_opts=compression_opts ,
49)
50
51 # Move names to be consistent with uncompressed datasets.
52 with h5py.File(filename , "r+") as myfile:
53 for name in datasets.names:
54 myfile.move(f"{name}_compressed", name)
55
56 return filesize
57
58
59 infilename = sys.argv [1]
60 original_size = repack_runtape(infilename)
61
62 try:
63 outfilename = f"{infilename}_repacked"
64 subprocess.run(["h5repack", infilename , outfilename], check=True)
65 os.replace(outfilename , infilename)
66 except RuntimeError:
67 logging.error("Failed to ‘h5repack ‘ {infilename} and then overwrite it.")
68
69 final_size = os.path.getsize(infilename)
70 logging.info(
71 f"Final size of {infilename }: {final_size} bytes"
72 f" ({ final_size/original_size *100:.2f}% of original)."
73)

This script is electronically attached to this PDF file.

	MCNP6.3 Overview
	Selected New Features / Improvements
	New File Formats and Example
	Noteworthy Fixed Issues
	Deprecated and Removed Features

	Qt-based Geometry and Tally Plotter
	HDF5, MCNPTools, and New PTRAC Options
	HDF5 Overview
	PTRAC Overview
	MCNPTools PTRAC Interface
	New Parallel PTRAC and Safeguards Example

	New Tally Features
	FMESH Upgrades and HDF5+XDMF
	Special Tally Treatments for Multigroup Cross Sections

	Unstructured Mesh Improvements
	UM Element Quality Assessment
	UM Performance Improvements
	UM Validation

	Physics and Data Changes
	CGMF 1.1.1 Upgrade
	Nuclear Data Downloading Tool

	Verification and Validation Framework
	MCNP Testing
	New Python-based Framework
	Additional Test Suite(s)

	Q&A
	References
	Appendix
	Backup Slides
	MCNP6.3 Visualization Approaches
	Introduction to ParaView
	Common MCNP Output Operations / Manipulations
	Other (Advanced?) ParaView Topics
	Qt Plotter Technology Preview
	Miscellany

c
c ICRP/74-1996, Anterior-Posterior (AP), from Table A.41:
c
c Energy Fluence-to-dose Conversion Factor
c [MeV] [pSv\cdotcm2]
de:n df:n
 log log
 1.0e-9 5.24
 1.0e-8 6.55
 2.5e-8 7.6
 1.0e-7 9.95
 2.0e-7 11.2
 5.0e-7 12.8
 1.0e-6 13.8
 2.0e-6 14.5
 5.0e-6 15.0
 1.0e-5 15.1
 2.0e-5 15.1
 5.0e-5 14.8
 1.0e-4 14.6
 2.0e-4 14.4
 5.0e-4 14.2
 1.0e-3 14.2
 2.0e-3 14.4
 5.0e-3 15.7
 0.01 18.3
 0.02 23.8
 0.03 29.0
 0.05 38.5
 0.07 47.2
 0.1 59.8
 0.15 80.2
 0.2 99.0
 0.3 133.0
 0.5 188.0
 0.7 231.0
 0.9 267.0
 1.0 282.0
 1.2 310.0
 2.0 383.0
 3.0 432.0
 4.0 458.0
 5.0 474.0
 6.0 483.0
 7.0 490.0
 8.0 494.0
 9.0 497.0
 10.0 499.0
 12.0 499.0
 14.0 496.0
 15.0 494.0
 16.0 491.0
 18.0 486.0
 20.0 480.0
 30.0 458.0
 50.0 437.0
 75.0 429.0
 100.0 429.0
 130.0 432.0
 150.0 438.0
 180.0 445.0
c

 Godiva Solid Bare HEU sphere HEU-MET-FAST-001
1 100 4.7984e-02 -10 imp:n=1
2 0 10 imp:n=0

10 so 8.7407

kcode 5000 1.0 50 250
ksrc 0 0 0
c
m100 92234.00c 4.9184e-04
 92235.00c 4.4994e-02
 92238.00c 2.4984e-03
c
fmesh4:n geom=xyz origin=-10 -10 -10
 imesh=10 iints=200
 jmesh=10 jints=200
 kmesh=10 kints=200
 out=xdmf $ New out option in MCNP6.3

#!/usr/bin/env python
===
import numpy as np
import matplotlib.pyplot as plt

from mcnptools import Ptrac

===
def filter_history_times(history, cells, zas, rxns):
 """ Function to process a Ptrac history into a sorted list of reaction times """

 number_events = history.GetNumEvents()

 times = list()
 for ievent in range(number_events):
 event = history.GetEvent(ievent)

 if event.Type() == Ptrac.COL:
 # Gather particle collision cell, isotope, and reaction
 cell = int(event.Get(Ptrac.CELL))
 za = int(event.Get(Ptrac.ZAID))
 rxn = int(event.Get(Ptrac.RXN))

 # Filter all capture reactions within cells and isotopes
 if cell in cells and za in zas and rxn in rxns:
 times.append(event.Get(Ptrac.TIME))

 return sorted(times)

===
def histogram_time_gate(times, predelay_time, gate_width):
 """ Function to process a list of times into a histogram of coincident counts. """

 number_times = len(times)

 counts = np.zeros(number_times)
 for itime in range(number_times):
 # Time when gate is opened
 t0 = times[itime]

 count = 0
 for jtime in range(itime + 1, number_times):
 # Next time before pre-delay time... no count
 if times[jtime] < t0 + predelay_time:
 pass
 # Next time within pre-delay and gate time... count
 elif times[jtime] <= t0 + predelay_time + gate_width:
 count += 1
 # Next time after pre-delay and gate time... no count
 else:
 break
 counts[count] += 1

 return counts

===
max_counts = 0
count_histogram = np.zeros(100)

Open file and then read a chunk of 1000 histories
ptrac_handle = Ptrac("ptrac.p.h5", Ptrac.HDF5_PTRAC)
ptrac_hists = ptrac_handle.ReadHistories(1000)
while ptrac_hists:

 # Iterate through each individual history
 for hist in ptrac_hists:

 # Call time filter function to get sorted list of capture times
 times = filter_history_times(
 hist, cells=[21, 22, 23, 24], zas=[2003], rxns=[101]
)

 # Call histogram function to process capture times
 counts = histogram_time_gate(times, predelay_time=500, gate_width=10000)
 max_counts = max(max_counts, len(counts))

 # Accumulate history histogram into total histogram
 for icount, count in enumerate(counts):
 count_histogram[icount] += count

 # Read next chunk of 1000 histories
 ptrac_hists = ptrac_handle.ReadHistories(1000)

Print total histogram
for icount, count in enumerate(count_histogram[:max_counts]):
 print(f"Count Outcome = {icount}, Total Counts = {int(count)}")
if max_counts == 0 and count_histogram[0] == 0:
 print("Zero Capture Events Found!!!")

Plot total histogram
x = [i - 0.5 for i in range(max_counts + 1)]
xticks = [i for i in range(max_counts)]

fig, ax = plt.subplots(1, 1)
ax.step(x, count_histogram[: max_counts + 1], where="post")
ax.set_xticks(xticks)
ax.set_xlabel("Count Outcome")
ax.set_ylabel("Total Counts")
ax.set_title("Coincident Count Histogram")

plt.grid(axis="y")
plt.show()

fig.savefig("ptrac3_mcnptools_plot.pdf", bbox_inches='tight')

ptrac

c -------------

c Source Cells

c -------------

1 10 -15.1 -10 imp:n=1 $ Cf-252 Source

c

c --------------

c Detector Cells

c --------------

20 20 -0.96 -20 21 22 23 24 imp:n=1 $ Polyethylene Slab

21 21 -4.991e-4 -21 imp:n=1 $ 3He Tube

22 21 -4.991e-4 -22 imp:n=1 $ 3He Tube

23 21 -4.991e-4 -23 imp:n=1 $ 3He Tube

24 21 -4.991e-4 -24 imp:n=1 $ 3He Tube

c

c ----------------

c Void

c ----------------

998 0 -999 10 20 imp:n=1 $ Inside Void

999 0 999 imp:n=0 $ Outside Void

c ----------------

c Source Surfaces

c ----------------

10 sx -5 0.001 $ Cf-252 Source

c

c -----------------

c Detector Surfaces

c -----------------

20 RPP 5 15 -12.5 12.5 -12.5 12.5 $ Poly slab containing 3He tubes

c

21 rcc 10 -7.5 -10 0 0 20 1.27 $ 3He Tube (2.54 cm diameter, 20 cm active height)

22 rcc 10 -2.5 -10 0 0 20 1.27 $ 3He Tube (2.54 cm diameter, 20 cm active height)

23 rcc 10 2.5 -10 0 0 20 1.27 $ 3He Tube (2.54 cm diameter, 20 cm active height)

24 rcc 10 7.5 -10 0 0 20 1.27 $ 3He Tube (2.54 cm diameter, 20 cm active height)

c

c ----------------

c Void

c ----------------

999 so 50 $ Void

c ---------------

c Material Cards

c ---------------

c Source Material (Cf-252)

m10 98252 1.0

c

c Detector Materials

m20 6000 2.0 1001 4.0 $ Polyethylene Slab

mt20 poly.20t

m21 2003 1.0 $ 3He at 4atm

c

c --------------

c Source Card

c --------------

sdef pos=-5 0 0 par=sf

fmult data=3 method=3 shift=1

nps 1e6

c

c --------------

c Tally Card

c --------------

f4:n 21 22 23 24 T

sd4 1 1 1 1 1

fm4 -1 21 103

c

cut:n 2j 0 0

ptrac file=hdf5 flushnps=1e6

 event=col filter=21,24,cel

Shielding calculation with external DE/DF cards
c >>>>> cell cards
100 3000 -0.0013 -10 -20 $ air left of shield (w/ source)
200 1000 -7.874 -10 20 -30 $ iron shield left layer
210 2000 -1.0 -10 30 -40 $ water layer
220 1000 -7.874 -10 40 -50 $ iron shield right layer
300 3000 -0.0013 -10 50 $ air right of shield
999 0 10 $ rest of the world

c >>>>> surface cards
10 rpp -10 140 -100 100 -100 100 $ problem bounding surfaces
20 px 0 $ plane at beginning of shield
30 px 10 $ plane at start of water layer
40 px 20 $ plane at end of water layer
50 px 40 $ plane at end of shield

c >>>>> data cards
nps 1e5
c ### material specification
m1000 26056 1.0 $ shield, pure iron-56
m2000 1001 2 8016 1 $ water
mt2000 lwtr $ water s(a,b)
m3000 7014 0.8 8016 0.2 $ air
c ### source specification
sdef pos=-5 0 0 erg=d1
sp1 -3 1.025 2.926 $ 252-Cf spontaneous watt fission spectrum
c ### importances
imp:n 1 4r 0
c ### tally specification
fc2 1 m from shield, source rate = 3e8 neutrons
f2:n 10.1
fm2 3.e8 $ source strength 3.e8 n/s
c
read file=Neutron_ICRP74-1996_Anterior-Posterior_AP_dedf.txt

#!/usr/bin/env python

"""A utility to find the range of values for MCNP UM edits."""

import sys

import h5py
import numpy as np

def get_eeout_size_range(filename):
 """Find range of EEOUT values."""

 class H5Datasets:
 """Provide recursive method and container to find/store dataset names."""

 def __init__(self):
 """Prepare to store names of datasets."""
 self.names = []

 def __call__(self, name, node):
 """If a dataset node is found, then append its name."""
 if isinstance(node, h5py.Dataset) and not name in self.names:
 self.names.append(name)

 datasets = H5Datasets()
 values = np.infty * np.ones(3)
 values[-1] *= -1 # Flip sign on last entry.
 with h5py.File(filename, "r") as myfile:
 myfile.visititems(datasets)

 for name in datasets.names:
 if "value" not in name:
 continue
 tmp = myfile[name][()]
 values[0] = np.min((np.min(tmp), values[0]))
 values[1] = np.min((np.min(tmp[np.nonzero(tmp)]), values[1]))
 values[2] = np.max((np.max(tmp), values[2]))
 return values[0], values[1], values[2]

infilename = sys.argv[1]
val_min, val_min_nonzero, val_max = get_eeout_size_range(infilename)

print(f"Maximum value: {val_max:.3e}")
print(f"Minimum non-zero value: {val_min_nonzero:.3e}")
print(f"Minimum value: {val_min:.3e}")

#!/usr/bin/env python

"""A utility to repack datasets as compressed."""

import logging
import os
import subprocess
import sys

import h5py

logging.basicConfig(level=logging.INFO)

def repack_runtape(filename, compression="gzip", compression_opts=4):
 """Delete non-results groups and compress remaining datasets."""
 filesize = os.path.getsize(filename)
 logging.info(f"Original size of {filename}: {filesize} bytes.")

 class H5Datasets:
 """Provide recursive method and container to find/store dataset names."""

 def __init__(self):
 """Prepare to store names of datasets."""
 self.names = []

 def __call__(self, name, node):
 """If a dataset node is found, then append its name."""
 if isinstance(node, h5py.Dataset) and not name in self.names:
 self.names.append(name)

 datasets = H5Datasets()
 with h5py.File(filename, "a") as myfile:
 # Delete non-results and non-QA groups.
 for group in ["fixed", "header", "restart", "variable"]:
 if group in myfile.keys():
 del myfile[group]

 # Find and compress remaining datasets.
 myfile.visititems(datasets)
 for name in datasets.names:
 tmp = myfile[name][()]
 del myfile[name]
 myfile.create_dataset(
 f"{name}_compressed",
 data=tmp,
 compression=compression,
 compression_opts=compression_opts,
)

 # Move names to be consistent with uncompressed datasets.
 with h5py.File(filename, "r+") as myfile:
 for name in datasets.names:
 myfile.move(f"{name}_compressed", name)

 return filesize

infilename = sys.argv[1]
original_size = repack_runtape(infilename)

try:
 outfilename = f"{infilename}_repacked"
 subprocess.run(["h5repack", infilename, outfilename], check=True)
 os.replace(outfilename, infilename)
except RuntimeError:
 logging.error("Failed to `h5repack` {infilename} and then overwrite it.")

final_size = os.path.getsize(infilename)
logging.info(
 f"Final size of {infilename}: {final_size} bytes"
 f" ({final_size/original_size*100:.2f}% of original)."
)

