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Introduction 
 

This program addresses the topic of combustion instabilities under the goal of developing 
“Low-NOx Combustion Technology for ‘Air-Breathing’ Advanced Turbines”. With recent 
advances in high-temperature withstanding materials, the push towards higher efficiency has 
resulted in efforts to design high temperature, low NOx gas turbines. The development of such 
low NOx systems is often plagued with combustion instabilities. These instabilities manifest with 
acoustic modes that are longitudinal, transverse or both. A large body of literature and work exists 
addressing the underlying mechanisms and models for longitudinal instabilities and these have 
been successfully implemented in the design tools for low NOx gas turbines. The flame response 
aspect of the thermoacoustic feedback loop was often modeled in an acoustically compact 
framework since for low frequencies, the flame length scale was small compared to the acoustic 
wavelength. This enabled simplification where the modeling focused only on the overall flame 
response and not the local spatial distribution of the flame response. In addition, additional 
mechanisms such as the direct effect of pressure fluctuations on the flame response could be 
neglected. In contrast, high frequency instabilities which often are transverse in nature, have 
received relatively less attention in the literature. The flame is no longer acoustically compact and 
thus the local distribution of heat release must be accurately understood. The flame responds to 
velocity fluctuations, equivalence ratio fluctuations as before, but also to pressure fluctuations 
through kinetic effects.  These aspects of high-frequency instabilities make it a challenging 
problem that requires a detailed elucidation of the underlying mechanisms and creating models for 
them. In this program we significantly improved the understanding of these instabilities through a 
combination of experiments (informed by interactions with OEMs), modeling of measured data 
and reduced order modeling of flame response. The results from the program can be used as basis 
for robust design tools that are essential for successfully developing gas turbines that operate in an 
environmentally acceptable manner with mitigation strategies for high-frequency instabilities. 
The proposed work in this program was naturally broken down into tasks: 

1. Task-1 focused on the Project Management and Planning that was continuously evolved to 
achieve the goals of the program. 

2. Task-2 focused on the design of an experimental rig with room for optical and pressure 
diagnostics for measurements in an industry relevant, but lab-scale multi-nozzle can 
combustion system. The results from these measurements were also modeled using well-
established modal dynamics equations showing the conditions under which different modal 
interactions occurred – specifically, mode suppressions, quasi-periodicity, dynamics of 
spin ratio (spinning vs standing waves) under different operating conditions of fuel-staging. 

3. Task-2 focused on reduced order modeling for the flame response under both the velocity-
coupled and pressure-coupled mechanisms. These were performed through a combination 
of phenomenologically simplified flame response equations solved analytically and 
numerically. The resulting flame response models illustrated the differences in flame 
response across various transverse modes as well as difference in individual nozzle 
responses to the same transverse mode depending upon the location of the nozzle in the 
combustor head-end. These results were then collectively used to design an optimization 
tool that can optimize for nozzle positioning given operating parameters and also optimize 
for operating parameters for fixed nozzle positions. This optimization tool can serve as a 
robust initial design tool for OEMs to design the combustion system and its operating 
parameter space to minimize the effect of transverse instabilities. 



Task 2 – Experimental Characterization of High-frequency Transverse Instabilities 
 

As part of this Task, a lab-scale multi-nozzle can combustor was designed to ensure that a 
high-frequency transverse mode gets self-excited and identifying combustor design and operating 
parameters to achieve the same.  
 

 
Figure 1 – Experimental rig: (a) image of the combustor (b) side-schematic of the combustor 
and camera setup (c) image of multi-nozzle (d) sensor configurations. 
 

Figure 1 shows the experimental facility.  Air from four inlets enters near the axial midpoint of 
the rig and flows through an annular section in the upstream direction, cooling the chamber wall.  
At the front of the test article, the preheated air passes through one of eight outer and center pilot 
nozzles (Figure 1(b)).  Each nozzle consists of a swirler and fuel injector.  The swirl direction of 
the pilot and outer nozzles is clockwise (CW) and counter-clockwise (CCW), respectively.  Fuel 
flow through the outer and pilot is controlled separately, quantified by the pilot ratio, 𝑃𝑃𝑃𝑃 = 𝑚̇𝑚𝑝𝑝

𝑚̇𝑚𝑝𝑝+𝑚̇𝑚𝑜𝑜
 

where 𝑚̇𝑚𝑝𝑝 and 𝑚̇𝑚𝑜𝑜 are the fuel flow rate through the pilot and a single outer nozzle, respectively.  
The combustor liner consists of a quartz tube and a metal liner whose diameter is 0.29 m and total 
length is 1.2 m, respectively.  The combustor product accelerates near the downstream contraction 
area and exits the system through the water-cooled exhaust. 

Five 6021A Kistler pressure sensors (sensitivity: 6200 pC/kPa, range: 10 MPa, accuracy: 
±10%) are flush mounted at different axial and azimuthal locations (Figure 1(b) and (d)), and they 
are connected to the Kistler 5181A differential charge amplifier (sensitivity: 10mV/pC, range: 
±10V, accuracy: ±0.2%).  A pressure in time series is recorded at the sampling frequency of 20 
kHz, and then the signals are digitized by a National Instrument (NI 9215).   

CH* chemiluminescence imaging is performed at various test conditions, with the camera 
positioned level, and perpendicular to the centerline of the combustion chamber. (Figure 1(b)) A 
Photron Fastcam SA-X2 is used to capture video data at a sampling rate of 12,500 Hz, with a 
resolution of 1024x1024 pixels. At this resolution, the camera’s on-board hard drive is capable of 



storing 5452 images. Two partitions are used, so each partition is 2726 images spanning a time 
0.218 sec, each. Image decks are downloaded from the camera hard drive to an external hard drive 
through a gigabit Ethernet cable. A Nikon Nikkor 35 mm diameter lens with focal length of 50 mm 
is used. Incident light is first optically filtered using a lens with peak wavelength transmission at 
434 nm, and then intensified using a LaVision High Speed IRO, with the gate set to the full width 
of the open camera shutter. The optical filter, lens, IRO, and camera are all attached end to end in 
this order (Figure 1(b)). In each take, the optical inlet to the filter is placed approximately 0.3 m 
from the centerline of the test section. 
 

 
Figure 2 – Post-processing procedure of the image and reconstructed pressure time series. 
 

The objective of CH* images is to compare the heat release fluctuation data with the pressure 
signal. It is assumed that the intensity of the images is proportional to the heat release rate. 
However, since the camera records the line-of-sight integrated images, the pressure must be 
reconstructed and integrated equivalently. Therefore, the following quantities are evaluated from 
the images and the pressure signal: 
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Here, 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 is the heat release of each image, which is already integrated in z-direction, 𝑥𝑥1,2 are 
the axial coordinate of the left and right edges of the image, and 𝑄𝑄 is the top half integrated heat 
release. In short, 𝑄𝑄 is the sum of the intensity of the top half image. 𝑝𝑝𝑟𝑟𝑟𝑟 is the reconstructed 
pressure distribution (reconstruction method is introduced in the past report.) in the azimuthal and 
radial space at the axial location of sensor 2, and 𝑃𝑃 is the top half integrated pressure fluctuation. 
𝑄𝑄 and 𝑃𝑃 are then bandpass filtered at around their peak frequencies in a similar way described in 
the past report, given by 𝑄𝑄′ and 𝑃𝑃′, respectively. Lastly, the magnitude and the phase of each signal 



are extracted by taking the Hilbert transform. The procedure is described in Figure 2. One can 
expect that if the heat release fluctuation is positively correlated with the pressure signal, then the 
magnitude of heat release is maximized when the nodal line is horizontal (𝜃𝜃𝑛𝑛 = 0), and vise versa. 
For comparison with heat release data, the pressure data is down sampled from 20 kHz to 12.5 
kHz. 

 
Figure 3 – (a) comparison between the heat release fluctuation and reconstructed pressure 
signal. (b) Magnitude of heat release fluctuation with respect to nodal line position. The color 
denotes the time series. 
 

 
Figure 4 – Integrated heat release fluctuation with respect to nodal line position: (a) vertical, 
(b) horizontal. 
 

The magnitudes and the phase difference between the reconstructed pressure and the heat 
release fluctuation are described in Figure 3. Figure 3(a) shows a positive correlation between the 
magnitudes of these two quantities. In addition, the phase difference between two quantities in 
Figure 3(b) is ∠𝑃𝑃′𝑄𝑄′ = ∠𝑃𝑃′ − ∠𝑄𝑄′ ≈ 20°. However, recall that the axial location of heat release 
fluctuation is different from that of the reconstructed pressure, i.e., CH* images are taken at 
upstream near the flame region, whereas the pressure is reconstructed at sensor 2 downstream. 
Considering the phase lag between sensor 1 and 2 (which is presented in the past report), the 
corrected phase difference is about ∠𝑃𝑃′𝑄𝑄′ ≈ −30°. These two observations clearly satisfy the 
Rayleigh criterion where |∠𝑃𝑃′𝑄𝑄′| < 90°. 

Figure 3(b) illustrates the magnitude of heat release fluctuation with respect to nodal line 
location, and the color denotes the time duration. The beginning and ending portion of the data is 



distorted due to Hilbert transform. The nodal line starts at 50° and oscillated at around 180°. Notice 
that the magnitude is minimum when the nodal line passes 90°. This is because when the nodal 
line is vertical, the top half of the heat release fluctuation cancels out (Figure 4(a)). The reason for 
the magnitude not being zero is that the mode is not pure standing, but rather a mixed mode (𝑆𝑆𝑆𝑆 ≈
0.4). On the other hands, the magnitude is maximized when the line oscillates at around 180°.  
One can also observe that as the line deviates from 180°, the magnitude decreases, and vice versa. 
This observation apparently shows the effect of the nodal line location on the heat release 
fluctuation. In addition, unlike the longitudinal mode where the nodal line location in axial position 
is relatively fixed, the nodal line for the azimuthal mode rotates and/or oscillates vigorously during 
the instability, which leads the fluctuation in pressure magnitude measured at a fixed azimuthal 
location. 

The first transverse mode of this combustor occurs at about 1600 Hz.  In this study, we present 
results from two different operating conditions, which are summarized in Table 1.  

 
Table 1 Operating test conditions 

Case Preheat 
temp. (K) 

Air flow 
(kg/s) 

Equiv. 
ratio 

Thermal 
Power 
(MW) 

Combustor 
pressure 
(kPa) 

Pilot 
ratio 

Dominant 
mode 

1 625 1.45 0.55 2.11 185 0.095 SW 

2 625 1.34 0.55 1.95 172 0.090 CW 

The four sensors allow us to decompose the measured pressure into the instantaneous 
amplitude and relative phases of the CW and CCW waves.  For each of the two test points analyzed 
here, the combustor was set at that condition for at least 40 seconds and the last 30 seconds data 
was used for the analysis.  The data is then filtered with a bandpass filter of width ±30 Hz around 
the peak frequency of 1600 Hz to isolate the first transverse mode from the broadband noise.  The 
filtered signal is Hilbert transformed to convert it into an analytic pressure signal, given by 𝑝̂𝑝. The 
analytic signal is then fitted to the following equation. 
 ( ) ( ) ( )( )( )ˆ , ( ) ( ) G GF F i t ti t tp t F t e G t e θ ψ ωθ ψ ωθ − − ++ −= +   (3) 
where the first and the second terms on the right side correspond to the CCW and CW waves, 
respectively.  Here, 𝐹𝐹(𝑡𝑡),𝐺𝐺(𝑡𝑡) and 𝜓𝜓𝐹𝐹(𝑡𝑡),𝜓𝜓𝐺𝐺(𝑡𝑡) are slowly varying amplitudes and phasors of 
each wave, respectively, and 𝜔𝜔𝐹𝐹 ,𝜔𝜔𝐺𝐺 are the oscillatory angular frequencies.  It is a common 
observation that the two waves have slightly different frequencies, i.e., 𝜔𝜔𝐹𝐹 ≠ 𝜔𝜔𝐺𝐺, such as due to 
low levels of residual mean swirl.  Note that the amplitudes and phasors vary much slower than 
the acoustic frequency, i.e., 𝜔𝜔𝐹𝐹,𝐺𝐺𝜏𝜏𝐹𝐹,𝐺𝐺 ≪ 1.  Eq.(3) can then be rewritten in matrix form: 
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Given the measured data, the matrix, 𝑋𝑋, is evaluated using the method of least squares.  This 
provides the time dependence of the two terms, 𝐹𝐹� and 𝐺𝐺� , in the matrix 𝑋𝑋.  The wave amplitudes 
and phases are then obtained as 𝐹𝐹 = |𝐹𝐹�| and 𝜓𝜓𝐹𝐹 − 𝜔𝜔𝐹𝐹𝑡𝑡 = ∠𝐹𝐹�, respectively.   The phase difference 
between two waves, 𝜙𝜙 = ∠𝐹𝐹� − ∠𝐺𝐺�, is then given by: 
 ( ) ( ) ( ) ( )F Gt t t t tφ ψ ψ ω= − −∆   (5) 



where ∆𝜔𝜔 = 𝜔𝜔𝐹𝐹 − 𝜔𝜔𝐺𝐺, and ∆𝜔𝜔 ≪ (𝜔𝜔𝐹𝐹 + 𝜔𝜔𝐺𝐺) 2⁄ .   
Once the wave parameters have been extracted, several additional quantities of interest can be 
calculated.  The spin ratio, 𝑆𝑆𝑆𝑆, which quantifies whether the wave is dominated by standing or 
spinning waves, is defined as: 
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Here, 𝑆𝑆𝑆𝑆 = 0 indicates a pure standing wave (SW) and 𝑆𝑆𝑆𝑆 = ±1 means a pure spinning mode in 
CCW (+) or CW (−) direction. Otherwise, the mode is a combination of standing and spinning 
modes.  Notice that the spin ratio and the phase difference are mathematically independent of each 
other, as they are determined by different parameters.  
The anti-nodal position, 𝜃𝜃𝑎𝑎, is defined as the location where the pressure magnitude is maximum.  
It can be found from the partial derivative of |𝑝̂𝑝(𝜃𝜃, 𝑡𝑡)|2 with respect to 𝜃𝜃 to yield:   

 ( )1( ) ( ) ( ) ( )
2a F Gt t t t tθ ψ ψ ω= − − −∆   (7) 

The angular velocity of the anti-nodal line, Ω𝑎𝑎, is a time derivative of 𝜃𝜃𝑎𝑎, i.e., Ω𝑎𝑎 = 𝑑𝑑𝜃𝜃𝑎𝑎
𝑑𝑑𝑑𝑑

.  One can 
relate the anti-nodal position and phase difference as: 
 ( ) 2 ( )at tφ θ= −   (8) 
Three important points should be noted.  First, the anti-nodal line is mathematically related to 
phase difference by Eq.(8), but not to spin ratio.  Second, the phase difference depends on the anti-
nodal position, which is a function of the coordinate system.  In other words, the direction of 𝜃𝜃 =
0° in reference frame decides the anti-nodal position as well as the phase difference. Lastly, the 
pressure magnitude at a given sensor location depends on both the wave amplitudes, F and G, and 
the location of the anti-nodal line by Eq.(9).  This latter dependence is an additional degree of 
freedom that complicates interpretation of data, which is not present during axial instabilities. This 
effect of anti-nodal position on the pressure magnitude diminishes as the 𝐹𝐹𝐹𝐹 product gets smaller, 
such as when the mode converges to a spinning mode, i.e., 𝐹𝐹 = 0 or 𝐺𝐺 = 0.  
 ( ) ( )( )2 2 2ˆ , 2 cos 2 ap t F G FGθ θ θ= + + −   (9) 
Data were taken over a broad range of conditions, with results showing SW and CW modes at 
different conditions.  Figure 5(a) and (b) plot the normalized magnitude of the filtered pressure 
signals and (𝐹𝐹 + 𝐺𝐺) for cases 1 and 2 over 2 seconds, or approximately 3200 cycles of oscillation.  
The sensor 1 and 3 are omitted as they are similar to the sensor 4 and 2, respectively.  The rms 
value of raw and filtered signal for the sensor 2 drops from 0.074 to 0.051 for case 1 and from 
0.086 to 0.029 for case 2. The magnitude is extracted from the Hilbert transform of the oscillatory 
signal and normalized by its mean pressure.  For case 1, dominated by a SW, sensor 2 has 
magnitude of about 0.075, and slowly oscillates around this value over a time scale of 
approximately 0.067 s, or 15 Hz.  Sensor 4 has much lower magnitude; this variation in magnitude 
across sensors is expected for a SW mode.   In addition, (𝐹𝐹 + 𝐺𝐺) is relatively constant around 
0.075.  In contrast, much more significant oscillation in amplitude is observed in case 2, dominated 
by a CW mode, and both sensors have comparable maximum and minimum amplitudes. (𝐹𝐹 + 𝐺𝐺) 
is also fluctuating over a larger range of amplitudes. 

Figure 5c and d plot the spin ratio for case 1 and 2 over a much longer time interval - 30 
seconds, or about 50,000 cycles of oscillation.  The spin ratio for the SW mode dominated case 1 
oscillates around zero.  In contrast, the spin ratio for case 2 dominantly fluctuates around a value 
of about −0.6, but also intermittently hovers around a value of both zero and 0.6.  This indicates 



that the dominant mode is the CW, but also shows other attractors that the system is erratically 
pulled towards, namely a SW and CCW mode.  

 

 
Figure 5 – Magnitude of filtered pressure signals and (𝑭𝑭 + 𝑮𝑮) normalized by the combustor 
pressure (a) case 1 and (b) case 2.  Time dependence of spin ratio for (c) case 1 and (d) case 
2.  Time dependence of anti-nodal position for (e) case 1 and (f) case 2. 
 

Figure 5e and f plot the anti-node position over the same time-interval of 30 seconds.  For case 
1, the anti-nodal line remains at a remarkably constant location across the entire test, around 170°.  
This explains why the magnitude of sensor 2 is much larger than that of sensor 4, i.e., sensor 2 is 
closer to the anti-nodal line than sensor 4. For case 2, the anti-nodal line does not hover around a 
fixed value but continuously moves, primarily rotating in the CW direction, but sometimes in the 
other direction as well. 

Next, we first investigate the relationship between the spin ratio and the anti-nodal angular 
velocity. Figure 6 (a) and (b) plot the spin ratio and anti-nodal velocity in time series for these 
same two cases.  For case 1, the spin ratio and anti-nodal velocity are highly correlated with a 
positive value – when one increases, the other increases, and vice versa.  For case 2, however, the 
correlation is not always positive, but sometimes negative for a very high/low spin ratio. To 
illustrate this point, Figure 6 (c) and (d) plot the spin ratio histograms conditioned on the anti-
nodal velocity, normalized by averaged angular frequency.  Figure 6 (c) shows that the spin ratio 
and the anti-nodal velocity are positively correlated, with a nearly linear relationship when |𝑆𝑆𝑆𝑆| <
0.4.  This positive correlation implies that when the spin ratio increases from zero towards a 
positive value (CCW dominant), then the anti-nodal line rotates in the CCW direction, and vice 
versa.  Recall that 𝑆𝑆𝑆𝑆 and Ω𝑎𝑎 (or 𝜃𝜃𝑎𝑎) are mathematically independent of each other, i.e., this 



correlation is not something inherent to the decomposition approach, but rather reflects the fact 
that the 𝑆𝑆𝑆𝑆 and Ω𝑎𝑎 are physically coupled to each other.   

 

 
Figure 6 – Time dependence of the spin ratio and anti-nodal velocity for 2 seconds (a) case 1 
and (b) case 2.  Conditional histogram of spin ratio with respect to normalized anti-nodal 
velocity for 30 seconds (c) case 1 and (d) case 2. The number of occurrences is normalized by 
its maximum occurrence in each bin of the normalized velocity. 

 
Turning to case 2 (Figure 6(d)), this positively linear correlation is also observed in a limited 

region; when |𝑆𝑆𝑆𝑆| < 0.4, but does not occur for |𝑆𝑆𝑆𝑆| > 0.4.  Rather, the anti-nodal velocity 
exhibits a completely different character for 𝑆𝑆𝑆𝑆 values close to −1.  Similar behavior appears to 
occur for 𝑆𝑆𝑆𝑆~1 cases, but the system spends far less time in this region and so it is not entirely 
clear. 

Previously, we have introduced a methodology to extract the amplitudes of CW/CCW waves 
as well as their phases. This information offers the spin ratio and the phase difference in time series. 
Given that these quantities consist of a superposition of low dimensional and high dimensional 
(turbulent) dynamics, it is useful to develop phase-averaging techniques to filter out the 
contribution of turbulent components and visualize the low dimensional attractor of the linearly 
unstable system. This attractor is visualized in spin ratio, 𝑆𝑆𝑆𝑆, and phase difference, 𝜙𝜙, phase space 
as follows:  
1. Divide phase space (𝑆𝑆𝑆𝑆,𝜙𝜙) into 𝑀𝑀 × 𝑀𝑀 grid. 
2. For each grid, evaluate mean value, (𝑆𝑆𝑅𝑅𝑖𝑖,𝜙𝜙𝑖𝑖). 
3. From time series data, find every points satisfying |𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑅𝑅𝑖𝑖| < 𝜖𝜖𝑆𝑆𝑆𝑆 and |𝜙𝜙 − 𝜙𝜙𝑖𝑖| < 𝜖𝜖𝜙𝜙 

simultaneously, denoted by �𝑆𝑆𝑆𝑆(𝑡𝑡𝑖𝑖),𝜙𝜙(𝑡𝑡𝑖𝑖)�. 
4. Identify every data points, �𝑆𝑆𝑆𝑆(𝑡𝑡𝑖𝑖 + ∆𝑡𝑡),𝜙𝜙(𝑡𝑡𝑖𝑖 + ∆𝑡𝑡)�. 
5. Compute ensemble average of �𝑆𝑆𝑆𝑆(𝑡𝑡𝑖𝑖 + ∆𝑡𝑡),𝜙𝜙(𝑡𝑡𝑖𝑖 + ∆𝑡𝑡)�, denoted by �𝑆𝑆𝑆𝑆����(𝑡𝑡𝑖𝑖 +

∆𝑡𝑡),𝜙𝜙�(𝑡𝑡𝑖𝑖 + ∆𝑡𝑡)�. 



6. Plot vector from �𝑆𝑆𝑆𝑆(𝑡𝑡𝑖𝑖),𝜙𝜙(𝑡𝑡𝑖𝑖)� to �𝑆𝑆𝑆𝑆����(𝑡𝑡𝑖𝑖 + ∆𝑡𝑡),𝜙𝜙�(𝑡𝑡𝑖𝑖 + ∆𝑡𝑡)� in phase space. 
7. Repeat these steps for each 𝑆𝑆𝑆𝑆 and 𝜙𝜙 pair. Results are plotted for all pairs with > 100 

realizations. 
For the results presented here, we used 𝑀𝑀 = 15 and ∆𝑡𝑡 = 10 cycles. When plotted in this way, 
limit cycle oscillations appear as fixed points in phase space. Figure 7 plots the phase portrait in 
the spin ratio and phase difference space for case 1 and 2. Here, the gray scale denotes the joint 
histogram of the spin ratio and phase difference, providing a measure of the amount of time that 
the system spends in this region of phase space.  The vector field is converted into streamlines and 
no streamlines are shown in regions where less than 100 realizations occur.  Note that the bottom 
boundary of the portrait is connected to top boundary owing to the periodicity of the phase 
difference value.  It should be emphasized that the specific phase difference value does not have a 
physical meaning because it is determined by the coordinate system. 
 

 
Figure 7 – Phase portrait in spin ratio and phase difference space (a) case 1 (b) case 2.  Phase 
space velocity is indicated by size of vector arrow. 

 
The density distribution for the case 1 in Figure 7 (a) is circular centering at (𝑆𝑆𝑆𝑆,𝜙𝜙) = (0, 0.2). 

The vector trajectories clearly show that the attractor is a stable node, denoted here as "As", as the 
vectors show a clear CW spiral structure into this point.  The phase portrait for case 2 (Figure 7(b)) 
is significantly more complex with three different regions and fixed points.  First, it indicates two 
fixed points, one at (−0.7, 2.5), denoted "ACW", and the other at (0.75,−2.2), denoted "ACCW". 
Multiple saddle points are also observed, denoted as "S".  The higher number of realizations 
observed near ACW than  ACCW implies that ACW is much stronger than ACCW.  In other words, the 
state can be easily expelled from ACCW by the external perturbations and converge to ACW.  In 
addition, it seems that a node similar to that in Figure 7(a) is at the center, but it is difficult to 
assure whether the node is a stable attractor because of the low realizations. To sum up the structure 
of the phase portrait, three fixed points exist, i.e., As, ACW, and ACCW, and the strength of each 
attractor depends on test conditions.  For case 1, As is so strong that the system does not switch to 
other modes but remains as the standing wave (SW).  For case 2, ACW is the most dominant 
attractor, but the random noise stochastically perturbs the system to switch its mode to the SW or 
CCW.  However, AS and ACCW must be much weaker attractors than ACW, as the system can easily 
deviate from AS or ACCW by noise and converge to ACW.  The overall picture that emerges from 



this data is that the system has three distinct fixed points, defined by SW, CW, and CCW spinning 
waves.  The strength and/or basin of attraction of these fixed points varies significantly with 
operating conditions and inherent noise in the system causes the system to visit all three regions 
of the phase space, given a sufficiently long observation period.   

Next, we investigate how azimuthal fuel staging affects the modal dynamics of the transverse 
instability. To examine the fuel staging effects, we used two separate fuel lines for the outer nozzle, 
enabling to flow different fuel flow rate through each line. In addition, we changed the fuel 
configuration to explore the non-uniform flame/temperature effect. The uniform 
flame/temperature case will be considered as a baseline. In this study, we swept the total mass flow 
rate of air and fuel, maintaining other parameters, such as preheat temperature and global 
equivalence ratio, constants. The sweep was carried out with uniform OR = 0.5) and non-uniform 
azimuthal fuel staging OR < 0.5). We will first examine the uniform fuel staging cases at three 
different mass flow rates and then briefly explore the non-uniform staging cases, which are 
summarized in Table 2. 

 
Table 2 – Operating conditions for fuel staging cases 

Case Fuel 
config. 

Preheat 
temp. (K) 

Equiv. 
ratio (-) PR (-) OR (-) Air mass 

flow (kg/s) 
1 

1 
600 0.55 0.1 

0.5 
1.2 

2 1.4 
3 1.54 
4 2 0.45 1.14 
5 1.53 

 

 
Figure 8 – Raw pressure signals from sensor 1 and 2 for (a) case 1, (b) 2, and (c) 3. The signals 
are normalized by static pressure. In subfigures (a) – (c), thick and thin lines denote the 
band-pass filtered and raw signals, respectively. PSD from sensor 1 and 2 for (d) case 1, (e) 
2, and (f) 3. 
 



First, consider the dynamics of uniform fuel staging case. Figure 8 (a) – (c) shows the raw and 
filtered pressure signals for 10 seconds measured from two sensors, S1 and S2, for case 1 - 3. S3 
and S4 are omitted here as they are similar to S1 and S2, respectively. The signals are normalized 
by its static pressure. The power spectrum density (PSD) of the raw signals described in Figure 8 
(d) – (f) shows two distinct peaks. The mode shape analysis demonstrated that the first and second 
peaks correspond to the first pure azimuthal (1A) and the first azimuthal/longitudinal (1A1L) 
modes, respectively. In this study, we focus on 1A mode only, i.e., the signal is filtered around the 
first peak with a bandwidth shown as shaded region. For case 1, the signal amplitudes are relatively 
small and steady. The amplitudes of raw and filtered signals from S1 are greater than those from 
S2. For case 2, the overall amplitudes increase, and they are not steady, but rather show 
intermittency. For example, the amplitude of S1 is similar to that of S2 most of the time, but 
sometimes S1 is greater than S2 such as between 5 and 6 seconds. For case 3, the overall 
amplitudes further increase compared to cases 1 and 2. The amplitudes of S1 and S2 are 
fluctuating, but they are similar to each other most of the time. 

 

 
Figure 9 – Magnitudes of CW, CCW waves, and anti-node in time series for (a) case 1, (b) 
2, and (c) 3. They are all normalized by static pressure, i.e., 𝑭𝑭� = 𝑭𝑭 𝒑𝒑�⁄ ,𝑮𝑮� = 𝑮𝑮 𝒑𝒑�⁄ . 

 
The amplitudes of CW and CCW waves were extracted from the filtered signals and plotted in 

Figure 9. The amplitude of the pressure anti-node is also shown here for the comparison. For case 
1, F and G are fluctuating around a constant value of 0.02, which will be close to a standing wave, 
but they are oscillating out of phase to each other. In addition, the oscillations are close to 
sinusoidal with frequency much lower than the acoustic frequency. This will induce the oscillation 
in spin ratio around zero. The anti-node amplitude is also fluctuating, but it is not sinusoidal, but 
rather irregular, which seems to be driven by a noise contribution. These trends of F and G 
completely change for case 2. Specifically, F and G are not oscillating around a similar value all 
the time, but they intermittently switch their dominance. From 0 to 2 seconds, for example, F and 
G have a similar amplitude of oscillation, but from 6 to 10 seconds, F dominates over G. Note that 
despite this transition, the anti-node amplitude, or the sum of two amplitudes, does not dramatically 
change, which is well illustrated in the zoom in figure. These trends are similar to case 3 except 
that now F dominates over G in most of the time, i.e., the transition to a standing wave occurs only 
once for 10 seconds. 

Figure 10 describes 𝑆𝑆𝑆𝑆, 𝜑𝜑𝐹𝐹𝐹𝐹 , their probability density function (PDF), and the frequency 
spectrum for each case. Starting from case 1, the spin ratio is oscillating around zero as expected, 
but the phase difference is also oscillating in sinusoidal manner. Since the phase difference is 
directly related to the anti-node, oscillation in phase difference is equivalent to the oscillation in 
anti-nodal line. Also note that the oscillations of spin ratio and phase difference are not 
synchronized, but the oscillation in phase difference leads that in spin ratio by about 90 deg, e.g., 



from 5 to 6 seconds in Figure 10 (a). This phase lag will result in a circular orbit in averaged phase 
portrait, discussed later. The PDF of spin ratio and phase difference shows unimodal distribution. 
The peak of the spin ratio PDF is around zero, indicating that the instability mode is close to 
standing wave. The peak of the phase difference PDF is around 0.4 or 72 degrees, indicating that 
the anti-node is located at around -36 degree since 𝜃𝜃𝑎𝑎 = −𝜑𝜑𝐹𝐹𝐹𝐹 2⁄ . The spectrum in spin ratio and 
phase difference shows a strong peak at around 10 Hz, implying a coherent oscillation.  
 

 
Figure 10 – 𝑺𝑺𝑺𝑺 and 𝝋𝝋𝑭𝑭𝑭𝑭 in time series for (a) case 1, (d) 2, and (g) 3. The phase difference is 
normalized by 𝝅𝝅, i.e., 𝝋𝝋�𝑭𝑭𝑭𝑭 = 𝝋𝝋𝑭𝑭𝑭𝑭 𝝅𝝅⁄ . PDF of 𝑺𝑺𝑺𝑺 and 𝝋𝝋𝑭𝑭𝑭𝑭 for (b) case 1, (e) 2, and (h) 3. 
Frequency spectrum of 𝑺𝑺𝑺𝑺 and 𝝋𝝋𝑭𝑭𝑭𝑭 for (c) case 1, (f) 2, and (i) 3. 

 
For case 2, the spin ratio and phase difference intermittently switch between two points. 

Specifically, the spin ratio hops between zero and a positive value, whereas the non-dimensional 
phase difference hops between 0.4 and -0.6. In addition, their transitions occur at the same time, 
i.e., when the spin ratio switches from zero to a positive value, the phase difference shifts from 0.4 
to -0.6, and vice versa. Besides, when the phase difference lingers around -0.6, it sometimes drifts 
to one/the other directions equivalent to the rotation of anti-nodal line. The PDF of spin ratio 
exhibits a bimodal distribution, implying a bistable regime in the system. Lastly, unlike case 1, the 
spectrum shows no dominant peak. Turing to case 3, the spin ratio and phase difference mostly 



linger around zero and -0.6, respectively. The PDF shows a unimodal distribution for both spin 
ratio and phase difference, indicating that the system has one stable equilibrium point. The 
spectrum does not have a strong peak similar to case 2. 
 

 
Figure 11 – Averaged phase portrait in spin ratio and phase difference space for (a) case 1, 
(b) 2, and (d) 3.  The phase difference is normalized by 𝝅𝝅. The gray scale denotes the joint 
pdf of spin ratio and phase difference. The red arrows and their head size indicate the 
trajectories and velocity magnitude. 
 

Figure 11 represents the averaged phase portrait for each case. Here, the gray scale denotes the 
joint PDF in spin ratio and phase difference, the red arrows indicate the trajectories obtained from 
the phase averaged technique, and the arrow size denotes the velocity of the trajectories. Note that 
the bottom boundary of the portrait is connected to top boundary owing to the periodicity of the 
phase difference value.  For case 1, the phase portrait shows the trajectories converging to the 
center, (𝑆𝑆𝑆𝑆,𝜑𝜑�𝐹𝐹𝐹𝐹) = (0, 0.4), and the joint PDF shows a unimodal distribution. This indicates that 
the system has one stable attractor at the center, denoted by 𝐴𝐴𝑆𝑆 where the subscript ‘𝑆𝑆’ means a 
standing wave. Although the turbulent noise may perturb the system, the attractor is so strong that 
the system is not able to escapes from it. In addition, the trajectories are spiraling in CW direction, 
which is expected from the phase lag between the spin ratio and the phase difference in time series 
described earlier. For case 2, the structure of the phase portrait becomes much complex. First, the 
CW spiral trajectories at (0,0.4) observed from case 1 still exist, but the intensity of the attractor 
is weaker than case 1, manifested by lower value of the joint PDF. Instead, the system shows 
another stable attractor at (𝑆𝑆𝑆𝑆,𝜑𝜑�𝐹𝐹𝐹𝐹) = (0.5,−0.75), denoted by𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶, which corresponds to the 
dominant CCW spinning wave. This preference in CCW direction may be a result of azimuthal 
convective phenomena, i.e., the outer nozzles are swirling in CCW direction. Two saddle points, 
denoted by ‘𝑆𝑆’, were also observed near the top and bottom boundaries. To sum up the overall 
structure, the system can stabilize at two stable attractors, standing and CCW spinning modes, and 
the turbulent noise seems to perturb the system allowing to hop between these two attractors. For 
case 3, 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶 still exists at the bottom right corner, but 𝐴𝐴𝑆𝑆 is not visible. Rather, a CW wave 
attractor, 𝐴𝐴𝐶𝐶𝐶𝐶, appears at the bottom left corner although the joint PDF around it is sparse. This 
implies that 𝐴𝐴𝐶𝐶𝐶𝐶 may be a stable attractor, but its strength is so weak that the system can be readily 
expelled from the attractor by the external noise, and it converges to 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶. The system then stays 
around this attractor most of the time. In conclusion, Figure 11 suggests that the system contains 
multiple attractors, standing and spinning waves. The strength of each attractor depends on the 
operating conditions. As the mass flow rate increases, the dominant attractor transitions from 



standing to spinning waves, but the external noise perturbs the system to travel around these 
attractors. 

 

 
Figure 12 – 𝑺𝑺𝑺𝑺 and 𝝋𝝋�𝑭𝑭𝑭𝑭 in time series for (a) case 4 and (d) 5. PDF of 𝑺𝑺𝑺𝑺 and 𝝋𝝋�𝑭𝑭𝑭𝑭 for (b) 
case 4 and (e) 5. FFT of 𝑺𝑺𝑺𝑺 and 𝝋𝝋�𝑭𝑭𝑭𝑭 for (c) case 4 and (f) 5. 
 

 
Figure 13 – Averaged phase portrait in (𝑺𝑺𝑺𝑺,𝝋𝝋�𝑭𝑭𝑭𝑭) space for (a) case 4 and (b) 5. 

 
Next, we focus on the dynamics due to non-uniform fuel staging. Here, we present only 𝑆𝑆𝑆𝑆 

and 𝜑𝜑�𝐹𝐹𝐹𝐹  as well as their phase portraits for brevity. Figure 12 shows SR and φ�FG in time series, 
their PDFs, and the FFT for case 4 (low flow rate) and 5 (high flow rate). From these plots, we can 
make the following observations. First, for non-uniform staging cases, the instability mode always 
exists as a standing wave no matter what the flow rate is. Second, the oscillation amplitudes in SR 
and φ�FG increases with increasing mass flow rate, which can be seen from the variance of the PDF 
as well as the peak amplitude in the FFT. Third, the oscillation frequency also increases with the 



mass flow rate shown in the FFT. This increase in frequency was not shown earlier as the mode 
switches to a spinning wave for a high flow rate. Lastly, when comparing cases 1 and 4 where their 
flow rates are close to each other, the oscillation amplitudes are similar, but the frequency for case 
4 is much higher. This demonstrates that the azimuthal non-uniformity increases the oscillation 
frequency of SR and φ�FG. 

Figure 13 represents the phase portraits for cases 4 and 5. Note that the stable attractors are 
fixed at (SR,φ�FG) = (0, 0) for both cases, indicating that the anti-node is located at 0°. This is 
probably because the hotter flames, which strongly interact with the acoustics, are distributed in a 
horizontal direction, locking the anti-nodal line at 0°. Similar reasoning can be used to explain the 
standing wave for high flow rate, i.e., since the anti-nodal line is fixed at 0° by flame non-
uniformity, it requires a much higher flow rate to break the standing wave, which is not observed 
in this data. Regarding the differences between the two cases, the distribution of joint PDF is much 
wider for case 5, suggesting that the amplitude of the oscillation gets larger with increasing flow 
rate. In addition, the trajectories are faster for case 5 than case 4. This shows that the system 
oscillates faster with a higher flow rate, which is consistent with the high frequency in Figure 12(f). 

 

 
Figure 14 – Normalized anti-node magnitude as a function of mass flow rate at different 𝑶𝑶𝑶𝑶 
values with fuel configuration (a) 2 and (c) 3. 𝑺𝑺𝑺𝑺 as a function of normalized anti-node 
magnitude at different 𝑶𝑶𝑶𝑶  values with fuel configuration (b) 2 and (d) 3. the values of 
magnitude and 𝑺𝑺𝑺𝑺 were obtained by averaging their time series during steady state. 

 
Finally, consider the comparison between the uniform and non-uniform staging cases. For the 

azimuthal mode, pressure magnitude measured at a fixed position is generally not an appropriate 
indicator of the instability amplitude because the pressure magnitude is a function of F, G and φ�FG, 
which can vary with slow time scale. For a standing wave, for example, the rotation/oscillation of 
the anti-nodal line affects the magnitude measured at a fixed location. In addition, a transition from 



standing to spinning wave changes the magnitude. Therefore, we used the pressure magnitude at 
the anti-node as an indicator because it provides a relatively steady value under anti-node 
oscillation or mode switching. Figure 14(a) and (b) summarize the effects of fuel staging 
configuration 2 on the modal dynamics of the instability. Figure 14(a) represents the anti-node 
magnitude as a function of mass flow rate with different ORs. Here, cases with different ORs are 
added to explore the fuel staging effect in detail. It is observed that as the mass flow rate increases, 
the magnitude monotonically increases for all ORs, but it is maximized with uniform fuel staging 
(OR = 0.5). When the OR is 0.6, the magnitude is minimum. It is speculated that the instability 
may disappear with a much higher OR. It is also interesting to note that the onset of the instability, 
referred to as the Hopf bifurcation point, depends on fuel staging. Specifically, the mass flow rate 
required to trigger the instability decreases with the OR from 0.5 to 0.55, but it increases with the 
OR from 0.55 to 0.6. This suggests that sufficient non-uniform fuel staging is also beneficial to 
reduce the instability conditions. Figure 14(b) shows SR as a function of anti-node magnitude with 
different ORs. For a uniform staging case, the instability starts from a standing wave at low 
magnitudes. At intermediate magnitudes, the mode switches between standing and spinning 
waves. At high magnitudes, the mode is stabilized at a spinning wave. When the OR is set to 0.525, 
the standing and bistable regimes are observed, but not the spinning wave. Below the OR of 0.525, 
only the standing wave appears. To summarize the observations, the instability starts as a standing 
wave, and as the magnitude grows, it passes a bistable regime, where, standing and spinning waves 
both exist, and finally reaches a stable spinning wave above a certain threshold. Figure 14(c) and 
(d) show the same plots with Figure 14(a) and (b) but with fuel configuration 3. Figure 14(c) 
demonstrates that the onset of the instability follows similar trends with those for fuel 
configuration 2, i.e., Hopf bifurcation point advances and delays as the OR increases. As the flow 
rate increases, however, the pressure magnitudes collapse to each other, implying that the fuel 
configuration 3 has little effect of mitigating/suppressing the instability. In addition, Figure 14(d) 
shows that the instability mode exhibits not only a standing wave at low magnitudes but also a 
switching mode at large magnitude regardless of OR. This suggests that fuel configuration 3 has a 
negligible impact on modal dynamics.  

Having studied the modal dynamics due to fuel staging from the experimental experiments, we 
next turn to an analysis framework for modeling these dynamics. The stochastic, nonlinear wave 
equation, presented below, closely follows prior studies: 
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  (10) 

Here, 𝑝𝑝 is the acoustic pressure, 𝑐𝑐 the sound speed, 𝑅𝑅 the chamber radius, 𝜉𝜉1 an additive 
background noise term, 𝜉𝜉2 a parametric noise term, and ℎ1,2 represents all other source/sink and 
wave propagation terms due to unsteady heat release, temperature non-uniformity, bulk flow 
effects, and nonlinearities. Notice that the wave equation has been spatially integrated in the axial 
and radial directions, and that mean flow, density gradient, and losses at boundaries are 
encapsulated in these general functions, ℎ1,2(𝑝𝑝, 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ ). Note that the solutions of the 
homogeneous wave equation, given by: 
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constitute a complete, orthogonal set of basis functions. As such, the essence of the Galerkin 
method is to use these basis functions for writing the solution of the more general, nonlinear 
Eq.(10). There is no approximation when the infinite summation is retained, but truncation 



necessarily introduces approximations.  We truncate this summation as a single mode that 
nonlinearly interacts with itself – the heat release nonlinearities, which generally dominate 
nonlinear effects in lean premixed systems, lead to strong self-interactions of a mode with itself. 
Thus, we shall approximate the acoustic pressure associated with a given 𝑛𝑛𝑡𝑡ℎ eigenmode as: 
 1 2( , t) ( ) cos(n ) ( )sin(n )p t tθ η θ η θ≈ +   (12) 
where 𝜂𝜂1 and 𝜂𝜂2 are the amplitudes of two orthogonal standing modes of azimuthal wavenumber, 
𝑛𝑛. The subscript, 𝑛𝑛, in 𝜂𝜂 has been omitted here. Next, we can treat the function ℎ1(𝑝𝑝,𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ ) in 
Eq.(10) quite generally by expanding it as a Taylor series: 
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(13) 

where 𝑝̇𝑝 is the time derivative of 𝑝𝑝, and 𝐵𝐵𝑖𝑖𝑖𝑖 's are coefficients of 𝑝𝑝𝑖𝑖𝑝̇𝑝𝑗𝑗. ℎ1(𝑝𝑝,𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ ) is truncated at 
fourth order. The coefficients 𝐵𝐵𝑖𝑖𝑖𝑖 are non-time varying but can vary azimuthally; physically this 
would occur because of discrete nozzle locations, azimuthally non-uniform temperature 
distribution, azimuthally non-uniform thermo-acoustic coupling strength, etc. In order to account 
for this in a general fashion, we write them as the following series: 
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Although not necessary, it is convenient to decompose the linear growth/damping term, 𝐵𝐵01, into 
a linear damping term, 𝛼𝛼, which is not dependent on 𝜃𝜃, and the linear growth term, 𝛽𝛽0(𝜃𝜃), which 
is a function of 𝜃𝜃. We next follow the standard steps in the Galerkin expansion approach and 
integrate these equations from 0 to 2𝜋𝜋 with respect to 𝜃𝜃, producing two sets of second order 
differential equations, 
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Here, 
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+�2𝑆𝑆2𝑛𝑛,21 − 𝑆𝑆4𝑛𝑛,21�𝜂𝜂22𝜂̇𝜂2 + �2𝑆𝑆2𝑛𝑛,21 + 𝑆𝑆4𝑛𝑛,21�(𝜂𝜂12𝜂̇𝜂2 + 2𝜂𝜂1𝜂𝜂2𝜂̇𝜂1)
�

+
𝑏𝑏12
8
�
�6 + 4𝐶𝐶2𝑛𝑛,12 + 𝐶𝐶4𝑛𝑛,12�𝜂𝜂1𝜂̇𝜂12 + �2 − 𝐶𝐶4𝑛𝑛,12�(𝜂𝜂1𝜂̇𝜂22 + 2𝜂𝜂2𝜂̇𝜂1𝜂̇𝜂2)

+�2𝑆𝑆2𝑛𝑛,12 − 𝑆𝑆4𝑛𝑛,12�𝜂𝜂2𝜂̇𝜂22 + �2𝑆𝑆2𝑛𝑛,12 + 𝑆𝑆4𝑛𝑛,12�(𝜂𝜂2𝜂̇𝜂12 + 2𝜂𝜂1𝜂̇𝜂1𝜂̇𝜂2)
�

+
𝑏𝑏03
8
�
�6 + 4𝐶𝐶2𝑛𝑛,03 + 𝐶𝐶4𝑛𝑛,03�𝜂̇𝜂13 + 3�2 − 𝐶𝐶4𝑛𝑛,03�𝜂̇𝜂1𝜂̇𝜂22

+3�2𝑆𝑆2𝑛𝑛,03 + 𝑆𝑆4𝑛𝑛,03�𝜂̇𝜂12𝜂̇𝜂2 + �2𝑆𝑆2𝑛𝑛,03 − 𝑆𝑆4𝑛𝑛,03�𝜂̇𝜂23 
� 

  
 
(16) 



+𝜁𝜁 + � ℎ2(𝜂𝜂1, 𝜂𝜂2, 𝜂̇𝜂1, 𝜂̇𝜂2) sin(𝑛𝑛𝑛𝑛) 𝜉𝜉2
2𝜋𝜋

0
𝑑𝑑𝑑𝑑 

𝑓𝑓2(𝜂𝜂1, 𝜂𝜂2, 𝜂̇𝜂1, 𝜂̇𝜂2) =
𝛽𝛽
2
𝑆𝑆2𝑛𝑛,01𝜂̇𝜂1 +

𝑏𝑏10
2
𝑆𝑆2𝑛𝑛,10𝜂𝜂1 

+
𝑏𝑏30
8
�
�6 − 4𝐶𝐶2𝑛𝑛,30 + 𝐶𝐶4𝑛𝑛,30�𝜂𝜂23 + 3�2 − 𝐶𝐶4𝑛𝑛,30�𝜂𝜂12𝜂𝜂2

+�2𝑆𝑆2𝑛𝑛,30 + 𝑆𝑆4𝑛𝑛,30�𝜂𝜂13 + 3�2𝑆𝑆2𝑛𝑛,30 − 𝑆𝑆4𝑛𝑛,30�𝜂𝜂1𝜂𝜂22
�

+
𝑏𝑏21
8
�
�6 − 4𝐶𝐶2𝑛𝑛,21 + 𝐶𝐶4𝑛𝑛,21�𝜂𝜂22𝜂̇𝜂2 + �2 − 𝐶𝐶4𝑛𝑛,21�(𝜂𝜂12𝜂̇𝜂2 + 2𝜂𝜂1𝜂𝜂2𝜂̇𝜂1)

+�2𝑆𝑆2𝑛𝑛,21 + 𝑆𝑆4𝑛𝑛,21�𝜂𝜂12𝜂̇𝜂1 + �2𝑆𝑆2𝑛𝑛,21 − 𝑆𝑆4𝑛𝑛,21�(𝜂𝜂22𝜂̇𝜂1 + 2𝜂𝜂1𝜂𝜂2𝜂̇𝜂2)
�

+
𝑏𝑏12
8
�
�6 − 4𝐶𝐶2𝑛𝑛,12 + 𝐶𝐶4𝑛𝑛,12�𝜂𝜂2𝜂̇𝜂22 + �2 − 𝐶𝐶4𝑛𝑛,12�(𝜂𝜂2𝜂̇𝜂12 + 2𝜂𝜂1𝜂̇𝜂1𝜂̇𝜂2)

+�2𝑆𝑆2𝑛𝑛,12 + 𝑆𝑆4𝑛𝑛,12�𝜂𝜂1𝜂̇𝜂12 + �2𝑆𝑆2𝑛𝑛,12 − 𝑆𝑆4𝑛𝑛,12�(𝜂𝜂1𝜂̇𝜂22 + 2𝜂𝜂2𝜂̇𝜂1𝜂̇𝜂2)
�

+
𝑏𝑏03
8
�
�6 − 4𝐶𝐶2𝑛𝑛,03 + 𝐶𝐶4𝑛𝑛,03�𝜂̇𝜂23 + 3�2 − 𝐶𝐶4𝑛𝑛,03�𝜂̇𝜂12𝜂̇𝜂2

+�2𝑆𝑆2𝑛𝑛,03 + 𝑆𝑆4𝑛𝑛,03�𝜂̇𝜂13 + 3�2𝑆𝑆2𝑛𝑛,03 − 𝑆𝑆4𝑛𝑛,03�𝜂̇𝜂1𝜂̇𝜂22 
� 

+𝜁𝜁 + � ℎ2(𝜂𝜂1, 𝜂𝜂2, 𝜂̇𝜂1, 𝜂̇𝜂2) cos(𝑛𝑛𝑛𝑛) 𝜉𝜉2
2𝜋𝜋

0
𝑑𝑑𝑑𝑑 

And, 
ω = 𝑛𝑛𝑛𝑛 𝑅𝑅⁄ ,   𝜔𝜔1

2 = 𝜔𝜔2 − 𝑏𝑏10�1 + 𝐶𝐶2𝑛𝑛,10 2⁄ �, 𝜔𝜔2
2 = 𝜔𝜔2 − 𝑏𝑏10�1 − 𝐶𝐶2𝑛𝑛,10 2⁄ �  

and 𝜁𝜁(𝑡𝑡) is a spatially averaged additive noise source. These describe the 2nd order harmonic 
oscillators of two orthogonal standing waves coupled through the source terms. Note that even 
order nonlinearities (e.g., terms multiplied by 𝑏𝑏20, 𝑏𝑏11, and 𝑏𝑏40, etc) are eliminated during the 
spatial averaging , i.e., only the odd order terms survive. Similarly, azimuthal non-uniformity terms 
higher than 4𝑛𝑛 order are averaged out, and only 2𝑛𝑛 and 4𝑛𝑛 terms have an impact on the dynamics.  
Consider the effects of non-uniformity on two oscillators. From Eq.(15), one can see that the term, 
𝛼𝛼 − 𝛽𝛽�1 ± 𝐶𝐶2𝑛𝑛,01 2⁄ �, determines the linear stability of each oscillator. Specifically, when 
𝐶𝐶2𝑛𝑛,01 = 0, two oscillators have identical linear growth/damping rate. i.e., they are both linearly 
stable or unstable. However, when 𝐶𝐶2𝑛𝑛,01 ≠ 0, their linear growth/damping rate would be different. 
For instance, one oscillator could be linearly unstable while the other is stable. In addition, 𝐶𝐶2𝑛𝑛,10 
influences the natural frequencies of the two oscillators and, consequently, controls whether the 
natural frequencies of the two eigenmodes are identical or different.  For example, when 𝐶𝐶2𝑛𝑛,10 >
0 and 𝑏𝑏10 < 0, the natural frequency of 𝜂𝜂1 is greater than that of 𝜂𝜂2. 

Given the fact that 𝜂𝜂(𝑡𝑡) is oscillating harmonically with a temporally varying amplitude and 
phase, it is convenient to utilize a Van der Pol decomposition to rewrite the temporal dynamics, 
𝜂𝜂(𝑡𝑡). 

𝜂𝜂1(𝑡𝑡) = 𝐴𝐴(𝜏𝜏)cos�𝜔𝜔1(𝜏𝜏)𝑡𝑡 + 𝜙𝜙𝐴𝐴(𝜏𝜏)� = 𝐴𝐴(𝜏𝜏)cos�𝜔𝜔�𝑡𝑡 + 𝜑𝜑𝐴𝐴(𝜏𝜏)�
𝜂𝜂2(𝑡𝑡) = 𝐵𝐵(𝑡𝑡)cos�𝜔𝜔2(𝜏𝜏)𝑡𝑡 + 𝜙𝜙𝐵𝐵(𝜏𝜏)� = 𝐵𝐵(𝑡𝑡)cos�𝜔𝜔�𝑡𝑡 + 𝜑𝜑𝐵𝐵(𝜏𝜏)�

 
  
 
(17) 

 where 

𝜔𝜔� =
𝜔𝜔1(𝜏𝜏) + 𝜔𝜔2(𝜏𝜏)

2
,    Δ𝜔𝜔 = 𝜔𝜔2(𝜏𝜏) −𝜔𝜔1(𝜏𝜏),    

𝜑𝜑𝐴𝐴(𝜏𝜏) = 𝜙𝜙𝐴𝐴(𝜏𝜏) −
Δ𝜔𝜔𝜔𝜔

2
,    𝜑𝜑𝐵𝐵(𝜏𝜏) = 𝜙𝜙𝐵𝐵(𝜏𝜏) +

Δ𝜔𝜔𝜔𝜔
2

 
  
 
(18) 

We assume that the characteristic time scales over which the amplitude and phase (𝐴𝐴, 𝐵𝐵 and 𝜑𝜑, 
respectively) vary are much slower than the acoustic time scale, i.e., 𝜏𝜏 ≫ 1 𝜔𝜔�⁄ . Assuming 𝜁𝜁  is 



Gaussian white noise, one can perform deterministic and stochastic averaging to produce first 
order differential equations for the slowly varying amplitudes and phase (not shown here for 
space). These equations exhibit a very broad range of behaviors, and the formulation has 2 
independent linear and 24 independent nonlinear coefficients.  Notice that in reality, some of these 
parameters may be interconnected to each other, preventing us from isolating them separately in 
experiments. The model problems considered allow us to isolate each parameter, and thus, help us 
understand their individual effects. This section works from simple cases that are amenable to 
analytical results and insights to more involved problem that captures the observed dynamics. 
Specifically, we consider the model equations below.  First, without loss of generality, we define 
the azimuthal origin such that 𝑆𝑆2,01 = 0. Second, we consider a subset of the larger independent 
parameter space by (1) setting 𝐶𝐶4,𝑖𝑖𝑖𝑖 = 𝑆𝑆4,𝑖𝑖𝑖𝑖 = 0; this is equivalent to assuming that 4𝑛𝑛 non-
uniformity is negligible relative to 2𝑛𝑛, and (2) setting the nonlinear coefficients, 𝑏𝑏30, 𝑏𝑏12, and 𝑏𝑏03 
to zero. In the zero frequency spacing case that is analytically considered in the next section, these 
assumptions eliminate the coupling between amplitude and phase dynamics, enabling us to solve 
for all FP’s and their stability. It will be shown later that the simulation with these assumptions 
still can capture the experimental observations quite well. The governing equations then simplify 
to: 

𝐴̇𝐴 =
1
4
�𝛽𝛽�2 + 𝐶𝐶2,01� − 2𝛼𝛼�𝐴𝐴 − 𝑘𝑘𝐴𝐴1 sin𝜑𝜑𝐵𝐵 + 𝑘𝑘𝐴𝐴2𝐴𝐴3 + (𝑘𝑘3 + 𝑘𝑘𝐴𝐴3 cos 2𝜑𝜑)𝐴𝐴𝐵𝐵2

+
Γ

4𝜔𝜔�3𝐴𝐴
+
𝜁𝜁𝐴𝐴
𝜔𝜔�

 

𝐵̇𝐵 =
1
4
�𝛽𝛽�2 − 𝐶𝐶2,01� − 2𝛼𝛼�𝐵𝐵 − 𝑘𝑘𝐵𝐵1 sin𝜑𝜑𝐴𝐴 + 𝑘𝑘𝐵𝐵2𝐵𝐵3 + (𝑘𝑘3 + 𝑘𝑘𝐵𝐵3 cos 2𝜑𝜑)𝐵𝐵𝐴𝐴2

+
Γ

4𝜔𝜔�3𝐵𝐵
+
𝜁𝜁𝐵𝐵
𝜔𝜔�

 

𝜑̇𝜑 = ∆ −
𝑏𝑏�10𝑆𝑆2,10

2
�
𝐴𝐴 𝐵𝐵⁄
Δ + 2 

+
𝐵𝐵 𝐴𝐴⁄
Δ − 2 

� cos𝜑𝜑 + �𝑘𝑘𝜑𝜑𝜑𝜑𝐴𝐴2 + 𝑘𝑘𝜑𝜑𝜑𝜑𝐵𝐵2� sin 2𝜑𝜑

+ �
1
𝐴𝐴

+
1
𝐵𝐵
�
𝜁𝜁𝜑𝜑
𝜔𝜔�

 

  
 
(19) 

where 

𝑘𝑘𝐴𝐴1 =
𝑏𝑏10𝑆𝑆2,10

2(Δ − 2)
, 𝑘𝑘𝐵𝐵1 =

𝑏𝑏10𝑆𝑆2,10

2(Δ + 2)
, 𝑘𝑘𝐴𝐴2 =

𝑏𝑏21
32

�3 + 2𝐶𝐶2,21�,𝑘𝑘𝐵𝐵2 =
𝑏𝑏21
32

�3 − 2𝐶𝐶2,21� 

 

𝑘𝑘3 =
𝑏𝑏21
16

,𝑘𝑘𝐴𝐴3 = −
𝑏𝑏21
32

�
3Δ + 2
Δ − 2

� ,𝑘𝑘𝐵𝐵3 = −
𝑏𝑏21
32

�
3Δ − 2
Δ + 2

� , 𝑘𝑘𝜑𝜑𝜑𝜑

=
𝑏𝑏21
64

�
3Δ − 2
Δ + 2

� ,𝑘𝑘𝜑𝜑𝜑𝜑 =
𝑏𝑏21
64

�
3Δ + 2
Δ − 2

� 

  
 
(20) 

The tildes on 𝛼𝛼,𝛽𝛽 and 𝑏𝑏𝑖𝑖𝑖𝑖 have been omitted. Recall that 𝐶𝐶2,01, 𝑆𝑆2,10 and 𝐶𝐶2,21 are parameters that 
describe the non-uniformities in the source term response, such as 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ , to 𝑝̇𝑝,𝑝𝑝 and 𝑝𝑝2𝑝̇𝑝, 
respectively. Note that these parameters and Δ cause the coefficients in the 𝐴̇𝐴 and 𝐵̇𝐵 equations to 
differ; stated differently, if Δ = 𝐶𝐶2,01 = 𝑆𝑆2,10 = 𝐶𝐶2,21 = 0, the equations for 𝐴̇𝐴 and 𝐵̇𝐵 are 
symmetric.  

Consider the deterministic limit cycle solutions (i.e., the fixed points (FP) of 𝐴𝐴,𝐵𝐵, and 𝜑𝜑)  and 
their stability with pressure coupled azimuthal non-uniformity parameter, 𝑆𝑆2,10 = 0 , and no 
frequency shift, Δ = 0 . The effects of nonzero values of these parameters will be numerically 



investigated later. For the deterministic FP analysis, the time derivative of each variable as well as 
the noise terms set to zero, leading to the following equations: 

0 =
1
4
�𝛽𝛽�2 + 𝐶𝐶2,01� − 2𝛼𝛼�𝐴𝐴 + 𝑘𝑘𝐴𝐴1𝐴𝐴3 + (𝑘𝑘2 + 𝑘𝑘𝐴𝐴2 cos 2𝜑𝜑)𝐴𝐴𝐵𝐵2

0 =
1
4
�𝛽𝛽�2 − 𝐶𝐶2,01� − 2𝛼𝛼�𝐵𝐵 + 𝑘𝑘𝐵𝐵1𝐵𝐵3 + (𝑘𝑘2 + 𝑘𝑘𝐵𝐵2 cos 2𝜑𝜑)𝐵𝐵𝐴𝐴2

0 = �𝑘𝑘𝜑𝜑𝜑𝜑𝐴𝐴2 + 𝑘𝑘𝜑𝜑𝜑𝜑𝐵𝐵2� sin 2𝜑𝜑

 
  
 
(21) 

The FPs are given by:  
FP#1: 𝐴𝐴∗2 = 𝐵𝐵∗2 = 0

FP#2: 𝐴𝐴∗2 =
16𝛼𝛼 − (16 + 8𝐶𝐶2,01)𝛽𝛽

𝑏𝑏21(3 + 2𝐶𝐶2,21)
,    𝐵𝐵∗2 = 0,

FP#3: 𝐵𝐵∗2 =
16𝛼𝛼 − (16 − 8𝐶𝐶2,01)𝛽𝛽

𝑏𝑏21(3 − 2𝐶𝐶2,21)
,    𝐴𝐴∗2 = 0,

FP#4: 𝐴𝐴∗2 =
8𝛼𝛼�1 − 𝐶𝐶2,21� − 4𝛽𝛽 �𝐶𝐶2,01�2 − 𝐶𝐶2,21� + 2�1 − 𝐶𝐶2,21��

𝑏𝑏21�2 − 𝐶𝐶2,21
2 �

,

𝐵𝐵∗2 =
8𝛼𝛼�1 + 𝐶𝐶2,21� + 4𝛽𝛽 �𝐶𝐶2,01�2 + 𝐶𝐶2,21� − 2�1 + 𝐶𝐶2,21��

𝑏𝑏21�2 − 𝐶𝐶2,21
2 �

,

𝜑𝜑∗ = ±
𝜋𝜋
2

, ±
3𝜋𝜋
2

, . . .

 
  
 
(22) 

where * is the value at each FP. Note that there are 4 possible solutions to this equation.  Here, 
FP#1 is a zero amplitude mode, FPs #2 and #3 are purely standing waves orthogonal to each other, 
and FP#4 is a mixed wave. Although not written here, if FP#4 solution is recast as two counter 
rotating eigenmodes, it can be shown that the dominance between CW and CCW waves for FP#4 
is determined by 𝜑𝜑∗, i.e., if 𝜑𝜑∗ = 𝜋𝜋

2
�− 𝜋𝜋

2
� , CW (CCW) dominates over CCW (CW).  When 𝐶𝐶2,01 =

𝐶𝐶2,21 = 0, FP#4 becomes a purely spinning wave whose direction is determined by its initial 
condition. The physical realization of the above FPs depends on the stability of each FP. The 
stability analysis can be done by perturbing the steady-state solutions: 

𝐴̇𝐴 = 𝐴𝐴∗ + 𝐴𝐴′    where    𝐴𝐴′ ≪ 𝐴𝐴∗
𝐵̇𝐵 = 𝐵𝐵∗ + 𝐵𝐵′    where    𝐵𝐵′ ≪ 𝐵𝐵∗
𝜑̇𝜑 = 𝜑𝜑∗ + 𝜑𝜑′    where    𝜑𝜑′ ≪ 𝜑𝜑∗

 
  
 
(23) 

Each FP is stable when: 
FP#1: 𝛾𝛾 ≤ 𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,1 
FP#2, 3: 𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,1 < 𝛾𝛾 ≤ 𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,2 
FP#4: 𝛾𝛾 > 𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,2 

  
 
(24) 

where 
𝛾𝛾 = 𝛽𝛽 𝛼𝛼⁄  

𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,1 =

⎩
⎪
⎨

⎪
⎧ 2

2 + 𝐶𝐶2,01
, if  0 ≤ 𝐶𝐶2,01 < 1 (FP#2)

2
2 − 𝐶𝐶2,01

, if − 1 < 𝐶𝐶2,01 < 0 (FP#3)
 

 
 

 
(25) 



𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,2

=

⎩
⎪
⎨

⎪
⎧ 2�1 + 𝐶𝐶2,21�

2�1 − 𝐶𝐶2,01�+ 𝐶𝐶2,21�2− 𝐶𝐶2,01�
, if  0 ≤ 𝐶𝐶2,01 < 1  and  𝐶𝐶2,01 <

2�𝐶𝐶2,21 + 1�
2 + 𝐶𝐶2,21

  (FP#2)

2�1 − 𝐶𝐶2,21�
2�1 + 𝐶𝐶2,01� − 𝐶𝐶2,21�2 + 𝐶𝐶2,01�

, if − 1 ≤ 𝐶𝐶2,01 < 0  and  𝐶𝐶2,01 <
2�𝐶𝐶2,21 − 1�

2 − 𝐶𝐶2,21
  (FP#3

 

It has been assumed that the non-uniformity parameters, 𝐶𝐶2,01 and 𝐶𝐶2,21, are bounded between ±1. 
This physically implies that the non-uniform parameters are less than mean value.  Here, 𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,1 
corresponds to the bifurcation from FP#1 (zero amplitude) to FP#2 or #3 (standing wave), and 
γHopf,2 is the bifurcation  from FP#2 or #3 (standing wave) to FP#4 (mixed wave). Figure 15 
summarizes the stability of each FP in �𝐶𝐶2,01, 𝛾𝛾� space with different 𝐶𝐶2,21 values. Here, the 
horizontal dash line indicates 𝛾𝛾 = 1, and the contour lines denote |𝑆𝑆𝑆𝑆|. Consider a case where 𝛾𝛾 
is increasing with fixed values of 𝐶𝐶2,01 and 𝐶𝐶2,21. This is equivalent to moving in a vertical 
direction in the plot. As 𝛾𝛾 increases, a system transitions from FP#1 (zero amplitude) to FP#2 or 
#3 (standing wave), and then FP#4 (mixed wave). However, when 𝐶𝐶2,01 is zero, the system 
transitions directly from FP#1 to FP#4. Specifically, when the system is azimuthally uniform, 
𝐶𝐶2,01 = 𝐶𝐶2,21 = 0, the mode exists either as a zero amplitude or a purely spinning wave, depending 
upon 𝛾𝛾. Also note from 𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻𝑓𝑓,1 that the more 𝐶𝐶2,01 deviates from zero, the earlier the system 
becomes unstable, i.e., the non-uniformity accelerates the onset of the instability.  Lastly, nonzero 
𝐶𝐶2,21 causes  𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,2 to be asymmetric about 𝐶𝐶2,01 = 0 line. To summarize, this figure clearly 
shows that under unstable conditions, the system can be dominated by standing, spinning, or mixed 
waves, and shows how the relative dominance of these waves is controlled by linear 
damping/amplification effects, (𝛾𝛾 = 𝛽𝛽 𝛼𝛼⁄ ), and azimuthal non-uniformities, (𝐶𝐶2,01,𝐶𝐶2,21). 
 

 
Figure 15 – Stability map in (𝑪𝑪𝟐𝟐,𝟎𝟎𝟎𝟎,𝜸𝜸) space with difference 𝑪𝑪𝟐𝟐,𝟐𝟐𝟐𝟐 values.  Red and blue lines 
denote the first and second bifurcation boundaries. The horizontal dash line denotes 𝜸𝜸 = 𝟏𝟏. 
Contour lines indicate |𝑺𝑺𝑺𝑺|. 
 

Further insight into these FP’s and their stability can be obtained from transient computations, 
showing the systems relaxation to these FP’s from arbitrary initial conditions, see Figure 23. The 
first row illustrates simulations of 𝜂𝜂1, 𝜂𝜂2,𝐴𝐴,𝐵𝐵, and 𝜑𝜑� with different 𝛾𝛾 values. Subfigures in each 
plot demonstrate that the method of averaging technique closely captures the magnitudes of the 
second order oscillators. After each simulation, 𝐴𝐴,𝐵𝐵, and 𝜑𝜑 are mapped into 𝐹𝐹,𝐺𝐺, and 𝜑𝜑𝐹𝐹𝐹𝐹 . Figure 
23(a) represents the zero amplitude mode (FP#1) where 𝛾𝛾 < 𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,1, and thus, both amplitudes, 𝐴𝐴 
and 𝐵𝐵, decays to zero, i.e., the system is linearly stable. In this case, 𝜑𝜑� , 𝑆𝑆𝑆𝑆, and 𝜑𝜑�𝐹𝐹𝐹𝐹  do not have 



any physical meaning. Figure 23(b) is the case where 𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,1 < 𝛾𝛾 < γ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,2, and the system is 
linearly unstable. As expected, FP#2 is stable, and only 𝐴𝐴 converges to a finite value since 𝐶𝐶2,01 >
0. The bottom plot shows that 𝐹𝐹 and 𝐺𝐺 converge to the same value, resulting in zero 𝑆𝑆𝑆𝑆 or a purely 
standing wave. Also note that 𝜑𝜑�𝐹𝐹𝐹𝐹  converges to zero, implying that the anti-nodal line (𝜃𝜃𝑎𝑎 =
−𝜑𝜑𝐹𝐹𝐹𝐹/2) is located horizontally. This is physically reasonable because the flames that strongly 
couple with acoustics are oriented in the horizontal direction for positive 𝐶𝐶2,01. Further increase in 
𝛾𝛾 > 𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,2 leads to a mixed wave as shown in Figure 23(c) where both 𝐴𝐴 and 𝐵𝐵 converge to finite 
values. This state corresponds to FP#4. In the bottom plot, 𝐹𝐹 is greater than 𝐺𝐺 at steady state, and 
thus, 𝑆𝑆𝑆𝑆 > 0. Notice that 𝜑𝜑�𝐹𝐹𝐹𝐹  converges to 1, indicating that the anti-nodal line of the mixed wave 
is in vertical direction. 
 

 
Figure 16 – First row: simulations of 𝜼𝜼𝟏𝟏,𝜼𝜼𝟐𝟐,𝑨𝑨,𝑩𝑩, and 𝝋𝝋� . Subfigures describe the dynamics 
of the first eight cycles. Second row: simulations of 𝑭𝑭,𝑮𝑮,𝑺𝑺𝑺𝑺 and 𝝋𝝋�𝑭𝑭𝑭𝑭. 𝜸𝜸 values are (a) 0.9, (b) 
1, and (c) 1.1. The other parameters are 𝒃𝒃𝟐𝟐𝟐𝟐 = −𝟎𝟎.𝟎𝟎𝟎𝟎,𝑪𝑪𝟐𝟐,𝟎𝟎𝟎𝟎 = 𝟎𝟎.𝟎𝟎𝟎𝟎,𝑺𝑺𝟐𝟐,𝟏𝟏𝟏𝟏 = 𝟎𝟎,𝑪𝑪𝟐𝟐,𝟐𝟐𝟐𝟐 =
𝟎𝟎.𝟕𝟕𝟕𝟕,𝝎𝝎� = 𝟏𝟏,𝚫𝚫 = 𝟎𝟎,𝜞𝜞 = 𝟎𝟎. The Hopf bifurcation points are 𝜸𝜸𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯,𝟏𝟏 = 𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗,𝜸𝜸𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯,𝟐𝟐 =
𝟏𝟏.𝟎𝟎𝟎𝟎𝟎𝟎. 
 

 
Figure 17 – (a) Pressure anti-node magnitude as a function of 𝜸𝜸 with different 𝑪𝑪𝟐𝟐,𝟎𝟎𝟎𝟎 values. 
(b) Zoom in version of (a). (c) 𝑺𝑺𝑺𝑺 as a function of 𝜷𝜷 with different 𝑪𝑪𝟐𝟐,𝟎𝟎𝟎𝟎 values. The other 
parameters are 𝒃𝒃𝟐𝟐𝟐𝟐 = −𝟎𝟎.𝟎𝟎𝟎𝟎,𝑺𝑺𝟐𝟐,𝟏𝟏𝟏𝟏 = 𝟎𝟎,𝑪𝑪𝟐𝟐,𝟐𝟐𝟐𝟐 = 𝟎𝟎.𝟕𝟕𝟕𝟕,𝝎𝝎� = 𝟏𝟏,𝚫𝚫 = 𝟎𝟎,𝜞𝜞 = 𝟎𝟎. The grayscale 
vertical lines in (b) and (c) denote the first and second bifurcation points, respectively. 

   
Figure 17(a) describes the effect of linear damping/growth rate, 𝛾𝛾, on the steady state pressure 

anti-node magnitude with different 𝐶𝐶2,01 values, determined from computational solutions. Here, 
the simulation was run out to sufficient time to reach a steady state, and was repeated at different 



initial conditions to explore their effects. For reference, Figure 17(b) shows a detail of Figure 17(a) 
with the dashed vertical lines indicating the theoretical predictions for the bifurcation points, 
γ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,1. As expected, the first Hopf bifurcation point, 𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,1, decreases with increasing 𝐶𝐶2,01. In 
other words, the larger the azimuthal non-uniformity, the earlier the system becomes unstable.  The 
figure also shows that the higher the non-uniformity, the slower the instability amplitude grows 
with 𝛾𝛾. Figure 17(c) plots 𝑆𝑆𝑆𝑆 as a function of 𝛾𝛾 with different 𝐶𝐶2,01 values, showing the presence 
of purely standing and spinning waves, as well as mixed waves. When 𝐶𝐶2,01 = 0, the azimuthal 
mode has a constant 𝑆𝑆𝑆𝑆 = ±0.38, or a mixed wave. For 𝐶𝐶2,01 > 0, 𝑆𝑆𝑆𝑆 starts from zero at 𝛾𝛾 =
𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,1 and maintains this value until 𝛾𝛾 = 𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,2. After 𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,2, 𝑆𝑆𝑆𝑆 first rapidly approaches to a 
pure spinning wave value of ±1 and then decays to a mixed waves. Comparing between different 
𝐶𝐶2,01 cases, 𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,2 increases with increasing 𝐶𝐶2,01, i.e., the non-uniformity delays the transition 
from a standing to a mixed wave.  Note that there are two branches, positive and negative 𝑆𝑆𝑆𝑆. 
Which branches the system is stabilized at depends on the initial conditions. Table 3 summarizes 
which conditions of A, B, and φ give the standing or spinning wave. For simplicity, Table 3 
considers only purely standing and spinning waves. The other cases that are not described in Table 
3 correspond to a mixed wave. 
 

Table 3 – Azimuthal mode dependence on 𝑨𝑨,𝑩𝑩,𝝋𝝋,𝑭𝑭,𝑮𝑮, and 𝝋𝝋𝑭𝑭𝑭𝑭 

Decomposition method Standing wave CCW spinning 
wave 

CW spinning 
wave 

Two standing 
eigenmodes 

𝐴𝐴𝐴𝐴 = 0 or 𝜑𝜑 =
0, ±𝜋𝜋 

𝐴𝐴 = 𝐵𝐵 and 𝜑𝜑 = −𝜋𝜋
2
 𝐴𝐴 = 𝐵𝐵 and 𝜑𝜑 = 𝜋𝜋

2
 

Two spinning 
eigenmodes 𝐹𝐹 = 𝐺𝐺 𝐹𝐹 ≠ 0,𝐺𝐺 = 0 𝐺𝐺 ≠ 0,𝐹𝐹 = 0 

 
Next, consider the effects of frequency shift and background noise on modal interactions. 

Having considered the basic FPs and their stability, consider the important generalization of more 
general azimuthal non-uniformities (i.e., non zero 𝑆𝑆2,10)  and difference in frequencies between 
the two eigenmodes.  Although analytical solutions are not possible for these cases, some insights 
into their behavior (which are confirmed from the computations shown later) can be obtained from 
consideration of the equation structure for small perturbations about the FPs derived earlier.   
The equation for 𝜑𝜑 can be written in a “potential form” as: 

 dU
d

ϕ
ϕ

= −   (26) 

where the “potential” 𝑈𝑈 is given by: 
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= − ∆ + − + +  + ∆ −∆ 
  (27) 

and, consistent with the approximation of considering very small departures of the system from 
the previous deterministic analysis, it has been assumed that the amplitudes, 𝐴𝐴 and 𝐵𝐵, are constant 
at their FP values, 𝐴𝐴∗ and 𝐵𝐵∗ in this equation. The potential in Eq.(27) consists of three terms: the 
first term, proportional to Δ, causes 𝜑𝜑 to drift in one direction linearly with time. The second term, 
proportional to 𝑆𝑆2,10, provides one-well potential at either CW or CCW spinning wave, which is 
determined by the sign of the second term. The third term, proportional to 𝑘𝑘𝜑𝜑𝜑𝜑 and 𝑘𝑘𝜑𝜑𝜑𝜑, provides 
two-well potential at both CW/CWW spinning waves. Figure 18 shows each term as a function of 



𝜑𝜑 and their contribution to the potential shape for two different cases. The figure clearly shows 
that 𝑆𝑆2,10 term causes a preference to either CW or CCW spinning wave. When this term is 
sufficiently larger than the other terms, it will suppress one of the spinning waves, and foster the 
other spinning wave (Figure 18(a)). In contrast, when Δ term dominates over the other terms, 𝜑𝜑 
can continuously drift in one direction (Figure 18(b)) without a local minimum, which serves as a 
local attractor. This drift causes not only the out-of-phase oscillations between CW/CCW 
amplitudes, resulting in oscillation of 𝑆𝑆𝑆𝑆, but also the oscillation in 𝜑𝜑𝐹𝐹𝐹𝐹 , both of which were 
observed experimentally.  

 

 
Figure 18 – Potential and contributions of each term to the potential shape for two example 
cases (a) 𝐒𝐒𝟐𝟐,𝟏𝟏𝟏𝟏 term dominant system, leading to a local minimum in 𝑼𝑼, (b) 𝚫𝚫 term dominant 
system, which has no local minimum in 𝑼𝑼.   
  

 
Figure 19 – First row: simulations of 𝑨𝑨,𝑩𝑩, and 𝝋𝝋� . Second row: simulations of 𝑭𝑭,𝑮𝑮,𝑺𝑺𝑺𝑺 and 
𝝋𝝋�𝑭𝑭𝑭𝑭.  𝜸𝜸 values are (a) 1.067, (b) 1.073, and (c) 1.14. The other parameters are  𝒃𝒃𝟐𝟐𝟐𝟐 =
−𝟎𝟎.𝟎𝟎𝟎𝟎,𝑪𝑪𝟐𝟐,𝟎𝟎𝟎𝟎 = 𝟎𝟎.𝟎𝟎𝟎𝟎,𝑺𝑺𝟐𝟐,𝟏𝟏𝟏𝟏 = 𝟎𝟎,𝑪𝑪𝟐𝟐,𝟐𝟐𝟐𝟐 = 𝟎𝟎.𝟕𝟕𝟕𝟕,𝝎𝝎� = 𝟏𝟏,𝜟𝜟 = −𝟎𝟎.𝟎𝟎𝟎𝟎,𝜞𝜞 = 𝟎𝟎. 

 
We next present computations, starting first with the case where 𝑆𝑆2,10 = 0, but Δ ≪ 1. Notice 

that in linear regime, a non-zero Δ imposes two different frequencies on the system.  Depending 
upon the value of Δ, the ratio of the two frequencies may be irrational (i.e., quasi-periodic) or 
rational (leading to period-𝑁𝑁 oscillations, with the value of 𝑁𝑁 being a function of Δ).  We will use 
the word ‘quasi-periodic’ in the rest of this report, recognizing of course that in special cases the 
frequency ratio may be rational. While a non-zero Δ implies a system with two distinct frequencies 
in the linear case, it does not necessarily do so in the nonlinear case at steady state conditions.  
Nonlinearities do this in two ways- first, through amplitude dependent frequency shifts which can 



synchronize the two distinct frequencies and, second, by “quenching”, where two linearly unstable 
oscillators compete with each other and one oscillator’s amplitude is driven to zero. Both behaviors 
are illustrated in Figure 19. The first row of Figure 19(a) shows the simulations of 𝐴𝐴,𝐵𝐵, and 𝜑𝜑� with 
a finite frequency spacing, showing how the system relaxes to “steady state” from a prescribed 
initial condition. In constrast to zero frequency spacing case, note from the second row of Figure 
19(a) how 𝐹𝐹 and 𝐺𝐺 decay in an oscillatory manner towards the FP, a demonstration of quasi-
periodicity. This oscillation occurs at the frequency of Δ, which will be shown later. However, the 
quasi-periodicity disappears at steady state because one of the oscillators (𝐵𝐵 in this case) decays 
to zero, resulting in a single frequency oscillation. In other words, nonlinear competition between 
the two standing eigenmodes leads to quenching of oscillator B, even though both oscillators are 
linearly unstable.  This damped oscillatory behavior also manifests itself as spiral trajectories into 
the attractor when plotted in averaged (𝑆𝑆𝑆𝑆,𝜑𝜑�𝐹𝐹𝐹𝐹) phase portrait. Increase in 𝛾𝛾 causes a self-
sustained quasi-periodic oscillation as shown in Figure 19(b). Note from the first row that the two 
oscillators coexist, and their phase difference drifts in one direction, demonstrating a presence of 
two different frequencies in the system. The second row in Figure 19(b) shows that 𝑆𝑆𝑆𝑆 oscillates 
around zero, and the phase lag between 𝜑𝜑�𝐹𝐹𝐹𝐹  and 𝑆𝑆𝑆𝑆 is about 90°. This is in good agreement with 
the quasi-periodic standing wave observed in the experiments. Further increase in 𝛾𝛾 alters the 
system to a mixed wave as shown in Figure 19(c). The first row shows that the two oscillators 
coexist, but their phase difference is constant at steady state, indicating that their oscillation 
frequencies are synchronized. Thus, the quasi-periodicity vanishes as shown in the second row of 
Figure 19(c). 
 

 
Figure 20 – Simulation of 𝑺𝑺𝑺𝑺 and 𝝋𝝋�𝑭𝑭𝑭𝑭 with background noise (a) 𝚪𝚪 = 𝟏𝟏𝟏𝟏−𝟒𝟒 and (b) 𝚪𝚪 = 𝟏𝟏𝟏𝟏−𝟑𝟑. 
Top plot: raw signal, bottom plot: filtered signal, right plot: Fourier transform. The shaded 
region in the Fourier transform denotes the low pass filter width. The other parameters are 
𝜸𝜸 = 𝟏𝟏.𝟎𝟎𝟎𝟎𝟎𝟎,𝒃𝒃𝟐𝟐𝟐𝟐 = −𝟎𝟎.𝟎𝟎𝟎𝟎,𝑪𝑪𝟐𝟐,𝟎𝟎𝟎𝟎 = 𝟎𝟎.𝟎𝟎𝟎𝟎,𝑺𝑺𝟐𝟐,𝟏𝟏𝟏𝟏 = 𝟎𝟎,𝑪𝑪𝟐𝟐,𝟐𝟐𝟐𝟐 = 𝟎𝟎.𝟕𝟕𝟕𝟕,𝝎𝝎� = 𝟏𝟏,𝚫𝚫 = −𝟎𝟎.𝟎𝟎𝟎𝟎. 

 
Figure 19(a) shows that quasi-periodic behavior only appears during the initial transient. 

However, in the presence of background noise, the damped oscillator B will be continuously 
excited and the phase averaged system will be quasi-periodic.  To illustrate, Figure 20 plots 
representative time traces, and corresponding spectra, of 𝑆𝑆𝑆𝑆 and 𝜑𝜑�𝐹𝐹𝐹𝐹  for computed cases with 
background noise of two different noise intensities. The white noise terms in the governing 
equation have been simulated using the Euler-Maruyama scheme. Top is the raw signal, and the 
bottom is the low pass filtered signal whose bandwidth is shown as the shaded region in the spectra. 
Notice that introducing the background noise prevents the 𝑆𝑆𝑆𝑆 and  𝜑𝜑�𝐹𝐹𝐹𝐹  from decaying to zero, 
causing them to continuously oscillate around zero, i.e., as a quasi-periodic standing wave. In 



addition, noise intensity increases the oscillation amplitude. In particular, Figure 20(b) shows that 
sufficiently high noise intensity may cause 𝜑𝜑�𝐹𝐹𝐹𝐹  to jump from ±1 to ∓1, e.g., at 𝑡𝑡 𝑇𝑇⁄ = 500, which 
was also seen experimentally. Recalling that 𝜑𝜑�𝐹𝐹𝐹𝐹  is directly related to the anti-nodal line, this 
demonstrates the rotation of the anti-nodal line in CW/CCW direction.  

 

 
Figure 21 – (a) 1st – 3rd rows: 𝑺𝑺𝑺𝑺 as a function of 𝜸𝜸 with different 𝑪𝑪𝟐𝟐,𝟎𝟎𝟎𝟎 values without noise. 
The grayscale vertical lines denote the second bifurcation points, 𝜸𝜸𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯,𝟐𝟐, when 𝜟𝜟 = 𝟎𝟎. 4th 
row:  𝑺𝑺𝑺𝑺 as a function of 𝜸𝜸 with noise. The data points with anti-node magnitude less than 
0.1 are omitted because of their large fluctuations. The red vertical lines denote the quasi-
periodic standing wave regions. The other parameters are 𝒃𝒃𝟐𝟐𝟐𝟐 = −𝟎𝟎.𝟎𝟎𝟎𝟎,𝑺𝑺𝟐𝟐,𝟏𝟏𝟏𝟏 = 𝟎𝟎,𝑪𝑪𝟐𝟐,𝟐𝟐𝟐𝟐 =
𝟎𝟎.𝟕𝟕𝟕𝟕,𝝎𝝎� = 𝟏𝟏,𝜟𝜟 = −𝟎𝟎.𝟎𝟎𝟎𝟎. (b) Averaged phase portrait in SR and 𝝋𝝋�𝑭𝑭𝑭𝑭 space. Top: 𝜸𝜸 =
𝟏𝟏.𝟎𝟎𝟎𝟎𝟎𝟎, bottom: 𝜸𝜸 = 𝟏𝟏.𝟎𝟎𝟎𝟎𝟎𝟎. The other parameters are 𝒃𝒃𝟐𝟐𝟐𝟐 = −𝟎𝟎.𝟎𝟎𝟎𝟎,𝑪𝑪𝟐𝟐,𝟏𝟏𝟏𝟏 = 𝟎𝟎.𝟎𝟎𝟎𝟎,𝑺𝑺𝟐𝟐,𝟏𝟏𝟏𝟏 =
𝟎𝟎,𝑪𝑪𝟐𝟐,𝟐𝟐𝟐𝟐 = 𝟎𝟎.𝟕𝟕𝟕𝟕,𝝎𝝎� = 𝟏𝟏,𝜟𝜟 = −𝟎𝟎.𝟎𝟎𝟎𝟎,𝜞𝜞 = 𝟏𝟏𝟏𝟏−𝟒𝟒. 

 
To summarize, even very small frequency shifts have profound influences on system 

dynamics.  This is shown in the first three rows of Figure 21(a), which plots 𝑆𝑆𝑆𝑆 as a function of 𝛾𝛾 
at different 𝐶𝐶2,01 values for a noise free system, Γ = 0. 𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,2 for Δ = 0 are indicated for 
comparison. Note that nonzero ∆ shifts the bifurcation point from the  𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,2 values. The largest 
qualitative change is the quasi-periodic regimes.  The system with non-zero Δ and 𝐶𝐶2,01 exhibits 
quasi-periodic behavior for a certain range of 𝛾𝛾 without the noise contribution. However, the last 
row of Figure 21(a) shows that when exposed to the noise, quasi-periodic behavior occurs for the 



entire range of 𝛾𝛾 before the system reaches the mixed wave solutions. This is because the noise 
perturbs the system from its stable FP, which relaxes back to its attractor in a weakly damped, 
oscillatory manner, as shown in Figure 20. This makes it difficult to differentiate between noise 
driven and self-sustained quasi-periodic behavior from the time trace data (Figure 20) or the 
bifurcation plot (the last row of Figure 21(a)). They can be differentiated, however, from the 
averaged phase portrait, such as shown in Figure 21(b). The phase portrait was obtained by 
repeating the simulations at distributed initial conditions over the phase space. The top and the 
bottom of Figure 21(b) are the phase portraits with the same condition as Figure 20(a) and Figure 
19(b), respectively, with noise contribution. It can be seen that the center point is an attractor for 
the noise driven quasi-periodic case, whereas it is a repeller for the self-sustained quasi-periodic 
case.  Also note that the trajectory and the joint PDF form a ring structure around the center.  

It is also interesting to note that the trajectories are CW spiraling into/around the FP in Figure 
21(b). As mentioned before, this is due to the 90° phase lag between 𝑆𝑆𝑆𝑆 and 𝜑𝜑�𝐹𝐹𝐹𝐹  oscillations. If 
𝑆𝑆𝑆𝑆 and 𝜑𝜑�𝐹𝐹𝐹𝐹  exponentially decay to their FPs without oscillations such as a mixed wave solution 
in Figure 19(c), the trajectories in the phase portrait would directly converge to the FP without the 
spiraling. This behavior can be seen experimentally. 

Now, consider the bifurcation plot in (C2,01, γ) space for the noise free system, but with a finite 
frequency spacing.  Figure 22 shows regions where the system is linearly stable (zero amplitude), 
exhibit single frequency standing waves (i.e., nonlinear effects lead to quenching of one of the 
standing eigenmodes), exhibits self-sustained quasi-periodic standing waves, and exhibits single 
frequency mixed waves (i.e., not purely standing or spinning).  This plot shows a region where the 
quasi-periodic behavior can occur with a noise free system. The region becomes wider with 
increasing frequency split. Note that even if the system’s parameters are not inside the region, but 
close to it, the system exhibits damped oscillation as shown in Figure 19(a). However, when the 
system moves far away from the region, the oscillatory behavior disappears even with the noise 
contribution. 
 

 
Figure 22 – Bifurcation plot in (𝑪𝑪𝟐𝟐,𝟎𝟎𝟎𝟎,𝜸𝜸) space showing quasi-periodic behavior with two 
different frequency spacing values (a) 𝜟𝜟 = −𝟎𝟎.𝟎𝟎𝟎𝟎 and (b) 𝜟𝜟 = −𝟎𝟎.𝟎𝟎𝟎𝟎. Here, QP = quasi-
periodic standing wave region. The horizontal dash line denotes 𝜸𝜸 = 𝟏𝟏. The red crosses in 
(a) indicate (𝑪𝑪𝟐𝟐,𝟎𝟎𝟎𝟎,𝜸𝜸) in Error! Reference source not found.(a)-(c). The other parameters are 
𝒃𝒃𝟐𝟐𝟐𝟐 = −𝟎𝟎.𝟎𝟎𝟎𝟎,𝑺𝑺𝟐𝟐,𝟏𝟏𝟏𝟏 = 𝟎𝟎,𝑪𝑪𝟐𝟐,𝟐𝟐𝟐𝟐 = 𝟎𝟎.𝟕𝟕𝟕𝟕,𝝎𝝎� = 𝟏𝟏,𝜞𝜞 = 𝟎𝟎. 



 
 

Next, consider the effects of pressure coupled azimuthal non-uniformity and parametric noise 
on modal interactions. This formulation considers the case where the pressure coupled non-
uniformity, S2,10, frequency spacing, Δ, and noise, Γ, are all present. Figure 23(a) plots computated 
results for the anti-node pressure magnitude as a function of 𝛾𝛾 and 𝐶𝐶2,01. Although the system is 
linearly stable, the magnitudes are nonzero because of the noise contribution. Other than that, 
Figure 23(a) exhibits similarities to the experimental data in the past report. For example, the first 
bifurcation point is delayed as 𝐶𝐶2,01 gets close to zero, but its amplitude grows faster with γ.  

 

 
Figure 23 – (a) Pressure anti-node magnitude as a function of 𝜸𝜸 with different 𝑪𝑪𝟐𝟐,𝟎𝟎𝟎𝟎 values. 
(b) 𝑺𝑺𝑺𝑺 as a function of 𝜸𝜸 with different 𝑪𝑪𝟐𝟐,𝟎𝟎𝟎𝟎 values. The data points with anti-node 
magnitude less than 0.1 are omitted because of their large fluctuations. The other 
parameters are 𝒃𝒃𝟐𝟐𝟐𝟐 = −𝟎𝟎.𝟎𝟎𝟎𝟎,𝑺𝑺𝟐𝟐,𝟏𝟏𝟏𝟏 = 𝟎𝟎.𝟎𝟎𝟎𝟎,𝑪𝑪𝟐𝟐,𝟐𝟐𝟐𝟐 = 𝟎𝟎.𝟕𝟕𝟕𝟕,𝝎𝝎� = 𝟏𝟏,𝜟𝜟 = −𝟎𝟎.𝟎𝟎𝟎𝟎,𝜞𝜞 = 𝟏𝟏𝟏𝟏−𝟒𝟒. 

 
Figure 23(b) represents the instability amplitude and 𝑆𝑆𝑆𝑆 as a function of 𝛾𝛾 and 𝐶𝐶2,01 with a 

finite non-uniformity, 𝑆𝑆2,10. The figure clearly shows that 𝑆𝑆2,10 imposes a preferential spinning 
direction. For 𝐶𝐶2,01 = 0, a system has a preference in a positive 𝑆𝑆𝑆𝑆, or CCW direction. For 𝐶𝐶2,01 =
0.05, the system still prefers CCW to CW after the quasi-periodic standing wave, but CW direction 
also appears above 𝛾𝛾 = 1.16.  In contrast, the system with 𝐶𝐶2,01 = 0.1 has a preference in CW 
direction. The change in preferential direction is due to the sign change of the second term in Eq. 
(2) in the previous report. To summarize, introducing the non-uniformity, 𝑆𝑆2,10, causes a 
mixed/spinning wave to be biased towards either CW or CCW direction. This provides a possible 
explanation for why the experimental data show a bias towards positive SR values. 

Next, consider parametric noise effects which, as noted in prior studies, introduces 
qualitatively new phenomenon.  As noted earlier, certain features of the data can be understood 
from purely deterministic considerations, some require additive noise, and as, discussed here, some 
also require introducing parametric noise. In particular, within the modeling assumptions described 
earlier, parametric noise is required to capture the intermittency between the standing and mixed 
waves observed experimentally because these solutions are not simultaneously stable (whether 
incorporation of higher order nonlinearities, or incorporation of phase coupled nonlinearities, 
𝑏𝑏30, 𝑏𝑏12, and 𝑏𝑏03, provides solutions with intermittency is unknown). Specifically, given the fact 



that the behavior of 𝑆𝑆𝑆𝑆 abruptly changes with 𝛾𝛾, or equivalently 𝛽𝛽, for 𝐶𝐶2,01 > 0 as illustrated in 
Figure 23, parametric noise in 𝛽𝛽 will lead to the intermittency.  

 

 
Figure 24 – Dynamics of 𝑺𝑺𝑺𝑺 and 𝝋𝝋�𝑭𝑭𝑭𝑭 with different mean 𝜸𝜸 that follows OU process, (a) 𝜸𝜸 � =
𝟏𝟏.𝟎𝟎𝟎𝟎𝟎𝟎, (b) 𝜸𝜸� = 𝟏𝟏.𝟏𝟏𝟏𝟏𝟏𝟏, (c) 𝜸𝜸� = 𝟏𝟏.𝟐𝟐. Simulated phase portrait for (a) 𝜸𝜸 � = 𝟏𝟏.𝟎𝟎𝟎𝟎𝟎𝟎, (b) 𝜸𝜸� =
𝟏𝟏.𝟏𝟏𝟏𝟏𝟏𝟏, (c) 𝜸𝜸� = 𝟏𝟏.𝟐𝟐.  The other parameters are 𝒃𝒃𝟐𝟐𝟐𝟐 = −𝟎𝟎.𝟎𝟎𝟎𝟎,𝑪𝑪𝟐𝟐,𝟎𝟎𝟎𝟎 = 𝟎𝟎.𝟎𝟎𝟎𝟎,𝑺𝑺𝟐𝟐,𝟏𝟏𝟏𝟏 =
𝟎𝟎.𝟎𝟎𝟎𝟎,𝑪𝑪𝟐𝟐,𝟐𝟐𝟐𝟐 = 𝟎𝟎.𝟕𝟕𝟕𝟕,𝝎𝝎� = 𝟏𝟏,𝚫𝚫 = −𝟎𝟎.𝟎𝟎𝟎𝟎,𝜞𝜞 = 𝟏𝟏𝟎𝟎−𝟒𝟒. 

 
To illustrate, we consider parameteric fluctuations in the parameter 𝛽𝛽, i.e., ℎ2(𝑝𝑝, 𝑝̇𝑝) = 𝛽𝛽𝑝̇𝑝, and 

assume that the noise term, 𝜉𝜉2(𝑡𝑡), follows the Ornstein–Uhlenbeck (OU) process, which drifts 
toward its mean value over time, numerically simulated with the Euler-Maruyama scheme. This 
process is more appropriate than the Brownian motion, where the variance grows with time (i.e., 
in an unbounded fashion); in contrast, the variance for the OU process reaches a constant value. 
Figure 24 illustrates three representative cases with 𝐶𝐶2,01 = 0.05 where the asymptotic means of 
𝛾𝛾 are 𝛾̅𝛾 = 1.033, 1.117, and 1.2. Figure 24(a) – (c) describes the time trace of 𝛾𝛾 (top) as well as 
𝑆𝑆𝑆𝑆 and 𝜑𝜑�𝐹𝐹𝐹𝐹  (bottom), and Figure 24(d) – (f) represents the average phase portrait for each case. 
For 𝛾̅𝛾 = 1.033 (Figure 24(a)), both 𝑆𝑆𝑆𝑆 and 𝜑𝜑�𝐹𝐹𝐹𝐹  fluctuate around zero. Note that the modulation 
amplitude is not steady because of time varying 𝛾𝛾(𝑡𝑡). The dynamics of 𝑆𝑆𝑆𝑆 and 𝜑𝜑�𝐹𝐹𝐹𝐹  resembles the 
experimental data. The phase portrait in Figure 24(d) shows a stable attractor at the center (𝐴𝐴𝑆𝑆), 
and the trajectories are spiraling into the attractor. These results resemble the experimental 
observations. When 𝛾̅𝛾 = 1.117, 𝑆𝑆𝑆𝑆 and 𝜑𝜑�𝐹𝐹𝐹𝐹  start to show intermittency. In particular, transition 
of 𝑆𝑆𝑆𝑆 and 𝜑𝜑�𝐹𝐹𝐹𝐹  from one state to the other occurs simultaneously, which was evident from the 
experimental data. In the simulation, they are hopping between three different states, i.e., quasi-
periodic standing wave, and CCW/CW mixed waves. The phase portrait in Figure 24(e) reveals 



three attractors, 𝐴𝐴𝑆𝑆,𝐴𝐴𝐶𝐶𝐶𝐶/𝐶𝐶𝐶𝐶𝐶𝐶, as well as multiple saddle points. Notice that the joint PDF around 
𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶 is denser than that around 𝐴𝐴𝐶𝐶𝐶𝐶, manifesting the system’s preference in a CCW mixed wave.  
The portrait reasonably concides with the experimental phase portrait. Lastly, for 𝛾̅𝛾 = 1.2 (Figure 
24(c)), 𝑆𝑆𝑆𝑆 stays either CW or CCW dominant wave, and 𝜑𝜑�𝐹𝐹𝐹𝐹  remains around ±1. The transition 
between two states may occur when 𝛾𝛾 drops below a certain value. The corresponding phase 
portrait in Figure 24(f) manifests two stable attractors, 𝐴𝐴𝐶𝐶𝐶𝐶/𝐶𝐶𝐶𝐶𝐶𝐶, and multiple saddle points. Here, 
𝐴𝐴𝑆𝑆 is no longer a stable attractor, which explains the reason for no realization at the center in the 
experimental phase portrait. Similar to Figure 24(e), the joint PDF demonstrates the preference in 
CCW spinning wave. 

In this task, we presented experimental and modeling work to better understand wave 
structures and temporal dynamics of azimuthal modes in combustors.  The experimental data was 
obtained from an industrial scale combustor, specifically developed to control the azimuthal fuel 
distribution. For the uniform staging, the azimuthal mode exhibited a variety of behaviors, e.g., 
quasi-periodic standing, mixed waves as well as intermittency. When the fuel was staged in a non-
uniform manner, however, only the quasi-periodic standing wave was observed. In order to capture 
these dynamics, a weakly nonlinear model formulation was used, derived from the wave equation 
and a generalized source term.  The source term was modeled with a Taylor expansion up to fourth 
order with the additive and parametric noise terms. Each coefficient in the expansion was allowed 
to vary azimuthally. This model clearly showed that these parameters influence the azimuthal 
mode stability as follows. 
• Linear damping/growth coefficients, 𝛼𝛼 and 𝛽𝛽, determines the linear stability of two standing 

eigenmodes. 
• The parameter, 𝐶𝐶2𝑛𝑛,01, describing the azimuthal non-uniform coupling between the source and 

𝑝̇𝑝, influences both linear (stability boundary) and nonlinear process (dependence of limit cycle 
amplitude, such as upon 𝛽𝛽). 

• The parameter, 𝐶𝐶2𝑛𝑛,21, describing the azimuthal non-uniform coupling between the source and 
𝑝𝑝2𝑝̇𝑝, affects relative preference between standing and spinning/mixed waves. 

• The parameter, 𝑆𝑆2𝑛𝑛,10, describing the azimuthal non-uniform coupling between the source and 
𝑝𝑝, introduces a preference in CW/CCW spinning direction on the system. 

• The parameter, 𝐶𝐶2𝑛𝑛,10, describing the azimuthal non-uniform coupling between the source and 
𝑝𝑝, causes a frequency split between the two orthogonal standing eigenmodes, Δ, which 
introduces quasi-periodic oscillations. The system can decay or self-excited in oscillatory 
manner depending upon 𝛽𝛽. 

• Additive noise, Γ, with non-zero Δ leads to quasi-periodic oscillations, even in cases where the 
limit cycle FP is stable, as it excites oscillatory, but decaying, disturbances around the limit 
cycle FP at a specific frequency, Δ. 

• Parametric noise, 𝜉𝜉2, is responsible for the intermittency between standing and spinning/mixed 
waves. 
As shown, these results provide significant insight into the experimentally observed behaviors.  

However, a few key questions remain for future study.  First, for the simplified equations 
considered here, further analytical work on the case where Δ is not zero will be very useful, in 
particular to map out parametric dependencies of the stability of the limit cycle FPs.  As shown 
here, even in cases where the limit cycle FP is stable, in cases where the orbits decay in an 
oscillatory manner, the stable orbit leads to damped, quasi-periodic oscillations, such as shown in 
the experimental phase space plots. Second, it will be useful to analyze the effects of the neglected 



parameters, 𝑏𝑏30, 𝑏𝑏12,  and 𝑏𝑏03, which introduce phase coupling. This could be computational or 
analytical work.  An important conclusion from this work for the simplified equations were that 
both standing and spinning/mixed wave limit cycles were not simultaneously stable.  However, 
both FP’s are clearly observed in the experimental phase portraits, an observation that we could 
emulate by incorporation of parametric noise. However, it is possible that these additional 
nonlinearites could cause overlap in stability boundaries. 
 
Task 3 – Modeling of Flame Response 
 

The goal of this task was to enable further understanding of the flame response in multi-nozzle 
systems through phenomenological reduced order models with a focus on velocity-coupled and 
pressure-coupled flame response. The overall stability of the combustion system is determined by 
the coupling between unsteady pressure and unsteady heat release rate disturbances as seen from 
the volume integrated acoustic energy equation: 

 ( ) ( )1 1 1 1 1
0

1

V V S

e dV p q dV p u dS
t p

γ
γ

∂ −
= − ⋅

∂ ∫∫∫ ∫∫∫ ∫∫






 

  (28) 

Thus, the acoustic energy in the domain grows if the RHS is positive: 
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The integral on the LHS of this inequality is a gain term and corresponds to the Rayleigh Integral 
while that on the RHS corresponds to acoustic losses at the boundaries, specifically the inlet and 
outlet of the combustor volume. Thus, a necessary, but not sufficient condition for instability is 
that the Rayleigh Integral must be positive: 
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  (30) 

Here, RI denotes the Rayleigh Index. 
 The acoustic velocity fluctuations arising from the natural modes of the combustor are the 
source fluctuations which also excite vortical velocity fluctuations that are due to the natural 
hydrodynamics in the flow. The combination of these fluctuations results in flame area and/or 
mass burning rate fluctuations. We refer here to the response of the flame to the acoustic velocity 
itself as the “direct response” (as opposed to the “indirect” response of the vortical disturbances 
that are excited by the acoustics). 

 

Figure 25 – Schematic of the center-body swirl-stabilized premixed flame. 



The flame schematic in as shown in Figure 25. The flame base is assumed to be anchored at the 
center-body implying: 
 ( ), , 0r R tξ θ= =   (31) 
The flame is assumed to be located at the zero contour of an implicit function using which an 
explicit governing equation for the flame position in polar coordinates is obtained as: 

 

1
2 2 2

2
1 1r L z

uu s u
t r r r r

θξ ξ ξ ξ ξ
θ θ

 ∂ ∂ ∂ ∂ ∂   + + + + + =    ∂ ∂ ∂ ∂ ∂     
  (32) 

The velocity field can be decomposed in terms of the unperturbed (subscript ‘0’) and a spatio-
temporally varying disturbance (subscript ‘1’ for linear first-order), as: 
 ( ) ( ) ( ),0 ,1, , , , ,i i iu r t u r u r tθ θ ε θ= +  (33) 
Where the sub-script ‘i’ denotes the r, θ  or z  coordinate. Similar to the velocity decomposition 
in Eq.(33), the flame position is expanded as: 
 2

0 1( , , ) ( , ) ( , , ) ( )r t r r t Oξ θ ξ θ εξ θ ε= + +   (34) 
The evolution equations for the unperturbed flame ( 0ξ ) and the local flame dynamics ( 1ξ ) may 
then be written as:  
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Here,  
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and the net tangential velocity vector along the flame surface, due to both the azimuthal and axial 
velocity components, is given by: 
 0, 0T L nu u s e= −

     (38) 
Here, ne  is the local unit normal vector, pointing from the nominal unperturbed flame surface into 
the products. 
 The swirl-stabilized premixed flame is assumed to be enclosed in a cylindrical combustor of 
length CL  and radius CR . The natural acoustic disturbances (at frequencies 0ω ) are: 

 
( ){ }

( )

1
1 02

0 0

1 ,

( , , , ) ˆRe ( , , ) exp

ˆ ( , , ) ( ) cos cos f
m l m f m

C

p r z t p r z i t
c

p r z J r m n z

θ θ ω
ρ

β
θ α β θ θ π

β

= −

 
= −  

 

  (39) 

Here,  
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Note that the axial ends of the combustor at 0z =  and z L=  are assumed to be rigid. The overhat 
notation is used to denote complex frequency domain equivalents of the time-domain quantities. 



The axial mode number is denoted by n, the azimuthal mode number by m and the radial mode 
number by l and ,l mα  is determined as roots of: 
 ,( ) 0m l mJ α′ =   (41) 
The first set of roots for different radial and azimuthal mode numbers are shown in Table 4. 
The non-dimensional Eigen-frequency is given by: 
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Table 4 – Roots of Eq.(41) 

, 2l mα π  0m =   1m =  2m =  3m =  4m =  5m =  
1l =  0 0.2930 0.4861 0.6686 0.8463 1.0211 
2l =  0.6098 0.8485 1.0673 1.2757 1.4773 1.6743 
3l =  1.1166 1.3586 1.5867 1.8058 2.0184 2.2261 
4l =  1.6192 1.8631 2.0961 2.3214 2.5408 2.7554 
5l =  2.1205 2.3656 2.6018 2.8312 3.0551 3.2747 

 
Using the linearized Euler equation, the acoustic velocities are: 
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Here, the velocities have been normalized by 0U  and the mean flow Mach number is given by: 
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While the Mach number is not the natural normalization parameter for the acoustic velocity, it 
turns out to be a convenient for the Rayleigh index calculations.  For convenience of notation, the 
velocity fields are decomposed into azimuthal components as: 
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Thus, for a chosen azimuthal component (i.e., ,
ˆ ( , )i m r zΓ ) in the acoustic velocity, we have: 
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These acoustic velocities shall be used as source terms in the flame dynamics model of Eq.(36). 
Next, consider the unsteady heat release disturbances from the flame. The local unsteady heat 
release per unit area of a premixed flame is given by: 
 u L Rq s hρ=   (47) 
Here, uρ  is the unburnt reactant density, Ls  is the flame propagation speed and Rh  is the heat of 
reaction. Note that these quantities are constant under the assumptions of the analysis and thus any 
oscillations are introduced purely by changes in the local flame area element given by: 
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Linearizing this equation, the unsteady heat release rate oscillations are given by: 
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The Rayleigh Index is evaluated at the Eigen-frequencies: 
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The integrated acoustic energy at the chosen Eigen-frequency is given by: 
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A normalized Rayleigh index is then defined as: 
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Physically, ℜ  corresponds to the exponential growth or decay rate of the disturbances. This 
normalized Rayleigh Index can be calculated for different values of the control parameters and can 
then be used to determine if it is positive or negative for a given mode for a chosen flame/flow 
configuration.  

The flame response in the velocity-coupled mechanism includes the direct response to the 
natural acoustic modes and the response to the induced axial velocity at each nozzle. We shall 
systematically consider the response of the flame to different cases of the velocity model and flame 
attributes. 
 
Direct Flame Response: Center Nozzle Axisymmetric Mean Flame 

As the first example, we shall consider the response of the flame centered in the combustor, to 
various transverse modes and the effect of different parameters on the stability of the flame. The 
following mean-flow and flame configuration is assumed: 
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Here: 
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 ( )1 cotf Rβ β ψ= −   (55) 
The frequency domain representation for the flame dynamics is given by: 
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The flame response can be decomposed into its azimuthal components as: 
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Solving, we have: 
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Here, 
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(a)      (b) 

Figure 26 – (a) Normalized Rayleigh Index map (ℜ ) as a function of flame aspect ratio ( fβ ) 
for different purely radial modes ( 0,2 5m l= ≤ ≤ ). (b) Normalized total heat release as a 
function of the flame aspect ratio. 
 
First consider the purely radial modes corresponding to 0m = . Note that for this case, the 
normalized Rayleigh Index is not a function of the swirl parameter StΩ . Thus, ℜ  varies only with 
the flame aspect ratio fβ  as shown in Figure 26(a). Note that for all the radial modes, ℜ  is always 



positive. The growth rate increases as the flame aspect ratio increases and is also seen to generally 
increase with the radial mode number. This behavior is also due to the fact that as the flame aspect 
ratio increases, the normalized total heat release increases as shown in Figure 26(b). The oscillatory 
pattern seen stems from the interference of wrinkles on the flame surface with spatially varying 
wrinkling magnitude that oscillates due to both the trigonometric terms as well as the Bessel 
function terms in the velocity oscillations. 
 

 

 
Figure 27 – Normalized Rayleigh Index map (ℜ ) as a function of flame aspect ratio ( fβ ) 
and Strouhal number based on swirling time scale ( StΩ ). The black curves correspond to 
boundaries ( 0ℜ = ) between the 0ℜ >  and the 0ℜ <  region. The radial and azimuthal mode 
numbers are indicated in the title of each plot. 
 

Next, we consider the stability for the mixed modes ( 0m ≠ ). Here, ℜ  is a function of both the 
flame aspect ratio ( fβ ) as well as the swirl parameter ( StΩ ) and so the stability maps are depicted 
as contour plots as shown in Figure 27. In these plots, the black curves correspond to iso-contours 
of 0ℜ = . Note that these iso-contours exist only for the ( , ) (1,1)l m =  case for the chosen set of 
parameters. In other words, 0ℜ >  or 0ℜ <  for this mode. In addition, while this mode is the only 
one of those shown where 0ℜ < , it also has the highest values of ℜ  when it is positive, 



corresponding to the darker shades of red in the colormap. All the other modes have 0ℜ >  for all 
parameter conditions. As the radial and/or azimuthal mode number increases, ℜ  decreases but 
remains positive across the entire range of values indicating that the higher azimuthal and radial 
mode numbers are always unstable. Also of note is that ℜ  decreases considerably as we increase 
the azimuthal mode number when compared to increase in the radial mode number. This indicates 
a general tendency for flames to be relatively less unstable in higher azimuthal modes than in 
higher radial modes. Thus, using these as a guide along with a linear acoustic analysis of the 
combustor, an initial design point for the flame and flow configuration can be obtained in order to 
have relatively more stable thermoacoustic conditions. 
 
Direct Flame Response: Outer Nozzle Axisymmetric Mean Flame 

Note that center and outer nozzles do not see the same spatial variations in the mode-shape and 
thus will respond to the same mode differently. For a cylindrical combustor of radius CR , the polar 
coordinate system used for the cylindrical combustor’s axis and the relative position of the offset 
flame are shown in Figure 28.  
 

 
Figure 28 – Coordinate system for offset flame relative to the coordinate system for the 
cylindrical combustor (subscript ‘c’). The flame centered coordinate system is as shown in 
Figure 25. 
 
The pressure and acoustic velocity disturbances for the purely transverse modes are given by: 
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Here,  
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The overhat notation is used to denote complex frequency domain equivalents of the time-domain 
quantities. The coordinates have been normalized by the flame length, fL  and the velocities have 
been normalized by 0U . For this case, the non-dimensional Eigen-frequency is given by: 
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The above radial and azimuthal velocities in the combustor reference frame are transformed to the 
reference frame of the flame’s coordinate system, using the transformation: 
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The velocity field in the cylinder’s coordinate system are transformed to the flame’s coordinate 
system using: 
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Note that for the axisymmetric flame, the above azimuthal velocity component does not affect 
the flame response. However, note that the azimuthal velocity component in the acoustic field does 
affect the flame response through the radial velocity component. From Eq.(63), we can see that 
when the nozzle is not offset (i.e., 0CBR = ), we have: cr r≡  and cθ θ≡  and thus in Eq.(64) we 
have: ,1 ,1ˆ ˆ

cr ru u≡  and the acoustic azimuthal velocity component does not affect the flame response. 

However, for any flame offset, this results in cθ θ≠  and thus, the acoustic azimuthal velocity 
component affects the flame response through the local radial velocity component of the 
disturbances at the flame. This has important implications on how the nozzle offset affects the 
local flame response and hence the stability of the mode. We shall use the same model flow-field 
and flame shape as earlier and consider only the first radial mode ( ( , ) (2,0)al m = ) and the first 
radial-azimuthal mode ( ( , ) (1,1)al m = ). The effect of nozzle positioning is determined using the 
radial offset parameter, CBR , and the azimuthal offset parameter, CBθ . 
 



 
Figure 29 – (a) Effect of nozzle offset on the stability of the first radial mode. Nozzle offset is 
purely determined by the radial offset of the nozzle. (b) Effect of nozzle offset on the stability 
of the first radial-azimuthal mode. Red corresponds to 0.6CBR =  and blue corresponds to 

0.3CBR = . 
 

First, consider the effect of nozzle position on the stability of the first radial mode as shown in 
Figure 29(a). Since the radial mode is axisymmetric, the azimuthal offset parameter has no effect, 
and the plot shows the variation of ℜ  with CBR  only. Note that for a nozzle that is centered in the 
combustor, 0ℜ >  and as CBR  increases, the flame is relatively more stable. Beyond a certain 
value of CBR , we have 0ℜ <  indicating that this location of the flame in the radial mode shape 
becomes stable. This can be attributed to the fact that for no offset, the radial velocity of the mode 
is fully experienced by the flame resulting in maximum heat release oscillations. However, as the 
flame is offset, only the normal component of this radial velocity locally at the nozzle location 
results in heat release oscillations which are lower than that for a centered nozzle.  

Next, consider the effect of nozzle position on the stability of the first radial-azimuthal mode 
as shown in Figure 29(b). Since this is an asymmetric mode, both the radial and azimuthal offset 
have effects on the stability of the mode. The figure shows the effect of azimuthal positioning of 
the nozzle for two different radial offsets, 0.6CBR =  corresponding to the red dots and 0.3CBR =  
corresponding to the blue dots. The azimuthal position variation is shown only in the range 
0 2CBθ π≤ ≤  since for the (1,1)  mode, the results are symmetric about 0CBθ =  and 2CBθ π=  
planes. As seen in the figure, the outer flames ( 0.6CBR = ) are relatively more stable than the inner 
flames ( 0.3CBR = ). Additionally, note that the inner flames are relatively more stable towards 

2CBθ π=  but still have 0ℜ >  over the entire range. In contrast, the outer flames which are 
relatively more stable, have 0ℜ >  for lower azimuthal offsets and then result in 0ℜ <  towards 

2CBθ π= . This indicates that outer flames near the 2,3 2CBθ π π=  azimuths are the most stable, 
for the chosen flame/flow parameters. These results have important implications on the design 
choice for nozzle positioning in can combustors with multi-nozzle configurations depending on 
the nature of the acoustic mode of interest. 
 



Direct Flame Response: Center Nozzle Non-Axisymmetric Mean Flame 
The models thus far, considered only mean flames that were axisymmetric. For multi-nozzle 

configurations that are typical of can combustors, the strong flame-flame interactions result in 
center flames whose shapes are not axisymmetric. An illustrative example of this point is shown 
in Figure 30, showing an end-on visualization of a 5-flame configuration housed in a circular 
combustor. Note the nearly “squircle” (square with rounded edges) cross-section of the central 
flame. In our prior research, we have shown that the sensitivity of the flame to helical modes is 
fundamentally different in axisymmetric or non-axisymmetric environments. Thus, this serves as 
the motivation for this model extension. 

Accounting for mean flame non-axisymmetry, the evolution equations for the unperturbed 
flame ( 0ξ ) and the local flame dynamics ( 1ξ ) may then be written as:  
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Figure 30 – Heat release intensities from the top view of a 5-flame combustor with flame-
flame interactions causing a highly non-axisymmetric center flame. 

 
For the purposes of this discussion, we shall focus on non-axisymmetries in the axial mean flow. 
The following mean-flow is assumed: 
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Here, 
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Here, St  is the Strouhal number based on the acoustic and axial-convective time-scales; σ  is the 
ratio of the acoustic to swirling-convective time-scale. The mean axial velocity has been 



represented as a Fourier series of its modes ( um ) in order to denote its non-axisymmetry. Similar 
to the mean flow, the mean flame shape is expressed as: 
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Here, the mean flame asymmetries are denoted by its Fourier modes, mξ .  
To illustrate, consider an axisymmetric mean flow and flame that corresponded to: 
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Depending on the nature of the asymmetry in the mean flame shape, we consider non-zero values 
for the latter coefficients (super-scripts c and s) The frequency domain representation for the flame 
dynamics is given by: 
 ( ) ( ){ }1 1̂, , Re , iSttr t r eξ θ ξ θ −=   (71) 

This flame response can be decomposed into its azimuthal components as: 
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Representing the governing equation in the frequency domain, we have: 
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Prior research has shown that the azimuthal mode in the source terms (RHS) created the same 
azimuthal mode in the flame response ( 1̂ξ ) since the operators and coefficients were axisymmetric. 
Thus, for a source acoustic azimuthal mode at am± , the flame response at mode m depends on 
both the mean flame shape modes mξ±  and am m  and the flame response at mode m mξ

. This 
results in the condition: am m mξ= ± ± . This implies that different modes in the flame response are 
coupled to each other through the sum of the azimuthal Fourier decomposition of the mean flame 
and the azimuthal modes in the flow disturbances. This has important implications on how the 
unsteady heat release rate oscillations are spatially distributed and thus, how they couple with the 
azimuthally varying pressure disturbances to affect the Rayleigh Index. 

In order to better understand these effects, consider the “squircle” flame configuration, 
mathematically expressed as: 
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Here, note that the circular axisymmetric cross-section is obtained for 0µ →  while a sharp-
cornered square cross-section is obtained for µ →∞  and a squircle cross-section is obtained for 
intermediate values of µ . The normalization constant is given by: 
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(a) 0µ =   (b) 4µ =  (c) 10µ =  

Figure 31 – Variations in flame shape with non-axisymmetry parameter, showing the 
isometric view of the flame from the side for: (a) axisymmetric, 0µ = , (b) non-axisymmetric 
Squircle, 4µ = , (c) non-axisymmetric Squircle, 10µ = . The surface lighting is used to 
indicate the non-axisymmetry and the periodicity of 4. 
 
A few representative non-axisymmetric mean flame shapes are shown in Figure 31. In order to 
determine the effect of the non-axisymmetry on stability, consider the ratio of the normalized 
Rayleigh Index from the non-axisymmetric case, with that from the axisymmetric case non-
swirling case ( 0,  0µ σ= = ), denoted by: 
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Thus, for 1µκ > , implies that the mode is relatively more unstable, and vice-versa. Specifically, 
for 0 0µ=ℜ >  , 0µκ < , implies that the mode has changed from unstable to stable.  
 

 
Figure 32 – Effect of mean flame asymmetry on stability of the purely-radial (2,0) mode, for 
different swirling strengths. 

 
First, consider the purely radial (2,0) mode. Figure 32 shows the variation of µκ  as we increase 
the degree of mean flame asymmetry ( µ ), for different values of swirling strength (σ ). Note that, 
for no mean flame asymmetry ( 0µ = ), the curves collapse to 1µκ =  as for the purely radial mode, 
the swirling strength has no effect on stability. However, as we increase the degree of asymmetry 
in the mean flame, depending on the swirling strength, the mode stability changes. Note that, even 
in the absence of swirl (black curve), the mode stability shifts. This is due to the fact that the 
azimuthal flow fluctuations now directly contribute to heat release rate oscillations. It can be seen 



that as the mean flame asymmetry increases, the mode becomes progressively more unstable, 
having a nearly 20% increase in the normalized RI value. As we increase the swirling strength, the 
mode stability shows an oscillatory trend. For the swirling strengths considered, up to 1.5σ = , the 
mode gets relatively more unstable with an increase of up to 25%. However, for the cases of 

2.25σ =  (blue curve) and 3.0σ =  (pink curve), the mode becomes relatively more stable as the 
mean flame asymmetry increases. Specifically, the 2.25σ =  case shows a nearly 100% change in 
its normalized RI value. These can be attributed to net effect of complex wrinkle interference on 
the flame due to the swirl transport of wrinkles that changes as the mean flame surface is 
progressively made more asymmetric. An important observation in this example is that for the case 
of 2.25σ =  (blue curve), for the maximum asymmetry parameter shown ( 10µ = ), the mode has 
changed from unstable to stable ( 0µκ < ). Prior work showed that these modes were intrinsically 
unstable for axisymmetric flames.  

 

 
Figure 33 – Effect of mean flame asymmetry on stability of the 1-T mode (1,1), for different 
swirling strengths. 

 
Next, we consider the first transverse mode (1-T) which is a mixed radial-azimuthal mode (1,1). 

Figure 33 shows the variation of µκ  as we increase the degree of mean flame asymmetry ( µ ), for 
different values of swirling strength (σ ). Note that, for no mean flame asymmetry ( 0µ = ), the 
curves have different values. This is due to the non-axisymmetric nature of the 1-T mode. For both 
the non-swirling case (black curve) and the case of 0.5σ =  (red curve), the mode becomes 
relatively more stable as the flame asymmetry is increased. However, for the 1.0σ =  case (green 
curve), the mode becomes progressively more unstable. Note that the sensitivity of the mode 
stability for the non-swirling case, to the flame asymmetry is very less when compared to the 
swirling cases. For the case of 1.0σ =  (green curve), the normalized Rayleigh index is shown to 
increase by 200% while it decreases by nearly 125% for the 0.5σ =  case (red curve). It is also 
important to note that for the 0.5σ =  case (red curve), the mode changes from unstable to stable 
beyond a certain degree of asymmetry.  



Thus, in conclusion, the results from both modes indicate that mean flame asymmetries are very 
crucial to the analysis of transverse modes as they can considerably shift the stability of mode for 
certain parameter values, and the consideration of purely axisymmetric mean flames can lead to 
potential erroneous deductions on mode stability. 
 
Direct Flame Response: Uncertainty Analysis 

So far, we presented such results for different flame and flow parameters which has now 
culminated into the studying of the sensitivity of the Rayleigh Index to the different control 
parameters. This is motivated by the fact that uncertainty in control parameter values in the real 
system means that the actual stability and the design stability may be different. Thus, it is important 
to identify regions where sensitivity is high and potentially unfavorable to the stability in the 
system. For a given mode (i.e., fixed ,,

aa l mm α ) and a given control parameter χ , we define the 
sensitivity as: 
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Here, χδℜ  indicates a non-dimensional change to the amplification factor with respect to a non-
dimensional uncertainty in the control parameter. We perform a sweep in the ( , , )CB CBRχ ψ θ∈  
space (subset of an adjoint sensitivity analysis) to determine the regions of largest unfavorable 
sensitivities for the amplification rates. 
 

 
Figure 34 – Sensitivity of ℜ  for the first radial mode ( , ) (2,0)al m =  to the (a) flame angle – 

ψδℜ , and (b) radial offset of nozzle – 
CBRδℜ . The solid red curve denotes the contour 0ℜ =  

and the dashed black curves denote the respective contours for 0δℜ = . 
 



Consider the sensitivity of the first radial mode (i.e. ( , ) (2,0)al m = ) to changes in the flame 
angle (ψ ) and nozzle radial offset ( CBR ), as shown in Figure 34. Note that since this is a symmetric 
mode, there are no azimuthal offset effects. Between the 2 solid red curves corresponds to regions 
of negative amplification, i.e., 0ℜ < . In Figure 34(a), the sensitivity color-map for ψδℜ  is shown 
for different radial offsets ( CBR ) and flame angles (ψ ). Note that for lower (higher) and higher 
(lower) flame angles (flame lengths), for larger radial offsets, changes in the flame angle are further 
stabilizing, i.e., in these regions, 0ℜ <  and 0ψδℜ < . Furthermore, note that at certain points (ex. 

( , ) (0.55,25 )o
CBR ψ =  and ( , ) (0.55,50 )o

CBR ψ = ), the sensitivity is an order of magnitude higher, 
i.e., small changes to the flame angle cause a nearly 60 fold decrease in ℜ . This has important 
implications for outer nozzles with these flame angles as small changes tend to favorably affect 
the system. In contrast, there is a band in the region 32 40o oψ< < , 0.4 0.7CBR< <  where small 
changes to the flame angle have a strong de-stabilizing effect. Here, 0ℜ <  but 0ψδℜ >  and in 
cases, the sensitivity is 50 fold, i.e. changes to ℜ  can be up to 50 times as much as changes to the 
flame angle. This has important implications for outer nozzles in this flame angle band as small 
changes can unfavorably affect the system. Finally, if we focus on the region of neutral stability 
(the red curves denoting 0ℜ = ), we can see that for small and large flame angles, small changes 
are favorable to the system (results in 0ℜ < ) whereas for intermediate flame angles, small changes 
are unfavorable to the system (results in 0ℜ > ). Thus, depending on the radial offset of the nozzle 
and the flame angle of the flame for that nozzle, small changes to the flame angle can have 
substantial changes to the amplification rates for the first radial mode. 

Next, consider Figure 34(b) showing the sensitivity color-map for 
CBRδℜ  for different radial 

offsets ( CBR ) and flame angles (ψ ). In contrast to the previous sensitivity study, note that for all 
flame angles considered and up to a radial offset shown by the dashed black curve, small changes 
to nozzle location are always favorable to the system (i.e., 0

CBRδℜ <  regardless of the sign of the 

amplification rate. Specifically, in a region around 30oψ =  and 0.3CBR = , the system has nearly 
neutral stability (red curve, 0ℜ = ) and small changes to the radial offset of the nozzle significantly 
stabilizes the system (50 fold decrease). This has important implications on considering nozzle 
location for response to the radial mode. Overall, for nozzle locations closer to the combustor axis, 
the sensitivity to change is favorable whereas for nozzles further away, the sensitivities are 
unfavorable. This implies that nozzles further from the combustor wall are less prone to de-
stabilizing the system due to small errors in machining their location. Similar analysis has been 
performed for the 1-T mode ( , ) (1,1)al m =   drawing similar qualitative conclusions. In the next 
quarter, we shall expand the study to consider the significance and relevance of the direct flame 
response when compared to the induced axial response of the flame due to the transverse to 
longitudinal coupling at the combustor-nozzle juncture. 
 
Induced Velocity Effects: Significance of Mechanism 

The analysis thus far has considered only the effect of the acoustic velocity from the natural 
modes. The acoustic pressure oscillations at the injector lead to oscillatory axial flow into the 
combustor and thus an induced axial velocity disturbance at the flame. In this section, we expand 
the study to consider the significance and relevance of the direct flame response when compared 



to the induced axial response of the flame due to the transverse to longitudinal coupling at the 
combustor-nozzle juncture. This study is motivated by prior studies that showed the injector 
coupling mechanism resulting in axial flow fluctuations as a predominant driver for the flame 
response. However, in the high-frequency case, the induced axial fluctuations, and the source 
transverse fluctuations each affect the flame through the Rayleigh criterion and thus must be 
explored explicitly in detail. 

In this study, the nozzle location is an important geometric parameter when comparing the 
response between transverse and axial fluctuations. More importantly, the nozzle location results 
in differing induced axial fluctuations for the same transverse mode. Depending on the nature of 
the acoustic mode in the combustor and its pressure field, axial velocity oscillations are induced at 
the nozzle. The location of the nozzle within a given mode also has impacts on both the amplitude 
and nature of azimuthal distribution of the induced velocity. For the purpose of our modeling, we 
do not consider the geometric and acoustic details of the nozzle injector or any upstream section. 
Rather, we assume that the induced axial velocity fluctuations can be related to the pressure field 
at the nozzle-combustor juncture through an impedance ( 0 0

ˆ
TLc Zρ ). Prior work by our group has 

shown that the induced axial velocity is related to the spatially averaged pressure field at the nozzle 
but incorporates the same azimuthal distribution as the pressure distribution. Thus, we consider 
the radially averaged pressure field at the nozzle and the induced axial velocity to be related at 
each azimuthal location through a specified impedance ˆ

TLZ ; i.e., the induced axial fluctuations at 
the nozzle outlet are given by: 

 
( ) ( ) ( ),
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( , ) cos ( , )
ˆ

ˆ
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u

c Z rdr

α θ θ θ
θ

=
∫

∫
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An additional model is also needed to relate the axial velocity at the nozzle outlet to that at the 
flame.  Here we use a traveling wave model (to denote the convection of excited vortical flow 
fluctuations), so that the axial velocity at the flame is given by:  
 ( ) ( ) ,

,1 ,ˆ ˆ, l mai z
z z Nu z u e αθ θ=   (79) 

This induced axial velocity model is used to determine the role of axial fluctuations on the overall 
growth/decay rate. This growth/decay rate is represented by the Rayleigh index. In this analysis 
we assume a constant flame speed and thus the spatio-temporal unsteady heat release is 
proportional to the local flame surface area oscillations. For a given mode, the growth rate due to 
direct excitation (denoted as Tℜ ) will be compared to that due to the induced axial excitation 
(denoted as Lℜ ) to determine the significance of the direct excitation mechanism. We shall now 
consider the effects of variation control parameters on the relative significance of the 2 velocity 
mechanisms. 
 



 
Figure 35 – Effect of flame length (shown as flame angle) on the growth rate for response to 
first radial (2,0) mode (black) and corresponding induced axial fluctuation (red). Net growth 
rate indicated by dashed blue curve. 
 

In this example, we consider the effect of flame length (through the flame angle (ψ )) on the 
growth rates. First consider the response to the axisymmetric transverse radial mode 
( , ) (2,0)al m =  and its comparison to that due to the induced axial fluctuations shown in Figure 
35. For the purpose of this comparison, we set: 3 0.15

fR Rβ β= = , 0 0.1M =  for a nozzle centered 

in the combustor (i.e., 0.0CBR = ). The nozzle impedance is set as ˆ 1TLZ = , which corresponds to 
the upstream nozzle traveling wave case, i.e., no reflected downstream acoustic waves exist. As 
seen in the figure, the growth rate for the transverse mode (black) is strictly positive for all cases. 
as shown in prior work. However, note the much larger magnitudes of the oscillatory positive and 
negative growth rate for the induced axial fluctuations (red). This oscillatory behavior has been 
alluded to before in the Introduction in the context of stability bands, as the pressure and heat 
release move in and out of phase. An important takeaway from this figure is that the induced axial 
contribution is much larger, i.e., while the natural transverse mode may have a positive growth 
rate, the overall growth rate can be negative in certain bands of the flame angle space. This has 
strong implications on the importance of the direct excitation mechanism in assessing mode 
behavior. As the growth rate of the induced axial fluctuations scale as ˆ1 TLZ , it is possible that 

under nozzle anti-resonance conditions (i.e., where the induced axial velocity is near zero), that 
the direct term could dominate; however, this result shows that overall, the direct term has a small 
magnitude relative to typical values for axial excitation. 
 



 
Figure 36 – Effect of flame length (shown as flame angle) on the growth rate for response to 
1-T (1,1) mode (black) and corresponding induced axial fluctuation (red). Net growth rate 
indicated by dashed blue curve. 
 
Next, consider the response to the first transverse mixed mode ( , ) (1,1)al m =  and its comparison 
to that due to the induced axial fluctuations shown in Figure 36. In contrast to the radial mode, the 
mixed mode has bands of positive and negative growth rate (see black curve) as shown in prior 
studies by the authors. An important result from this plot is that unlike the radial mode case, the 
mixed mode shows a stronger dependence of the dynamics on the direct excitation mechanism as 
evidenced by the total growth rate (dashed blue) and the growth rate of the transverse mode (black) 
closely following each other. The induced mechanism is nearly zero in this case, because the 
acoustic pressure has a node at the nozzle centerline.  Using the axial velocity model, this implies 
that ,1zu  is positive on one half of the flame and negative on the other; only the fact that the flame 
is non-compact causes 0Lℜ ≠  in this case. A similar conclusion would hold for all transverse 
modes where 0am ≠ .  This implies that the direct excitation mechanism can be the dominant 
contributor to the growth rate, albeit with very weak amplification values. Thus, depending on the 
mode in question, the dominant mechanism changes. 

In this next example, we consider the effect of the nozzle position ( ,  CB CBR θ ) on the growth 
rate comparisons. First, consider the symmetric radial mode, (2,0) where only CBR  has an effect 
(no effect of CBθ ). The comparison between the growth rates is as shown in Figure 37. For this 
case, we choose 40ψ = °  and we start with 2CBR ≥  so that the flame surface does not pass through 
the origin – This is practically seen in combustors where the offset nozzle locations are chosen 
such that there is enough room for the center-flame. Note that as the nozzle is offset radially, the 
growth rate from the induced axial fluctuations varies greatly. Moreover, the growth rate changes 
sign at a certain radial offset location while the growth rate from the induced axial excitation 
remains negative. However, the overall growth rate hovers about the induced axial response (red) 
but is clearly affected in a non-negligible way by the transverse mode (see dashed blue curve) 
indicating that for certain flame angles, for nozzles that are radially offset from the combustor axis, 
the direct excitation mechanism is important for the first radial mode. Although not shown here, 
similar qualitative behavior is seen for the case of radial offset effects on the growth rate 
comparison for the 1-T mode. 



 

 
Figure 37 – Effect of radial offset of nozzle on the growth rate for response to the radial (2,0) 
mode (black) and corresponding induced axial fluctuations (red). Net growth rate indicated 
by dashed blue curve. 
 
Next, we focus on azimuthal offset effects for the 1-T mode. For this comparison we consider the 
radial offset fixed at 0.3CBR =  as the nozzle is azimuthally moved around in the combustor. First 
consider the flame angle case of 4ψ π=  shown in Figure 38(a). Note that as the nozzle is moved 
azimuthally around the combustor, the growth rate due to the induced axial fluctuations is 
insensitive to this movement. Also note that around 90 ,  270CBθ = ° ° , the growth rate is nearly 0 
since this corresponds to the pressure nodes for the 1-T node. In contract, the direct excitation is 
very sensitive to azimuthal movement, as evidenced by the sharp change of the growth rate from 
negative to positive around 90 ,  270CBθ = ° ° . Moreover, it is clearly seen that the overall growth 
rate is mostly controlled by the transverse mode. This implies that outer nozzles are strongly 
sensitive to the direct excitation mechanism, and it is possible for the growth rate to be strongly 
controlled by this mechanism. 
 

 
(a) 4ψ π=      (b) 3ψ π=  

Figure 38 – Effect of azimuthal offset of nozzle (at 0.3CBR = ) on the growth rate for the 
response to the 1-T mode (black) and corresponding induced axial fluctuations (red). Net 
growth rate indicated by the dashed blue curve. 



 
Next, consider the flame angle case of 3ψ π=  shown in Figure 38(b). Here, the sensitivity of 

the direct excitation growth rate (black) is lesser than that due to the induced axial mechanism. 
This results in the overall growth rate (dashed blue) being determined largely by the induced axial 
motions (red) resulting in a behavior contrary to that seen in the previous case. Thus, the azimuthal 
offset has differing effects on the relative response, depending on the flame length.  

Thus, for nozzles centered in the combustor, the induced axial excitation dominates the growth 
rate for the radial (2,0) mode while the transverse excitation dominates the growth rate for the 1-
T mode. For nozzles that are offset from the combustor axis, the transverse excitation mechanism 
was seen to be dominant for both the radial (2,0) mode as well as the mixed 1-T mode. This has 
important implications on modeling the combustion dynamics of multi-nozzle can combustion 
systems under transverse excitation. 
 
Optimization Framework 

In this section, we focus on a practical application of the modeling framework to determine 
optimum nozzle configurations, both in terms of positioning and operating conditions, for 
minimizing the Rayleigh Index. An optimization framework was developed to incorporates both 
the direct and induced excitation models for the overall stability of the system. The focus here is 
to consider multiple flames in a multi-nozzle can-combustor environment as depicted in the 
schematic of Figure 39. This schematic shows multiple nozzles (N = 8) around a center nozzle. 
Each nozzle has an anchored premixed flame. 
The amplification factor for a given nozzle is given by its normalized Rayleigh index, [ ]jℜ , 
which is the ratio of its Rayleigh Integral, [ ]jRI , to the acoustic energy of the mode and is 
defined as: 
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For the linear analysis in this study, the overall stability of the multi-nozzle system is determined 
as: 
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This overall growth rate is a function of the position of each nozzle ( [ ] [ ],j j
CB CBR θ ) as well as 

flame/flow parameters and the acoustic mode in question ( , )al m . In the next quarter, we consider 
an example flow field and focus on 2 different ways in which the nozzle placing as well as 
operating parameter configurations can be optimized to minimize the above overall growth rate. 

 

 



Figure 39 – Schematics showing distribution of flames in the multi-nozzle configuration. 
 
We use the optimization framework with the same model flow fields and flame shapes as earlier 
to determine a combination of nozzle positions or operating parameters that can minimize the 
instability in the system. For nozzle j, the flow-field is assumed to be: 
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Here, [ ] [ ]
0

j jσ ω= Ω  is the ratio of the acoustic timescale to the swirling timescale and [ ]
0

jM  is 
the flow Mach number for injector j. The center-nozzle characteristics are defined by [ ] [ ]j C≡ . 
The above definition of the individual nozzle flow-fields and flame-shapes allows for individual 
selection of parameters for each of the different outer nozzles and the center nozzles. For the 
analysis, we focus on 2 optimization approaches –  
(1) Nozzle Optimization: For a given set of operational flame/flow-field parameters for all nozzles, 

we identify the best positioning of the nozzles to minimize the overall ℜ . 
(2) Parameter Optimization: For a given geometric circular and even distribution of nozzles 

around the center nozzle, we identify the optimal flame/flow parameters that minimize the 
overall ℜ . 
 

Nozzle Optimization:  
For this optimization, we keep the flame/flow control parameters fixed, namely: 

[ ] [ ] [ ] [ ]
0, , ,  

f

j j j j
R RMψ β β , and we determine the optimal combination of ( )[ ] [ ],j j

CB CBR θ  that minimizes ℜ

. A classical constrained optimization approach is used. The constraints stem from how close the 
nozzles can be placed based on their sizing and flame extents. Note that for nozzle j, we assume a 
given flame shape, which is axisymmetric and characterized by its flame angle, [ ]jψ , and its radial 
extent, [ ]

f

j
Rβ . Thus, considering nozzle j and its neighbor j-1 and nozzle j and the center-nozzle (C): 
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Now, we consider the optimal nozzle positions for a differing number of nozzles (N) and for 2 
different modes: first radial mode ( , ) (2,0)al m =  and 1-T mode ( , ) (1,1)al m = . For the following 

studies, we will fix the center-body and radial extent of flame as [ ] [ ]2 0.1
f

j j
RRβ β= = . 

 



 
Figure 40 – Variation in growth rate for a nozzle as its radial offset is increased, for different 
nozzle impedances. Filled circles indicate locations of minimum growth rate. 

 
For the first radial mode, which is a purely axisymmetric mode, only [ ]j

CBR  is optimized since 
[ ]j
CBθ  is irrelevant. Note also that this implies, we need not select the number of outer nozzles (N). 

We assume the following parameters constant across all nozzles:  
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Although not shown here, the results did not show strong sensitivity to the swirl parameter (σ ). 
We will focus on the sensitivity of the optimization to the nozzle impedance, ˆ

TLZ . Note that large 

values of ˆ
TLZ  imply minimal impact of the induced axial mechanism and is similar to a pressure-

node at the nozzle and small values denote a larger impact. 
Figure 40 shows the variation of [ ]jℜ  with CBR  for varying nozzle impedance amplitude, ˆ

TLZ

. Here, 0.2CBR ≥  based on the constraints in Eq.(83). Note that for all cases, the growth rate has 
a minimum near 0.6CBR ≈  (filled circles). When the nozzle impedance is increased, the minima 
location moves towards the wall and when it is decreased, the minima location moves towards the 
center. Overall, the key takeaway from this is that the nozzles are placed roughly 60% away from 
the center towards the wall in order to minimize the growth rate. Specifically, the minimum growth 
rate can be negative for certain values of the nozzle impedance, indicating that this location results 
in an overall stabilization of the first radial mode response. It is important to note that at this radial 
location, the pressure mode-shape has a node and thus results in the minimization of [ ]jℜ  for 
flames in this region. 
 



 
Figure 41 – Variation in growth rate for a nozzle as its radial offset ( CBR ) is increased, for 

different phasing in the nozzle impedance ( ˆ
TLZ∠ ). Filled white circles indicate locations of 

minimum growth rate for a fixed phase. Solid white lines denote contours of [ ] 0jℜ = . Dashed 
white lines denote radial location of pressure node. 

 
Next, consider the effect of the phasing in the nozzle impedance, ˆ

TLZ∠ . Note that this phasing 
parameter greatly affects the constructive/destructive interference in the flame response to the 
induced axial disturbances which, in-turn affects the growth rate from the induced component and 
thus, the overall growth rate due to the flame on that nozzle. Figure 41(a) shows the variation of 

[ ]jℜ  in the ˆ
CB TLR Z−∠  space for ˆ 1.0TLZ =  , for ˆ 120TLZ∠ < °  and ˆ 330TLZ∠ > ° , minimum value 

of [ ]jℜ  occurs around 0.6CBR ≈  (filled white circles). However, when the nozzle impedance is 
outside this range, i.e., ˆ120 330TLZ° < ∠ < ° , the minima shift to the lowest possible location radial 

offset, 0.2CBR = . Although not shown, the qualitative behavior is the same for ˆ 10.0TLZ = . Next 

consider the case of ˆ 0.1TLZ =  shown in Figure 41(b). Note that the variation in the minimum 

location is smoother and lies in the range 0.5 0.6CBR< <  with ˆ 210TLZ∠ ≈ °  corresponding to the 
closest location of the outer nozzle with respect to the center. The results indicate the growth rate 
is less sensitive to the phasing introduced by the nozzle impedance when the nozzle impedance 
amplitudes are small.  

For the 1-T mode which is a non-axisymmetric mode, it requires the optimization of both 
( )[ ] [ ],j j

CB CBR θ  depending on the number of outer nozzles, N. As before, we assume the following 

parameters across all nozzles: [ ] [ ] 4j Cψ ψ π= = , [ ] [ ]
0 0 0.1j CM M= = , [ ] [ ] 0.0j Cσ σ= = . Figure 

42 shows the optimal nozzle radial locations for different ˆ
TLZ∠  where [ ]jℜ  is minimum. Here, 

ˆ 10.0TLZ = . Note that only the upper half-plane ( [ ]0 j
CBθ π≤ ≤ ) is shown since the 1-T mode is 
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symmetric about the 0 π−  line. For ˆ 0TLZ∠ = , the optimal location for the nozzles near the 
[ ] 0j
CBθ =  is closer to the center nozzle whereas as [ ]j

CBθ  increases, around [ ] 2j
CBθ π= , the optimal 

location shifts to near the wall. In contrast, for ˆ 2TLZ π∠ = , for both azimuthal locations closer to 
[ ] 0j
CBθ =  and [ ]j

CBθ π= , the optimal nozzle location is closer to the center while around [ ] 2j
CBθ π= , 

the optimal locations move further away towards the wall. Finally, for ˆ 3 2TLZ π∠ = , all optimal 
locations are closer to the wall except around [ ] 2j

CBθ π= . The results indicate a non-monotonic 
trend for nozzle placement depending on the phasing for the nozzle impedances, ˆ

TLZ∠ . 

Having considered the effect of ˆ
TLZ∠ , we next consider the effect of ˆ

TLZ  as shown in Figure 

43. Here we fix ˆ 0TLZ∠ = . For the lowest impedance amplitude (higher contribution of the induced 
axial mechanism), note that the optimal location for all azimuthal locations is near the wall. As 

ˆ
TLZ  is increased, note that only the region near [ ] 2j

CBθ π=  is affected where the optimal location 

for the nozzle moves closer to the center. 
 

 
Figure 42 – Optimal radial location ( CBR )  of nozzles at various azimuthal locations ( CBθ ) for 
minimum growth rate.  
 



 
Figure 43 – Variation in growth rate for a nozzle as its radial offset ( CBR ) is increased, for 
different phasing in the nozzle impedance ( ˆ

TLZ∠ ). Filled white circles indicate locations of 
minimum growth rate for a fixed phase. 

 
Now that we know the locations for the minima, given a certain number of nozzles N, we need 

to pick N locations from these, that correspond to the lowest set of values of [ ]jℜ  values such that 
the overall ℜ  is minimized. Consider the case of ˆ 10.0TLZ =  and ˆ 0TLZ∠ =  in Figure 42. For the 

locations shown in this figure, the variation of [ ]jℜ  is as shown in Figure 44(a). Note that for all 
azimuthal locations, the minimum growth rate is always negative indicating that any of these 
locations can be chosen for an overall negative growth rate. However, note that the locations with 
the lowest growth rate, correspond to [ ] 0,j

CBθ π=  followed by azimuthal locations just around these 
points. Thus, for example, for N = 6 nozzles around a center nozzle, the optimal configuration that 
results in the lowest overall growth rate is shown in Figure 44(b). When a different nozzle 
impedance is considered, such as ˆ 10.0TLZ =  and ˆ 2TLZ π∠ =  in Figure 42, we can see from 

Figure 44(c) that for all locations the minimum growth rate is still positive. Thus, the optimal 
nozzle locations for this case would only minimize the positive growth rate for this mode as shown 
in Figure 44(d). Note that both optimal configurations are not symmetric and deviate from 
conventional equally distributed nozzle configurations. This indicates that the symmetric 
placement of nozzles can impede the overall stability of the 1-T mode. However, as discussed in 
the next sub-section, an optimization of the control parameters across symmetrically distributed 
nozzles can still result in a lower growth rate. 
 



 
(a) (b) 

 
(c) (d) 

Figure 44 – Variation in minimum growth rate at different nozzle locations for (a) 
ˆ 10.0TLZ = , ˆ 0TLZ∠ = ; (b) Corresponding optimal N = 6 configuration; (c) ˆ 10.0TLZ = , 

ˆ 2TLZ π∠ = ; (b) Corresponding optimal N = 6 configuration. 
 
Parameter Optimization: 

In the previous sub-section, we looked at unconventional but optimal distribution of nozzles 
for a fixed set of control parameters. However, a more practically relevant study is to consider the 
conventional symmetric distribution of nozzles and identify the optimal combination of flame/flow 
parameters that minimizes ℜ . We shall focus on parameter optimization for fixed nozzle positions 
when responding to the first radial and 1-T mode. 

For the first radial mode, which is a purely axisymmetric mode, [ ]j
CBθ  is irrelevant and hence all 

outer nozzles are treated to be equal but can have different flame/flow parameters than the center 
nozzle. For the purpose of this example, we will fix the radial offset of the outer nozzles as 

[ ] 0.5j
CBR = . Note that the number of outer nozzles (N) is irrelevant and hence we only determine 

the optimal flame angle ( )[ ] [ ],j Cψ ψ  and swirl parameter ( )[ ] [ ],j Cσ σ  by keeping other 

parameters constant. 
 



 
Figure 45 – Variation in growth rate with different flame angles and swirl, for first radial 
mode (2,0), with ˆ 1.0TLZ = , ˆ 0TLZ∠ = . White dot denotes location of lowest growth rate. 

Black curve denotes iso-contour corresponding to [ ] 0jℜ = . 
 

Figure 45 shows the variation of the growth rate with both flame angle and swirl for an in-
phase unit nozzle impedance amplitude at a radial offset of [ ] 0.5j

CBR = . Note that the minimum 

growth rate occurs for ( ) ( )[ ] [ ], 66 ,0.52j jψ σ ≈ °  indicated by the white dot. Thus, for nozzles fixed 

at [ ] 0.5j
CBR = , operating at these conditions would result in the lowest growth rate, which also 

happens to be negative and thus stabilizing. However, as shown in the figure, operating points 
within the regions enclosed by the black curves (contours of [ ] 0jℜ = ) would all result in [ ] 0jℜ <  
and would be suitable. Although not shown here, the center nozzle parameters corresponding to 
the lowest growth rate are: ( ) ( )[ ] [ ], 60 ,2.6C Cψ σ ≈ ° . This indicates that the center-nozzle and 

outer nozzles would need to operate at different conditions to minimize the overall growth rate, a 
feature that is followed in practical gas turbines. Note also that the center nozzle swirl is higher 
than the swirl for the outer nozzles. 

For the 1-T mode, which is a non-axisymmetric mode, [ ]j
CBθ  is important and hence the 

distribution of the outer nozzles. We will focus on N = 6 nozzles distributed symmetrically around 
a center nozzle. Similar to the previous example, we will fix the radial offset for all cases as 

[ ] 0.5j
CBR = . Thus, for each nozzle (i.e., each [ ]j

CBθ ), we will determine the optimal flame angle and 
swirl parameter. 
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Figure 46 – Variation in growth rate with different flame angles and swirl, for nozzles 
numbered 2, 3, 4 for N = 6 responding to 1-T mode, with ˆ 1.0TLZ = , ˆ 0TLZ∠ = . White dot 

denotes location of lowest growth rate. Black curve denotes iso-contour corresponding to 
[ ] 0jℜ = . 

 
For N = 6, the nozzles are azimuthally situated at  [1] 0CBθ = , [2] 60CBθ = ° , [3] 120CBθ = ° , [4] 180CBθ = °

, [5] 240CBθ = °  and [6] 300CBθ = ° . Note that since the 1-T mode is symmetric about the 0 180− °  plane, 
we focus only on the nozzles 1, 2, 3, 4 since nozzle 5 is the same as nozzle 3 and nozzle 6 is the 
same as nozzle 2. Although not shown here, nozzle 1 is at the pressure anti-node for the 1-T mode 
shape and for the parameters and location chosen, results in a minimum growth rate that is still 
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positive. We will focus on nozzles 2-4 to minimize their growth rate.  Figure 46 shows the variation 
of the growth rate for these 3 nozzles with respect to both flame angle and swirl. Note that for 
nozzle 2 at [2] 60CBθ = ° , the optimal parameters for minimum growth rate is: ( ) ( )[2] [2], 65 ,0ψ σ ≈ °

. This corresponds to a non-swirling nozzle flow. However, as indicated by the black contour in 
the figure (corresponding to [2] 0ℜ = ), all parameter values to the left of this curve result in a 
negative growth rate and can be chosen as the operating point for nozzle 2 and thus nozzle 6. 
Similarly, for nozzle 3 at [2] 120CBθ = ° , the optimal parameters for minimum growth rate are: 

( ) ( )[3] [3], 55 ,2.17ψ σ ≈ ° . This corresponds to a swirling nozzle. As with the case of nozzle 2, the 

black contour in the figure (corresponding to [2] 0ℜ = ) indicates that all parameter values to the 
right of this curve result in a negative growth rate and can be chosen as the operating point for 
nozzle 3 and thus nozzle 5. Finally, for nozzle 4, the plot shows that all parameter values result in 
a negative growth rate with the minimum growth rate occurring for: ( ) ( )[4] [4], 60 ,2.17ψ σ = ° . 

Thus, apart from the center nozzle, there are 4 different operating points for the different nozzle 
sets: nozzle 1; nozzle 2 & 6; nozzle 3 & 5; nozzle 4. As mentioned before, this is similar to the 
staging of the different outer nozzles that is followed for practical multi-nozzle gas turbines. 
 
Optimization Framework for Injectors: Hydrodynamic Considerations 

In the previous framework, the coupled hydrodynamic stability of individual nozzles was not 
considered but are an important aspect for operability and flame dynamics. In this section, we 
circle back to the optimization problem where we optimize the injectors in a multi-nozzle system 
based on its hydrodynamic tendencies at different locations in the transverse acoustic mode. 

We shall use the same base flow and acoustic flow models presented earlier. The vortical flow 
components stem from the hydrodynamic instability characteristics of the base flow. The velocity 
field along coordinate j is typically of the form: 

  ( ),1 ,
ˆˆˆ ( , , ) ( ) expv v

j j m m
m

u r z V r ik z imθ θ
+∞

=−∞

= − +∑       (85) 

The superscript v refers to the vortical component. Here, ,
ˆ ( )v

j mV r  is the radially varying spatial 

amplitude for a given helical mode m at the acoustic mode frequency , al mα . The disturbance has 

a complex axial wave number ˆ
mk  whose real part consists of the propagation speed and imaginary 

part determines the axial growth/decay of disturbances. Several studies have focused on the use of 
a linear hydrodynamic stability framework resulting in a dispersion relation for the frequency (

, al mα ), the complex wave number ( ˆ
mk ) and the helical mode number ( m ). This is typically 

represented as: 
   ,

ˆ( , , , flow) 0
al m mm kαℑ =        (86) 

Note that the helical mode number (m) is the local flow helical mode number at the nozzle and is 
different from the azimuthal mode number ( am ) for the natural acoustics. While a forced 
hydrodynamics study is more relevant to the framework, we use the linear stability framework 
without forcing and use the relative amplitudes of the different helical modes in the acoustic 
velocity at each nozzle, to scale the linear stability solutions. For a given acoustic mode (frequency 



, al mα  is fixed), the different helical mode numbers at a given nozzle are determined from the modal 
decomposition of Eq.(64) thus fixing the range of helical modes (m) to be used with the dispersion 
relation. Thus, for each of these helical modes, the dispersion relation in Eq.(86) is then used to 
determine its axial wave number ˆ

mk . Define the inversion of Eq.(86) as: 

   ,
ˆ ( , , flow)m l mk mκ α=         (87) 

Several prior studies have shown that the acoustic component determines the frequency of the 
disturbances and excites the vortical component but that the latter is the dominant contributor to 
the flame response. While it is possible to include both components for the analysis, we make this 
assumption to focus on illustrating how the injector parameters can be optimized to minimize ℜ . 
Under this assumption, the acoustic velocity functions are still used to determine the helical mode 
numbers of importance. The helical mode expansion for an acoustic velocity component is defined 
as: 
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∫
       (88) 

From Eq.(64), we can see that for the radial acoustic component, the modal amplitude is given by: 
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Note that ( ),c cr r r θ≡  and ( ),c c rθ θ θ≡  as shown in Eq.(63). For combustor centered injectors, 
the helical mode number is equal to the acoustic mode number am  only and as the injector is offset 
from the center, the values of m where the helical mode amplitudes are non-zero is a strong 
function of the nozzle location and aspects of the acoustic mode of interest. The effective amplitude 
of a given mode m is defined as: 

   , ,
0

1 ˆ ( )
fR

a a
r m r m

f r

V r dr
R

υ
=

= ∫        (90) 

Here, the integral is equivalent to the average amplitude in the region over the radial extent of the 
flame. Using this effective amplitude from the acoustic component we can then scale the 
amplitudes for the vortical components as: 

   , ,

, 0 , 0

v a
r m r m

v a
r m r m

υ υ
υ υ= =

=         (91) 

Note that we assume the scaling is relative to the 0m =  mode and thus we can assume 0 1v
mυ = = . 

This assumption does not affect the goal of minimizing the overall ℜ . For linear stability, the 
overall amplification factor is a linear superposition of the individual nozzle amplification factors 
and thus: 

   [ ] [ ]

1 1

1
2

N N
j j

aj j
RI

E= =
ℜ = ℜ =∑ ∑        (92) 



With the many different control parameters for this configuration, in the next quarter, we consider 
an example flow field to illustrate how we can optimize individual nozzle hydrodynamics for 
overall minimization of ℜ . 

Using the same example flow-field as earlier, we shall first consider the linear stability 
characteristics to determine the dispersion relation. For nozzle [ ]j , the dispersion relation can be 
derived as: 
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  (93) 

Here, the reduced parameters are defined as: 
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  (94) 

Here, [ ]jµ  is the density jump across the flame at nozzle [ ]j . Accounting for density effects is 
important for hydrodynamic stability but for the rest of the analysis, we assume [ ] 1jµ ≡ . This has 
been done so that the coupling between density jump, flame speed, flame shape and swirl can be 
neglected as it is not analytically tractable. For a given acoustic mode ( , al mα ) and chosen flow and 

injector geometry ( [ ]
f

j
Rβ ), we can determine the unknown reduced wave number ( [ ]j

mλ ) for the 
different helical modes (m) of interest. From the above dispersion relation, we define the inverse 
relation as: 
 [ ] [ ] [ ]ˆ ( , , )j j j

m mλ κ α σ=    (95) 
The velocity disturbance at the flame is defined as: 
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= +∑   (96) 

The complex wave number is decomposed into its real and imaginary parts: , ,
ˆ

m m R m Ik k ik= + . The 
flame response solution for this velocity field was derived earlier as: 
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Here, 
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For the rest of the example, we shall assume the following to be equal across all nozzles/injectors: 



 [ ] [ ] [ ]
0 0.1           0.1         0

f

j j j
RRM β β= = =   (99) 

The local heat release rate can be determined and then is used to determine the Rayleigh Integral 
for each nozzle/injector. For a chosen nozzle location ( , )CB CBR θ  and acoustic mode ( [ ]jα ), we can 

sweep the swirl parameter ( [ ]jσ ) and determine the wave numbers ( [ ]ˆ j
mλ ) at each helical mode in 

the flow. The overall [ ]jRI  is minimized over this sweep and the optimal choice of parameters is 
then determined. 

Before we consider the nozzles individually, consider the dispersion relation for a non-swirling 
injector, i.e., [ ] 0jσ =  resulting in: 
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From this equation, we have a solution that is independent of helical mode number, given by: 
 [ ] [ ] [ ]

0̂
ˆj j j
mλ λ α= =    (101) 

And a solution that varies with helical mode number m, determined by: 
 [ ] [ ] [ ] [ ]ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) 0j j j j

m m m m m m m mK J i iJ i Kλ λ λ λ′ ′+ =   (102) 
We shall consider 2 specific transverse mode cases as examples. 
 

 
Figure 47 – Variation in effective amplitude of the radial acoustic component at the injector 
as a function of injector location and helical mode number for 1-R mode. 

 
The 1-R mode corresponds to the acoustic mode numbers ( , ) (2,0)al m =  with frequency 

2,0 2 0.6098α π = . First, consider the helical mode content in the acoustic velocity components as 
the injector is shifted from the center. Since the 1-R mode is an axisymmetric mode, the azimuthal 
offset ( CBθ ) is immaterial. The coordinate transformation becomes: 
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The local radial velocity from the acoustic component is given by: 
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Note that the azimuthal dependence results in a multitude of helical modes even though the 
acoustic mode is a symmetric mode. Thus, the effective amplitude can be determined as a function 
of both ( , )CBR m  and is shown in Figure 47. Note that the center injector ( 0CBR = ) shows only the 
axisymmetric helical mode as expected. As the nozzle is radially shifted outward, the amplitude 
of the axisymmetric helical mode decreases with increasing radial offset. The dominant helical 
modes are the 1m =  modes with non-negligible amplitudes seen at 2m =  as well. This has 
important implications as it results in “exciting” these modes in the vortical flow component. 
 

 
Figure 48 – Variation in amplification factor at different radial offsets and swirl for the flame 
response to the vortical component due to 1-R acoustic mode. 
 

Next, consider the parameters for the vortical flow component mainly mλ . We drop the 
superscript [ ]j  since this is immaterial for the 1-R mode, i.e., all nozzles would use the same 
parameters since there is no azimuthal offset dependence. For the 1-R mode, we have: 

( )2 0.6098α π= . The helical modes considered are 2 2m− ≤ ≤  as seen from Figure 47. We vary 
the swirl parameter, σ  and find the solutions for mλ . Using these solutions, we determine the ℜ  
for each σ  at different radial offsets CBR  as shown in Figure 48. For this example, we fix all flame 
angles to be equal at [ ] 4jψ π= .  

Note that at the center, ℜ  is quite sensitive to swirl and as the radial offset increases, the 
sensitivity decreases to its lowest at around ~ 0.6CBR  before a slight increase in sensitivity. For 
each of the radial offset locations we find that there is a swirl value where ℜ  is minimum. The 
variation of the σ  at minimum ℜ  with radial offset is shown in Figure 49. Note that for injectors 
situated in the 0 0.4CBR≤ ≤ , the optimal swirl parameter to minimize ℜ  is around 

min( )
~ 0.45σ

ℜ
 

and increases to 
min( )

~ 0.96σ
ℜ

 in the region around ~ 0.5 0.6CBR −  and for locations furthest from 

the center (closer to the outer wall), the required swirl is the lowest at 
min( )

~ 0.25σ
ℜ

. The region 
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around ~ 0.5 0.6CBR −  also corresponds to the region where the nodal line exists for the 1-R mode 
– a potential reason for the deviation from the swirl numbers seen closer to the center and near the 
walls. 
 

 
Figure 49 – Optimal swirl parameter to minimize amplification factor as a function of the 
radial location ( CBR ) for the nozzle/injector.  

 
In order to understand the key importance of the optimization study here, namely, the inclusion 

of hydrodynamic stability, we consider the results from the prior optimization study that used only 
the acoustic components. In that study it was determined that for nozzles positioned at ~ 0.5CBR  
, the optimal swirl parameter to minimize ℜ  was around 

min( )
~ 0.5σ

ℜ
. However, as seen here, the 

optimal swirl parameter is much higher at 
min( )

~ 0.96σ
ℜ

 indicating a strong effect of 

hydrodynamics on the results and thus mandating the need for including this piece of physics. 
Thus, depending on where the nozzles/injectors are to be positioned relative to the center, the 
swirler can be chosen appropriately to minimize the overall thermoacoustic response of the system. 
Furthermore, the inclusion of hydrodynamic stability in addition to the acoustics is important to 
accurately determine the optimal set of parameters. 

Next, we consider the 1-T mode. The 1-T mode corresponds to the acoustic mode numbers 
( , ) (1,1)al m =  with 2,0 2 0.2930α π = . Like in the previous example, consider the helical mode 
content in the acoustic velocity components as the injector is shifted from the center. Unlike the 
1-R mode which was axisymmetric, the 1-T mode is non-axisymmetric and so, both the radial (

CBR ) and azimuthal offset ( CBθ ) are important.  
The coordinate transformation and the local radial velocity are used to determine the effective 

amplitude as shown in Figure 50. Each plot corresponds to a different helical mode number, each 
line-color corresponds to a different radial offset ( CBR ) and the amplitude variations are with 
respect to the azimuthal offset ( CBθ ). The azimuthal offset range is shown only between 
0 CBθ π≤ ≤  since the 1-T mode is symmetric about 0,CBθ π= . First consider the 0m =  mode 
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shown in Figure 50(a). As expected, the amplitude is 0 at the center (no radial offset) since 1-T is 
a non-axisymmetric mode. As the radial offset increases, amplitude increases indicating that the 
symmetric mode in the swirling flow can be increasing excited as the nozzle moves radially 
outward. The excitation is maximum near 0,CBθ π=  and is absent for 2CBθ π=  since this is the 
pressure node where the velocity field is anti-symmetric. 
 

 
(a) Amplitudes for m = 0 

 
(b) Amplitudes for 1m =   

 
(c) Amplitudes for 2m =   

Figure 50 – Variation in effective amplitude of the radial acoustic component at the injector 
as a function of injector location and helical mode number, for 1-T mode. 

 
Next, consider the 1m =  mode shown in Figure 50(b). Both the positive and negative mode 

numbers have the same amplitudes. The amplitude is non-zero at all locations as expected since 
the 1-T mode is a 1m =  mode about the centerline. The peak values for the amplitudes are seen at 

2CBθ π=  since the velocity field is anti-symmetric at this point. However, note that as the radial 
offset increases, the amplitude decreases. This is due to the increase in dominance of the symmetric 
mode which reduces the amplitude of this mode. Finally, for the 2m =  mode shown in Figure 
50(c), note that the amplitude peaks at the pressure node location and decreases away from it. The 
amplitudes also increase with increasing radial offset. Overall, the 1m =  amplitudes dominate the 
velocity field followed by the axisymmetric mode. Higher order modes, though not shown, are 
present but are of negligible amplitude. 
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Figure 51 – Variation in the minimum ℜ  at different azimuthal offset locations for different 
flame angles. 
 

For the optimization study in this example, we shall vary both the swirl number and the flame 
angle but for nozzles at a fixed radial offset of 0.5CBR = . We shall consider a discrete set of flame 
angles: [ ] 15 ,30 ,45 ,60jψ = ° ° ° °  to illustrate how different flame angles can behave in very different 
ways across the combustor dump plane (varying CBθ ). Note that a more rigorous optimization is 
possible that finds the more precise flame angle for a given set of parameters, but this has not been 
considered for the example. The focus of this example is to show how this property changes with 
nozzle location due to changes to its local hydrodynamic stability characteristics. The swirl 
parameter range being explored is: [ ]1 1jσ− ≤ ≤ , allowing for swirl in both clockwise and anti-
clockwise directions. Note that unlike the 1-R example where the nozzle number was immaterial, 
here the nozzle number, i.e., the azimuthal offset/location is important and results in differing 
values for optimization. 

First consider the minimum ℜ  that is possible at each azimuthal location for the different flame 
angles, as shown in Figure 51. Note that for the lower flame angles (15-45 degrees), the minimum 
possible ℜ  increases as the azimuthal offset increases and for the largest flame angle (60 degrees), 
the trend is reversed. A key takeaway from this figure is for nozzles closer to 0CBθ = , the lower 
flame angles are preferred since they offer the lowest of the minimum ℜ  values. However, at 

CBθ π= , the largest flame angle provides the lowest of the minimum ℜ . At the intermediate 
locations, the choice depends on the number of nozzles in the system. For a 4 around 1 
configuration, we have nozzles at: [1] 0CBθ = , [2] 2CBθ π= , [3]

CBθ π=  and [4] 3 2CBθ π= . Thus, we have: 
[1] 15ψ = ° , [3] 60ψ = °  as discussed above. Both nozzles 2, 4j =  are identical due to the relative 

position in the pressure mode shape and from Figure 51 it is evident that the optimal flame angle 
is: [2] [4] 45ψ ψ= = ° . This shows for the best possible stability, all injectors cannot have the same 
flame angle.  
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Figure 52 – Variation in optimal swirl parameter for minimum ℜ  at different azimuthal 
offset locations for different flame angles. 
 

An additional optimal parameter to consider is the optimal swirl parameter for each of the above 
cases, as shown in  Figure 52. Since [1] 15ψ = ° , the swirl number for this nozzle is [1] 1σ =  as 
shown in the figure. Similarly, for  [3] 60ψ = ° , we have: [3] 1σ = . Finally, for [2] [4] 45ψ ψ= = °  at 

2CBθ π= , we have: [2] [4] 0.2σ σ= = −  indicating that these injectors must have clockwise swirl 
when compared to the anticlockwise swirl of the other 2 injectors. Collectively, for 4N =  we 
have: 
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  (105) 

As an additional example, consider the case of 6N =  injectors, located at: [1] 0CBθ = , [2] 3CBθ π=
, [2] 2 3CBθ π= , [2]

CBθ π= , [2] 4 3CBθ π=  and [2] 5 3CBθ π= . Note that nozzles 2,6j =  are identical due 
to the relative position in the pressure mode shape and so are nozzles 3,5j = . From Figure 51 and 
Figure 52, the optimal flame angle and swirl parameters for 6N =  are: 
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We can see that the injectors must be operated with very different flame and flow parameters for 
optimal system stability. This contrasts with the prior optimization that considered only the 
acoustic components, wherein the optimal flame angle was determined to be around 55-60 degrees 
for all nozzles. Thus, the inclusion of the vortical mode, which is often the dominant flame 
response driver, also has significant impact on the results of the optimization. 
 
Summary 

To summarize, the flame response modeling task in this program addressed several different 
levels of fidelity and considerations for the flame configuration and position in a multi-nozzle 
system. 

1. Nozzle positioning studies helped understand how flame dynamics changed for centered 
nozzles vs. outer nozzles and for different azimuthal locations of outer nozzles. 

2. Mean flame shape studies were performed to understand how changes in mean flame shape 
can affect stability. Specifically, it was shown that purely-radial modes which were 
considered to be unconditionally and intrinsically unstable for axisymmetric mean flames, 
can be stable for increased mean flame asymmetries for certain swirling strength values. 

3. The geometric nature of the injector connected to the combustor implies that the natural 
transverse acoustic mode induced axial velocity disturbances. Models were considered to 
account for both mechanisms and the relative importance of the 2 mechanisms were 
studied. For nozzles centered in the combustor, the radial mode response was seen to be 
insignificant when compared to the induced axial response. In contrast, the opposite was 
seen for the 1-T mode. When the nozzles were offset from the combustor axis, it was shown 
that depending on the radial offset, azimuthal offset, and flame angle, either mechanisms 
could be dominant or both mechanisms could be collectively important. This implies that 
depending on flame properties and the nozzle in question (in the multi-nozzle can), 
modeling the growth rate may require the inclusion of the induced axial mechanism along 
with the direct excitation mechanism.  

4. Given the above studies on single nozzles, a natural extension was the multi-nozzle study 
for which an optimization framework was developed to understand how we can optimize 
both nozzle positioning and nozzle operation for the best stability of the overall system. 
The nozzle optimization study for the (2,0) radial mode indicated that outer nozzles must 
be located around 60% of the radial distance to the outer wall. This also corresponds to the 
region near the pressure node for the radial mode shape. However, the nozzles can be 
placed symmetrically in the combustor. In contrast, since the 1-T mode shape is non-
axisymmetric, depending on the number of nozzles, the radial offset at different azimuthal 
locations were seen to be different. The resulting nozzle locations deviated significantly 
from conventional symmetric nozzle placements seen in gas turbines. While the optimum 
locations are not generally practically feasible, it sheds light on how the lowest possible 



growth rate requires drastically different nozzle placements. The parameter optimization 
study is the more practically relevant study where multiple outer nozzles are placed 
symmetrically around a center nozzle and each nozzle can have different operating 
parameters. For the first radial mode, an optimal combination of flame angle / nozzle swirl 
was identified for the lowest growth rate, but it was seen that a large parameter space 
existed where the growth rate was still negative. For the 1-T mode study, a 6 around 1 
configuration was used, and it was shown that apart from the center nozzle, 4 different 
operating parameters must be used across the outer nozzles to minimize the growth rate 
(i.e., the different nozzles would require different operating conditions). This is similar to 
staging concepts used for the multiple outer nozzles in practical gas turbines. 

5. Finally, the optimization study was extended to consider the hydrodynamic stability 
characteristics of individual injectors. The flow disturbances affecting the flame response 
comprise of the natural acoustic velocities and the excited vortical flow components from 
the interaction of acoustics with the natural hydrodynamics of the mean flow. The 
optimization model was applied to injectors positioned at different locations and 
responding to the 1-R mode and the 1-T mode in separate examples. The results showed 
that optimal parameters such as the swirl parameter can be determined depending on the 
location of the injector. This helps provide a design guidance to optimize injectors with 
swirlers that lead to an overall improvement in thermoacoustic stability. Furthermore, the 
results from including hydrodynamics were starkly different from prior work where only 
acoustics was considered, thus mandating the need for hydrodynamic stability modeling.  

 


