

LA-UR-21-29906

Approved for public release; distribution is unlimited.

Title: Producing ENDF/B-quality Evaluations of $^{239}\text{Pu}(n,f)$ and $^{235}\text{U}(n,f)$
Average Prompt Neutron Multiplicities using the CGMF Model

Author(s): Neudecker, Denise
Lovell, Amy Elizabeth
Talou, Patrick

Intended for: Report

Issued: 2021-10-06 (Draft)

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

1 Producing ENDF/B-quality Evaluations of $^{239}\text{Pu}(\text{n},\text{f})$ and $^{235}\text{U}(\text{n},\text{f})$
2 Average Prompt Neutron Multiplicities using the CGMF Model

3 D. Neudecker, A.E. Lovell, P. Talou
4 Los Alamos National Laboratory, Los Alamos, NM, 87545, USA

5 October 4, 2021

6 **Contents**

6	1	Introduction	2
7	2	Input to the Evaluation	2
8	2.1	Model Input	2
9	2.2	Experimental Input	4
10	3	Evaluation Methods	9
11	4	Results	10
12	4.1	Evaluated Results of $^{239}\text{Pu}(\text{n},\text{f}) \bar{\nu}_p$	10
13	4.2	Validation of $^{239}\text{Pu}(\text{n},\text{f}) \bar{\nu}_p$	14
14	4.3	Evaluated Results of $^{235}\text{U}(\text{n},\text{f}) \bar{\nu}_p$	26
15	4.4	Validation of Evaluated Parameters Against Various Fission Data	36
16	5	Conclusions and Outlook	41
17	A	Definition of Template Uncertainties	46
18	B	Experimental Data for $^{235}\text{U}(\text{n},\text{f}) \bar{\nu}_p$	47
19	C	Experimental Data for $^{239}\text{Pu}(\text{n},\text{f}) \bar{\nu}_p$	53

20 **Abstract**

21 This report documents evaluations of the neutron-induced ^{239}Pu and ^{235}U average prompt neutron
22 multiplicities, $\bar{\nu}_p$, using the CGMF model developed at LANL. These evaluations are not updates
23 of existing ENDF/B-VIII.0 nuclear data, but were both re-done from “scratch”. That is, all exper-
24 imental data were extracted from EXFOR, re-normalized to the newest nuclear data representing
25 monitor observables, and detailed uncertainties were estimated from information in EXFOR as well
26 as from templates of expected measurement uncertainties. We also included experimental data that
27 were not yet available for ENDF/B-VIII.0, for instance, the data of Marini *et al.* for $^{239}\text{Pu}(\text{n},\text{f}) \bar{\nu}_p$
28 or the data of Khoklov *et al.* for $^{235}\text{U}(\text{n},\text{f}) \bar{\nu}_p$. Finally, we include the CGMF model; it computes $\bar{\nu}_p$
29 based on model parameters that at the same time calculate fission fragments as a function of mass,
30 $Y(A)$, the average total kinetic energy as a function of incident-neutron energy, $\langle TKE \rangle(E_{\text{inc}})$, *etc.*
31 Such a detailed fission model that ties together many fission quantities has not been used to date for
32 any $\bar{\nu}_p$ evaluation in ENDF/B. Here, we show that we can get evaluated $^{235}\text{U}(\text{n},\text{f})$ and $^{239}\text{Pu} \bar{\nu}_p$ that
33 not only correspond well to experimental $\bar{\nu}_p$, but that the associated evaluated model parameters
34 also yield parameterizations of $Y(A)$, $\langle TKE \rangle(E_{\text{inc}})$, *etc.*, that correspond well to their respective
35 experimental data. The new evaluated $^{239}\text{Pu}(\text{n},\text{f}) \bar{\nu}_p$ was also combined into a ^{239}Pu test file with

36 the newest nuclear data for the ^{239}Pu prompt-fission neutron spectrum and fission cross sections.
37 This new ^{239}Pu file performed reasonably well in predicting PU-MET-FAST assemblies, reaction
38 rates in Jezebel and Flattop and three LLNL pulsed spheres. Due to that, the new $^{239}\text{Pu}(\text{n},\text{f})$ $\bar{\nu}_p$
39 evaluation presented here is being considered for ENDF/B-VIII.1. Hence, we can show here that
40 CGMF is able to produce ENDF/B quality $\bar{\nu}_p$ nuclear data.

41 **Keywords:** ^{239}Pu , ^{235}U , Average Prompt-fission Neutron Multiplicity, CGMF

42 **LA-UR-21-**

43 1 Introduction

44 This report documents our progress towards two FY21 NCSP (Nuclear Criticality Safety Program)
45 milestones for LANL. The text for both milestones is the same, and states in each case: “Evaluate
46 PFNS and multiplicity consistently, including angular information about prompt neutrons”. In one
47 case, this applies to the isotope ^{239}Pu , in the other to ^{235}U . The goal was to use the CGMF model [1]
48 for consistently modeling the average prompt-neutron multiplicity, $\bar{\nu}_p$, and PFNS (Prompt Fission
49 Neutron Spectrum). We did not succeed in modeling the PFNS consistently with $\bar{\nu}_p$ as there seems
50 to be a major model defect in the prediction of PFNS. Progress towards reducing this model defect is
51 documented in the companion report, Ref. [2].

52 However, we produced an evaluation of $\bar{\nu}_p$ for $^{239}\text{Pu}(\text{n},\text{f})$ using CGMF that is being considered
53 for ENDF/B-VIII.1. This tool has not been used for $\bar{\nu}_p$ evaluations so far. So, it was not clear
54 whether evaluated $\bar{\nu}_p$ with CGMF would correspond to experimental data of this observable, while
55 favorably linking back to other input quantities of CGMF such as $Y(A)$, $\langle TKE \rangle(E_{\text{inc}})$, etc. However,
56 such an evaluated $\bar{\nu}_p$ was achieved for $^{239}\text{Pu}(\text{n},\text{f})$. Moreover, the $^{239}\text{Pu}(\text{n},\text{f})$ $\bar{\nu}_p$ performs well when
57 used simultaneously with a new PFNS [3] and fission cross sections [4] for simulations of criticality,
58 reaction rates and LLNL pulsed sphere neutron-leakage spectra. Hence, this report shows for the first
59 time how CGMF can be used to produce ENDF/B-quality nuclear data for ^{239}Pu $\bar{\nu}_p$. First results for
60 ^{235}U $\bar{\nu}_p$ are also shown.

61 Section 2 discusses the input to the evaluations and Section 3 the evaluation algorithms used.
62 Several types of results are shown in detail in Section 4. On the one hand, we compare the evaluated
63 $\bar{\nu}_p$ to experimental data of the same quantity but also show in how far the evaluated model parameters
64 link back to $Y(A)$, $\langle TKE \rangle(E_{\text{inc}})$, etc. On the other hand, we show validation results calculated
65 with these new data compared to the experimental validation responses. All of this information is
66 assembled to showcase that an evaluation of $\bar{\nu}_p$ can be achieved that includes detailed fission modeling
67 while yielding reasonable predictions of validation experiments representing application calculations in
68 the field of criticality and safety, shielding, etc.

69 2 Input to the Evaluation

70 2.1 Model Input

71 There are several models and data needed for a complete CGMF calculation. Because we have already
72 described these models in detail in our FY20 report [5] (along with the full CGMF publication [1]), we
73 will not repeat the full information here but instead give an overview of the model.

74 Since CGMF spans incident neutrons from thermal to 20 MeV, we first need to know what compound
75 nucleus is fissioning. The multi-chance fission probabilities are tabulated and sampled at the given
76 incident energy to determine the reaction. If any neutrons are emitted before fission occurs, they can
77 either be emitted from the equilibrated compound nucleus or inelastically scattered from the target
78 (only energetically possible after approximately the opening of third-chance fission). In the first case,

79 the neutron energies are sampled from an evaporation spectrum and are distributed uniformly in the
 80 center-of-mass frame of the compound nucleus. In the second case, the neutron energy and angular
 81 distribution is more representative of inelastically scattered neutrons.

82 Once any pre-fission neutrons have been emitted, the excitation energy of the resulting compound
 83 nucleus is determined, and the split into the heavy and light fission fragment is determined based on
 84 distributions in mass and charge that were phenomenologically modeled and fit to available experi-
 85 mental data. The total kinetic energy of the fragment pair is sampled from a similarly constrained
 86 distribution, then this mass split—and the Q value of the resulting reaction—determines the total
 87 excitation energy. The total excitation and kinetic energies are split between the heavy and light
 88 fragments. The spin and parity of each fragment are also sampled. The initial conditions of the fis-
 89 sion fragments, $(A, Z, \text{TKE}, J, \pi)$, are used to initiate the Hauser-Feshbach statistical decay of prompt
 90 neutrons and γ rays, which conserves energy, spin, and parity at each step in the decay.

91 For each fission event, we keep track of the initial conditions of the fission fragments, along with
 92 their momenta before and after neutron emission. We also record the energies and directions of all of
 93 the emitted neutrons and γ rays. From these history files, we can reconstruct both average quantities,
 94 their distributions, and correlations among them. Particularly in this study, we focus on the average
 95 number of neutron emitted from each event, $\bar{\nu}_p$. We construct the sensitivities using an approximation
 96 that changes in model output $\bar{\nu}_i$ (observable of interest) are related linearly to small changes in each
 97 parameter p_j , $R_{ij} = \Delta\bar{\nu}_i / \Delta p_j$. This approximation is valid as long as the final parameter set is not too
 98 far from the initial parameter set; since CGMF has already been pretty closely optimized to experimental
 99 values for $\bar{\nu}_p$, this approximation should be a fairly good one, as we will show later in this report.

100 From previous studies, we know that $\bar{\nu}_p$ is most sensitive to the $\langle \text{TKE} \rangle$; just by varying the
 101 magnitude and slope of $\langle \text{TKE} \rangle$ as a function of incident energy, we can closely reproduce the available
 102 experimental data of $\bar{\nu}_p$ up to 20 MeV using CGMF. Still for this work, we include in the optimization
 103 all of the parameters for $Y(A)$, $\text{TKE}(E_{\text{inc}})$, $\text{TKE}(A)$, $\sigma_{\text{TKE}}(A)$, and $\alpha(E_{\text{inc}})$ (the energy dependence
 104 of the spin cutoff parameter). There is one important note that we have to make, especially due to
 105 differences between the inputs for $^{235}\text{U}(\text{n,f})$ and $^{239}\text{Pu}(\text{n,f})$ in CGMF: There is distinctly more data
 106 available for $^{233-235}\text{U}(\text{n,f})$ than for $^{237-239}\text{Pu}(\text{n,f})$. While there are separate parametrizations for the
 107 incident energy dependence of $\langle \text{TKE} \rangle$ on each of these six reactions, for the three Pu reactions, $Y(A)$,
 108 $\langle \text{TKE} \rangle(A)$, and $\sigma_{\text{TKE}}(A)$ are repeated for each of the compounds, just changing the compound mass
 109 where necessary. Also, the default spin cutoff parameter is used for ^{238}Pu and ^{237}Pu . For $^{235}\text{U}(\text{n,f})$,
 110 $^{234}\text{U}(\text{n,f})$, and $^{233}\text{U}(\text{n,f})$, however, the fission fragment initial conditions were optimized individually.
 111 Although it is impossible to tell for certain without starting with the same initial conditions for each
 112 evaluation, these differences could be the cause for some differences that are seen in how much the
 113 parameters change as well as the differences between the parameters at each chance fission.

114 For the Kalman filter evaluation (see Sec. 3), in addition to prior model parameters, we also need
 115 parameter uncertainties. Ideally, these are calculated at the same time as the optimization of the
 116 parameters; however, since this did not happen with CGMF, we now have to calculate them separately.
 117 The most straightforward way to calculate parameter uncertainties (albeit not the most accurate [6])
 118 is to calculate the parameter covariance matrix around the best-fit set of parameters, which can be
 119 done in an approximate way through the Jacobian. Where there are experimental data, we can fit
 120 our CGMF parametrizations and perform this calculation (additionally, many python routines calculate
 121 the covariance through the optimization procedure). When we follow this procedure, we end up with
 122 parametric uncertainties—particularly for the $Y(A)$ parameters—that are orders of magnitude larger
 123 than the parameters themselves. In this case, the parameters are essentially unconstrained, which
 124 should not be true.

Instead, we perform a Markov Chain Monte Carlo sampling of the parameters that is constrained
 by the Bayesian condition

$$\frac{\exp[-\chi_f^2]}{\exp[-\chi_i^2]} \geq R, \quad (1)$$

125 where $R \in [0, 1]$. This condition allows us to sample the parameter space, accepting parameter sets
 126 that lead to a worse fit than the initial parameter set, while still providing a reasonable description of
 127 the data. We make two estimations of the uncertainties: the first where we approximate the resulting
 128 parameter distribution as a Gaussian distribution (not a good approximation in many cases) and use
 129 the standard deviation as the one- σ uncertainty; and the second where we calculate the full width of
 130 the parameter distribution and use this as the three- σ uncertainty. Optimizations of $\bar{\nu}_p$ were performed
 131 with both uncertainties for ^{239}Pu , and it was found that the three- σ uncertainty lead to a more robust
 132 optimization.

133 The only outliers in this procedure were for the magnitude of $\langle \text{TKE} \rangle (E_{\text{inc}})$ and the spin cutoff
 134 parametrization. Although we can directly fit the $\langle \text{TKE} \rangle$ as a function of incident neutron energy, the
 135 data sets span several MeV which was not captured by the Monte Carlo sampling. Here, we set the
 136 1 σ uncertainty to 2 MeV and the 3 σ uncertainty to 4 MeV. Also, because the spin cutoff parameters
 137 cannot be directly fit to data, we use the same percent uncertainty from the magnitude of $\langle \text{TKE} \rangle$ and
 138 its slope. Finally, the parametric uncertainties for each chance fission are taken to be the same, as
 139 there is generally less data available away from the major actinides. Because of the lack of data, we
 140 should really increase the uncertainties on the parameters for second- and third-chance fission, but we
 141 found that this increase was not necessary.

142 2.2 Experimental Input

143 For the evaluations of $\bar{\nu}_p$, all $^{235}\text{U}(\text{n},\text{f})$ and $^{239}\text{Pu}(\text{n},\text{f})$ $\bar{\nu}_p$ experimental data listed in Tables I and II were
 144 extracted from EXFOR. The EXFOR entry and, if available, the literature of each data set was studied
 145 in enough detail to decide whether it should be adopted or not. Some data sets in Tables I and II
 146 were rejected because of the energy range of their data; the nuclear data resulting from our evaluations
 147 are only anticipated to span an incident-neutron energy range from 100 keV to 30 MeV. Hence, any
 148 experimental data set that was in its entirety outside the energy range of the evaluation, was rejected.
 149 Other data sets had to be rejected for physics reasons or because of inadequate uncertainty information
 150 on the data set. The reasons for rejecting individual $^{235}\text{U}(\text{n},\text{f})$ and $^{239}\text{Pu}(\text{n},\text{f})$ $\bar{\nu}_p$ experimental data
 151 sets are briefly summarized in Appendix B and Appendix C, respectively.

Table I: Measured $\bar{\nu}$ data sets for $^{235}\text{U}(\text{n},\text{f})$ found in EXFOR.
 The EXFOR No., first author, year of publication and E_{inc}
 are given. In the second-last column, it is listed whether
 these data were accepted for the evaluations presented here
 (yes) or not (no). The last column tabulates all uncertainty
 sources that were added to those uncertainties found in the
 literature of the respective data set. The variable names are
 defined in Table III.

EXFOR #	First Author & Year	Monitor	E_{inc} (MeV)	Acc.	Added Unc.
41673.003	Apal'lin 1962	N/A	2.53e ⁻⁸	no	-
41397.01	Apal'lin 1965	N/A	2.53e ⁻⁸	no	-
21139.003	Barnard 1965	N/A	2.53e ⁻⁸	no	-
12397.002	Bethe 1955	N/A	4–4.5	no	-
40158.006	Bljumkina 1964 [7]	$^{235}\text{U}(\text{n},\text{f})$ $\bar{\nu}_t$	0.08–0.99	yes	$\delta c_{DG}, \delta b, \delta \omega$ $\delta \tau, \delta \chi, \delta a$ δd
41110.006	Boikov 1991 [8]	$^{252}\text{Cf}(\text{sf})$ $\bar{\nu}_p$	2.9–14.7	yes	$\delta c_{ff}, \delta b, \delta \omega$ $\delta \tau, \delta a, \delta d$ $\delta d_{s/m}$
30772.003	Boldeman 1985	$^{252}\text{Cf}(\text{sf})$ $\bar{\nu}_p$	2.53e ⁻⁸	no	-

21454.005	Colvin 1965 [9]	$^{252}\text{Cf(sf)} \bar{\nu}_p$	2.53e^{-8} –2.57	yes	$\delta c_{DG}, \delta b, \delta c_{ff}$ $\delta\omega, \delta\tau, \delta d_{s/m}$
007+008					$\delta c_{DG}, \delta a$ $\delta d_{s/m}$
20025.002	Conde 1965 [10]	$^{252}\text{Cf(sf)} \bar{\nu}_p$	7.5–14.8	yes	-
14294.002	DeVolpi 1966	N/A	2.53e^{-8}	no	$\delta c_{DG}, \delta\omega$
12337.003	Diven 1956 [11]	$^{235}\text{U(n,f)} \bar{\nu}_p$	0.08	yes	$\delta\tau, \delta a, \delta d$ $\delta d_{s/m}$
12436.002	Diven 1957	N/A	1.25–4.8	no	-
14297.007	Diven 1961 [12]	$^{252}\text{Cf(sf)} \bar{\nu}_p$	4	yes	$\delta c_{DG}, \delta c_{ff}$ $\delta\omega, \delta\chi, \delta a$ $\delta d, \delta d_{s/m}$
14297.006	Diven 1961(2)	$^{252}\text{Cf(sf)} \bar{\nu}_t$	2.53e^{-8}	no	-
21252.005	Fieldhouse 1966 [13]	$^{252}\text{Cf(sf)} \bar{\nu}_t$	0.075–14.2	yes	$\delta c_{DG}, \delta b$ $\delta c_{ff}, \delta\omega, \delta\tau$ $\delta\chi, \delta a, \delta d$
21252.006	Fieldhouse 1966(2) [13]	$^{252}\text{Cf(sf)} \bar{\nu}_t$	0.04–7.96	yes	$\delta c_{DG}, \delta b$ $\delta c_{ff}, \delta\omega$ $\delta\tau, \delta\chi$ $\delta a, \delta d$
40806.003	Flerov 1958	N/A	14.1	no	-
22592.003	Frehaut 1973	$^{252}\text{Cf(sf)} \bar{\nu}_t$	2.00e^{-6} – 4.46e^{-5}	no	-
20506.002	Frehaut 1980 [14]	$^{252}\text{Cf(sf)} \bar{\nu}_t$	1.36–14.79	yes	$\delta c_{DG}, \delta b$ $\delta c_{ff}, \delta\omega$ $\delta\tau, \delta\chi, \delta a$ $\delta d, \delta d_{s/m}$
21685.002	Frehaut 1980(2)	$^{252}\text{Cf(sf)} \bar{\nu}_t$	2.279–2.828	no	-
21785.003	Frehaut 1982 [15]	$^{252}\text{Cf(sf)} \bar{\nu}_t$	1.14–14.66	yes	$\delta c_{DG}, \delta b$ $\delta c_{ff}, \delta\omega$ $\delta\tau, \delta\chi, \delta a$ $\delta d, \delta d_{s/m}$
12345.003	Fultz 1966	N/A	2.53e^{-8}	no	-
12833.001/3	Gwin 1984	$^{252}\text{Cf(sf)} \bar{\nu}_t$	2e^{-8} – 4.1e^{-5}	no	-
12906.003					
13101.003	Gwin 1986 [16]	$^{252}\text{Cf(sf)} \bar{\nu}_p$	0.0005–9	yes	$\delta\chi, \delta a$ $\delta d_{s/m}$
12326.004	Hopkins 1963 [17]	$^{252}\text{Cf(sf)} \bar{\nu}_t$	2.53e^{-8} –14.5	yes	$\delta c_{DG}, \delta c_{ff}$ $\delta\omega, \delta\chi, \delta a$ $\delta d, \delta d_{s/m}$
10574.003	Howe 1976	$^{235}\text{U(n,f)} \bar{\nu}_t$	5.20e^{-7} – 8.43e^{-5}	no	-
14051.002	Howe 1976(2) [18]	$^{252}\text{Cf(sf)} \bar{\nu}_t$	8.90e^{-2} –23.3	yes	$\delta c_{DG}, \delta b$ $\delta c_{ff}, \delta\omega$ $\delta\tau, \delta\chi, \delta a$ $\delta d, \delta d_{s/m}$
12870.004	Howe 1984	$^{235}\text{U(n,f)} \bar{\nu}_p$	17–48.9	no	-
21696.004	Johnstone 1956	$^{235}\text{U(n,f)} \bar{\nu}_t^M$	2.5–14.1	no	-
20427.002	Kaeppler 1975 [19]	$^{235}\text{U(n,f)} \bar{\nu}_p$	0.225–1.363	yes	$\delta c_{ff}, \delta\tau$
40356.003	Kalashnikova 1957	$^{235}\text{U(n,f)} \bar{\nu}_t^M$	2.53e^{-8}	no	-
33102.004	Kappor 1963	N/A	2.53e^{-8}	no	-
41378.002	Khoklov 1994 [20]	$^{252}\text{Cf(sf)} \bar{\nu}_p$	0.048–14.122	yes	$\delta\chi, \delta a$

12419.002	Meadows 1962 [21]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	0.03–1.76	yes	$\delta c_{DG}, \delta b, \delta c_{ff}$ $\delta\omega, \delta\tau, \delta a, \delta d$
12391.002	Meadows 1965 [22]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_t$	3.91–6.36	yes	$\delta c_{DG}, \delta b, \delta c_{ff}$ $\delta\omega, \delta\tau, \delta a, \delta d$
12399.002/4	Meadows 1967 [23]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_t$	0.039–1	yes	$\delta c_{DG}, \delta b, \delta c_{ff}$ $\delta\omega, \delta\tau, \delta a, \delta d$
30022.002	Nadkarni 1967	N/A	0.37–2.13	no	-
40871.003	Nefedov 1983	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	2.53e^{-8}	no	-
40033.002	Nesterov 1970 [24]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	2.53e^{-8} –1.51	yes	$\delta c_{DG}, \delta b, \delta c_{ff}$ $\delta a, \delta d, \delta d_{s/m}$
004/6/8					
40132.002	Prokhorova 1967 [25]	$^{235}\text{U}(\text{n,f}) \bar{\nu}_p$	0.37–3.25	yes	$\delta c_{DG}, \delta b, \delta c_{ff}$ $\delta\omega, \delta\tau, \delta\chi$ $\delta a, \delta d, \delta d_{s/m}$
40392.002/3	Protopopov 1958 [26]	$^{235}\text{U}(\text{n,f}) \bar{\nu}_p^M$	14.8	yes	$\delta b, \delta c_{ff}, \delta\omega$ $\delta\tau, \delta\chi, \delta a$ $\delta d, \delta d_{s/m}$
10427.003	Reed 1973	$^{235}\text{U}(\text{n,f}) \bar{\nu}_p^M$	1.20e^{-8} – 2.64e^{-5}	no	-
21456.005	Sanders 1956	N/A	2.53e^{-8}	no	-
40058.004	Savin [27]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	0.65–6.6	yes	$\delta c_{DG}, \delta c_{ff}, \delta\omega$ $\delta\tau, \delta a, \delta d$ $\delta d_{s/m}$
40262.002	Savin 1972 [28]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	0.86–5.35	yes	$\delta c_{DG}, \delta c_{ff}, \delta\omega$ $\delta\tau, \delta a, \delta d$ $\delta d_{s/m}$
40493.002	Savin 1979 [29]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	0.198–0.985	yes	$\delta c_{DG}, \delta c_{ff}, \delta\omega$ $\delta\tau, \delta a, \delta d$ $\delta d_{s/m}$
20600.002	Simon 1976	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	2.03e^{-6} – 7.46e^{-5}	no	-
40388.006	Smirenkin 1958 [30]	$^{235}\text{U}(\text{n,f}) \bar{\nu}_p^M$	4–15	yes	$\delta b, \delta c_{ff}, \delta\omega$ $\delta\tau, \delta\chi, \delta a$ δd
12395.002	Snyder 1944	N/A	2.53e^{-8}	no	-
20568.002	Soleihac 1970 [31]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	0.223–1.87	yes	$\delta c_{DG}, \delta b, \delta c_{ff}$ $\delta\omega, \delta\tau, \delta\chi$ $\delta a, \delta d$
40785.002	Vasilev 1960	N/A	14.3	no	-
41597.004	Vorobyev 2013	N/A	3.63e^{-8}	no	-
30006.002	Walsh 1971 [32]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	0.11–1.9	yes	$\delta\omega, \delta a, \delta d$
20113.003	Widen 1973	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	2.53e^{-8}	no	-

Table II: Measured $\bar{\nu}$ data sets for $^{239}\text{Pu}(\text{n},\text{f})$ found in EXFOR. The EXFOR No., first author, year of publication, main reference and E_{inc} are given. In the second-last column, it is listed whether these data were accepted for the evaluations presented here (yes) or not (no). The last column tabulates all uncertainty sources that were added to those uncertainties found in the literature of the respective data set. The variable names are defined in Table III.

EXFOR no.	First Author & Year	Monitor	E_{inc} (MeV)	Acc.	Added Unc.
41397.008	Apalin 1965	N/A	2.53e^{-8}	no	-
30772.004	Boldeman 1980 [33]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	2.53e^{-8}	no	-
20052.002	Conde 1968 [34]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	$4.22\text{--}14.8$	yes	$\delta c_{DG}, \delta \chi, \delta a$ $\delta d_{s/m}$
12337.004	Diven 1956 [11]	$^{235}\text{U}(\text{n},\text{f}) \bar{\nu}_p$	0.08	yes	$\delta c_{DG}, \delta \omega, \delta \tau$ $\delta a, \delta d, \delta d_{s/m}$
14279.009/10	Diven 1961 [11]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_t$	$2.53\text{e}^{-8}\text{--}4$	no	-
20490.003	Frehaut 1973 [14]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	$1.36\text{--}14.79$	yes	$\delta c_{DG}, \delta b, \delta c_{ff}$ $\delta \omega, \delta \tau, \delta \chi, \delta a, \delta d$
21685.004	Frehaut 1980 [14]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	$22.79\text{--}28.28$	no	-
10759.004	Gwin 1978 [16]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	$5\text{e}^{-5}\text{--}6.4$	no	-
12906.002	Gwin 1984 1 [16]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	$5\text{e}^{-9}\text{--}6\text{e}^{-5}$	no	-
12833.004	Gwin 1984 2 [16]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	$5\text{e}^{-9}\text{--}1\text{e}^{-5}$	no	-
13101.004	Gwin 1986 [16]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	$5\text{e}^{-4}\text{--}10$	yes	$\delta \chi, \delta a, \delta d_{s/m}$
12326.005/6	Hopkins 1963 [17]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	$2.53\text{e}^{-8}\text{--}14.5$	yes	$\delta c_{DG}, \delta c_{ff}, \delta \omega$ $\delta a, \delta d, \delta d_{s/m}$
30600.002	Huanqiao 1980 [35]	$^1\text{H}(\text{n},\text{el}) \text{cs}$	$0.186\text{--}1.44$	no	-
21696.006	Johnstone 1965 [36]	$^{235}\text{U}(\text{n},\text{f}) \bar{\nu}_t^M$	14.1	no	-
40757.002	Kalashnikova 1955 [37]	N/A	2.53e^{-8}	no	-
40523.002	Khoklov 1976 [38]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_t$	$1.06\text{--}1.81$	yes	$\delta c_{DG}, \delta c_{ff}, \delta \omega$ $\delta \chi, \delta a, \delta d, \delta d_{s/m}$
21453.004	Leroy 1960 [39]	$^{238}\text{U}(\text{n},\text{f}) \bar{\nu}_p$	14.2	no	-
-	Marini 2021 [40]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	$0.97322\text{--}19.8958$	yes	$\delta c_{DG}, \delta c_{ff}, \delta \omega$ $\delta a, \delta d, \delta d_{s/m}$
21135.007/8	Mather 1965 [41]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_t$	$2.53\text{e}^{-8}\text{--}4.02$	yes	$\delta c_{DG}, \delta \omega, \delta \tau$
20453.002	Mather 1970 [42]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	$0.0775\text{--}1.15$	yes	$\delta c_{DG}, \delta \omega, \delta \tau$ $\delta a, \delta d, \delta d_{s/m}$
40871.002	Nefedov 1983	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	2.53e^{-8}	no	-
4033.003/7	Nesterov 1970 [24]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	$2.53\text{e}^{-8}\text{--}1.607$	no	-
23012.009	Nishio 1988	N/A	2.53e^{-8}	no	-
40429.004	Nurpeisov 1975 [43]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	0--4.89	yes	$\delta c_{DG}, \delta \omega, \delta d_{s/m}$
21456.007	Sanders 1956	$^{235}\text{U}(\text{n},\text{f}) \bar{\nu}_p^M$	2.53e^{-8}	no	-
40058.003	Savin 1970 [27]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	0.89--4.7	yes	$\delta c_{DG}, \delta c_{ff}, \delta \omega$ $\delta \tau, \delta a, \delta d, \delta d_{s/m}$
40388.007	Smirenkin 1959 [30]	$^{239}\text{Pn}(\text{n},\text{f}) \bar{\nu}_p^M$	4--15	no	-
20568.004	Soleihac 1970 [31]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	$0.21\text{--}1.375$	yes	$\delta c_{DG}, \delta b, \delta c_{ff}$ $\delta \omega, \delta \tau, \delta \chi, \delta a, \delta d$
40148.003	Volodin 1970 (1) [44]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	$2.53\text{e}^{-8}\text{--}1.6$	yes	$\delta c_{ff}, \delta \omega, \delta \tau$ $\delta \chi, \delta a, \delta d, \delta d_{s/m}$

40148.005	Volodin 1970 (2) [44]	$^{239}\text{Pu}(\text{n,f}) \bar{\nu}_p^M$	0.08–0.7	yes	$\delta c_{ff}, \delta\omega, \delta\tau$
41611.008	Vorobyev 2016	N/A	thermal spect.	no	$\delta\chi, \delta a, \delta d, \delta d_{s/m}$
30006.004	Walsh1970 [32]	$^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$	0.2–1.9	yes	δd

Table III: Typical uncertainty sources expected to apply to ratio liquid-scintillator measurements of $\bar{\nu}_p$ are listed. The variable names defined in this table are used for the last columns of Tables I and II.

Variable	Uncertainty Source
δc_{DG}	Delayed Gamma-ray Uncertainties
δb	Random-background Uncertainties
δc_{ff}	False-fission Uncertainties
$\delta\omega$	Impurity Uncertainties
$\delta\tau$	Deadtime Uncertainties
$\delta\chi$	PFNS Uncertainties
δa	Uncertainties of Angular Distribution of Fission Neutrons
$\delta\bar{\nu}^m$	Monitor Uncertainties
δd	Uncertainty due to Thickness of Sample
$\delta d_{s/m}$	Sample-displacement Uncertainty
ΔE_{inc}	Energy Uncertainty

152 A detailed uncertainty estimate and literature review was undertaken for all remaining data sets.
153 Appendix B and Appendix C concisely summarizes some key concerns on each data set and comments
154 on the individual uncertainty estimate.

In general, care was taken to apply the same uncertainty procedure for each data set and to assume consistent uncertainty values for those that were missing in the literature or EXFOR or both. To this end, a module was developed in the code package ARIADNE [45] to estimate experimental covariances for $\bar{\nu}$ measurements. Codes were developed that estimated total covariances, $\text{Cov}_{i,j}^{tot}$, for absolute measurements and ratio measurements by

$$\text{Cov}_{i,j}^{tot} = \sum_k \delta_i^k \text{Cor}_{i,j}^k \delta_j^k, \quad (2)$$

155 accounting for individual uncertainty values, δ_i^k , and correlation coefficients, $\text{Cor}_{i,j}^k$, for each expected
156 uncertainty source k at incident-neutron energy i or j . This implicitly assumes that the individual
157 uncertainty sources k are partitioned such that they be independent.

158 The typical uncertainty uncertainty sources encountered in a $\bar{\nu}_p$ measurement are listed in Table III
159 and were based on information in Ref. [46]. It can be seen in Tables I and II that uncertainty values
160 were missing for at least one or more uncertainty sources for each measurement adopted for the
161 evaluation. These missing uncertainties and their correlations were estimated following templates of
162 expected uncertainties for ratio $\bar{\nu}$ measurements [46]. The values assumed for a particular δ_i^k and $\text{Cor}_{i,j}^k$
163 are described in Appendix A.

164 Correlation coefficients between total uncertainties of different experiments are usually low as the
165 dominant contribution to the uncertainty of many measurements is statistical in nature. To be more
166 explicit, systematic uncertainties range from typically 0.5–0.9%, while statistical uncertainties often
167 assume values of 1–2%. Also, many systematic uncertainties are only weakly correlated across mea-
168 surements (see, *e.g.*, δb , δc_{ff} , δa as shown in Table XIII of Ref. [46]). The one exception is when
169 multiple data sets were undertaken at the same facility by the same team using similar equipment.

170 Hence, correlations between uncertainties of different experiments were estimated for groups of
171 data that were correlated. For instance, uncertainties between data of various Meadows data sets, all

172 Savin data sets, all adopted Frehaut data sets and Diven 1961 and Hopkins 1963 data were estimated
173 for $^{235}\text{U}(\text{n},\text{f}) \bar{\nu}_p$.

174 In addition to that, a monitor uncertainty of 0.42% with full correlation across all data sets was
175 applied to account for uncertainties in the current $^{252}\text{Cf}(\text{sf}) \bar{\nu}$ put forth by the Neutron Data Standards
176 committee [47]. While not all data were measured in ratio to this particular reaction, all of them were
177 ratio measurements that tie back to a monitor reaction that either relies itself on $^{252}\text{Cf}(\text{sf}) \bar{\nu}$ if it isn't
178 $^{252}\text{Cf}(\text{sf}) \bar{\nu}$ to begin with.

179 Phil Young's experimental database was still available for his $^{239}\text{Pu}(\text{n},\text{f}) \bar{\nu}_p$ evaluation which allows
180 us to point out the main differences of his and our work. Phil adopted uncertainties mostly as given
181 from EXFOR, *i.e.*, without estimating missing uncertainty sources. If he did not trust a data set
182 (*e.g.*, in the case of Huanqiao $^{239}\text{Pu}(\text{n},\text{f}) \bar{\nu}_p$ experimental data), he doubled the uncertainties. He did
183 not account for energy uncertainties which are mostly a minor uncertainty source given the smooth
184 behavior of $\bar{\nu}_p$. It was unclear to the first author whether he accounted for any correlations between
185 different uncertainties at different E_{inc} or across experiments, but given that he mentioned in a journal
186 publication a covariances analysis [48], I assume that he at least accounted for correlations for un-
187 certainties of individual experiments. But, it is questionable if he accounted for correlations between
188 experiments.

189 Contrary to Phil Young, the data of Huanqiao and Nesterov were rejected for this evaluation based
190 on physics reasons (too low efficiency in both cases, Nesterov data were actually rejected by its own
191 experimental team in a later publication), while he rather chose to double their uncertainties given
192 his own suspicions on the data. The first author also rejected the data by Johnstone, Smirenkin and
193 Leroy as described in Appendix C, while Phil Young took them into account. These latter three data
194 sets are highly uncertain.

195 As will be shown in Section 4, these above choices had little impact on the evaluated results and
196 the new evaluated results with only experimental data were rather close to ENDF/B-VIII.0. However,
197 the data of Marini et al. [40] obtained with the Chi-Nu array at LANSCE became recently available
198 through a collaboration between the CEA and NNSA. These data are of very low statistical uncertainty
199 and comparable systematic uncertainties to previous data sets. Due to that their overall uncertainty
200 and variation over E_{inc} are distinctly reduced and these data provide decisive information for the
201 evaluation. While they are very close to ENDF/B-VIII.0, they do lead to more distinct differences to
202 ENDF/B-VIII.0 than any of the above changes in the experimental database as shown in Section 4.

203 Unfortunately, the experimental database for Phil Young's $^{235}\text{U}(\text{n},\text{f}) \bar{\nu}_p$ evaluation was not available
204 at LANL anymore. Also, the first author was unable to find any detailed description of this evaluation,
205 despite going back through decades of LANL reports. A few paragraphs of information were found in
206 Ref. [48] and in MF=1 entries. From there, we know today that Khoklov and Boikov data were not
207 included in the current ENDF/B-VIII.0 evaluation as these data were published after the evaluation.
208 It was mentioned in an MF=1 entry that a re-evaluation is not necessary as the data were in fair
209 agreement with his evaluation. However, Khoklov data are systematically lower than the current
210 ENDF/B-VIII.0 evaluation below 0.8 MeV leading to changes in the evaluated results. From Ref. [48],
211 one can conclude that the evaluation is based on a statistical analysis only including all experimental
212 data at the time and using covariances for individual data sets. Likely included are data of Frehaut,
213 1982, Howe 1984, Gwin 1986, Savin 1972 & 1979 and Soleihac 1970.

214 3 Evaluation Methods

We use two evaluation techniques here, the generalized least squares algorithm and the Kalman filter
method. Both can be encoded in one and the same set of equations, that give a vector of evaluated

mean values \mathbf{N} and Cov^N ,

$$\begin{aligned} \mathbf{N} &= \mathbf{p} + \text{Cov}^N \mathbf{S}^t (\text{Cov}^e)^{-1} (\mathbf{e} - \mathbf{S}\mathbf{p}), \\ \text{Cov}^N &= \text{Cov}^p - \text{Cov}^p \mathbf{S}^t \mathbf{Q}^{-1} \mathbf{S} \text{Cov}^p, \end{aligned} \quad (3)$$

where

$$Q = \mathbf{S} \text{Cov}^p \mathbf{S}^t + \text{Cov}^e. \quad (4)$$

215 The variables \mathbf{e} and Cov^e encode all experimental data used for the evaluation and their covariances
216 estimated as described in Section 2.2.

217 If we apply the equations above in the sense of **generalized least squares** (GLS), \mathbf{p} and Cov^p
218 contain non-informative prior information in the $\bar{\nu}_p$ space, *i.e.*, ENDF/B-VIII.0 mean values with
219 100% uncertainty and a diagonal covariance matrix. The design matrix \mathbf{S} and its transpose \mathbf{S}^t were
220 calculated in Ref. [49] by linear interpolation to bring experimental data onto the E_{inc} grid of the prior
221 data. Hence, this generalized least squares approach as applied here gives evaluated results based on
222 only experimental data. This approach is in essence the same that Phil Young took for his evaluation
223 of $^{239}\text{Pu}(\text{n,f}) \bar{\nu}$. The evaluated mean values \mathbf{N} and Cov^N correspond in this case to evaluated $\bar{\nu}$ and
224 their covariances.

225 If we want to bring into the evaluation the CGMF model, we need to apply Eq. (3) as a **Kalman**
226 **filter**. To this end, \mathbf{p} are model-parameter values and Cov^p are their covariances. The design matrix
227 needs to convert experimental data into model-parameter space. This is achieved by taking as \mathbf{S} the
228 sensitivity vectors R_{ij} as discussed in Section 2.1. The evaluated mean values \mathbf{N} and Cov^N correspond
229 in this case to evaluated model parameters of CGMF that are then fed again into the model code to
230 obtain an evaluated $\bar{\nu}^p$.

231 These two approaches are taken here in order to get two kinds of evaluated results: On the one
232 hand, we get via GLS evaluated results based on only experimental data. This is the approach taken by
233 Phil Young, and, hence, we can compare our results to those of Phil and see if we come reasonably close
234 to his values. This is an important step to guarantee overall consistency of our first results. On the
235 other hand, we can include the CGMF model via the Kalman filter technique. We gain an understanding
236 of the impact of the model on the evaluation by comparing GLS and Kalman filter evaluated $\bar{\nu}_p$. This
237 comparison is an equally important step in our analysis to guarantee that the model does not have
238 an adverse impact on our evaluated results. It is expected to smooth out unphysical structures in the
239 evaluation caused by statistical variations in the experimental data, but if the evaluated results with
240 CGMF would have a very different trend than GLS results, one might question the impact of the model.

241 It should be noted that the experimental covariances were corrected for an effect termed “Peelle’s
242 Pertinent Puzzle”, where the evaluated mean value of strongly correlated experimental data lies outside
243 of the range of the experimental data due to an improperly formulated covariance matrix [50]. This
244 effect has been observed for the evaluated results here. This is not surprising as a common, fully
245 correlated uncertainty source was applied across the whole experimental covariances matrix, namely
246 that one related to the $^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$. The covariance matrix was corrected following Ref. [50] in order
247 to minimize the impact of “Peelle’s Pertinent Puzzle”.

248 4 Results

249 4.1 Evaluated Results of $^{239}\text{Pu}(\text{n,f}) \bar{\nu}_p$

250 Two types of evaluations were performed here, a GLS evaluation including only experimental data
251 and a second one using the Kalman filter to include the CGMF model. The first type of evaluation
252 was undertaken to better compare to ENDF/B-VIII.0 as Phil Young evaluated his $\bar{\nu}$ based on only
253 experimental data.

254 **Evaluated Results of $^{239}\text{Pu}(\text{n},\text{f}) \bar{\nu}_p$ using Only Experimental Data** As mentioned before, the
255 evaluation presented here differs from that of Phil Young in:

- 256 • An updated uncertainty estimate for all adopted data sets,
- 257 • The first author rejected the data of Huanqiao, Nesterov, Smirenkin, Johnstone and Leroy. Phil
258 Young doubled the uncertainties of the first two data sets and the uncertainties of the latter
259 three are very high to begin with,
- 260 • Very recent data of Marini were included that were previously not available.

261 If we evaluate $^{239}\text{Pu} \bar{\nu}_p$ with only experimental data minus the data of Marini (which were not
262 available for the evaluation of Phil Young), the resulting $\bar{\nu}_p$ are very close in Fig. 1 to Phil's results
263 despite the many changes to the experimental uncertainties. The reason for that lies in the fact that
264 a dominant uncertainty source is δc , statistical uncertainties that was available for all data sets used
265 (or could at least be backed out). Hence, our total uncertainties likely only differed little as did our
266 total covariances. Our evaluated results only differ visibly from 0.1 to 0.4 MeV. In this energy range,
267 experimental data are scarce and rather scattered. Looking at ENDF/B-VIII.0, I would assume that
268 Phil did a linear fit to obtain a physical curve; as the two evaluations "touch" at specific E_{inc} nodes.
269 I would assume that Phil used those nodes for the linear fit. Hence, while the two evaluations look
270 like they disagree between 0.1 and 0.4 MeV, they are still in reasonable agreement taking into account
271 that Phil likely post-processed his evaluation bearing in mind physics expected behavior.

272 While the evaluated mean values of this evaluation with only experimental data agree well with
273 ENDF/B-VIII.0, the evaluated uncertainties differ distinctly in Fig. 2 from 0.5–15 MeV. One reason
274 why a re-evaluation of the $^{239}\text{Pu}(\text{n},\text{f}) \bar{\nu}_p$ was proposed, was that it was shown via the PUBs method-
275 ology [51, 52] that the evaluated uncertainties in ENDF/B-VIII.0 were underestimated considering the
276 differential information available for this evaluation. This is illustrated in Fig. 2, where ENDF/B-
277 VIII.0 uncertainties are below the minimal realistic bound estimated via PUBs based on differential
278 information. The new evaluated uncertainties without the data of Marini (i.e., the database that was
279 taken into account for the assessment of PUBs bounds) lie well within PUBs bounds and are, therefore,
280 indicated to be more realistic.

281 If we include Marini data into the above evaluation, small changes can be observed in Fig. 1 until
282 6 MeV. Above 7 MeV (i.e., above the second-chance fission threshold), the $^{239}\text{Pu}(\text{n},\text{f}) \bar{\nu}_p$ is slightly
283 smaller than ENDF/B-VIII.0. from 8–10 MeV, around 14 MeV and above 16 MeV. If we consider that
284 second-chance fission opens up from 6–7 MeV, third-chance fission from 10–12 MeV and fourth-chance
285 fission around 19 MeV, one could conclude that there are small structures in $^{239}\text{Pu}(\text{n},\text{f}) \bar{\nu}_p$ that slightly
286 increase $\bar{\nu}$ at the respective thresholds compared to the more linear function of ENDF/B-VIII.0. The
287 precise data of Marini et al. can capture such a behavior for the first time.

288 Figure 3 shows the ratio of the new evaluations to ENDF/B-VIII.0 and to each other and allow
289 us to study in more detail where changes happened. The evaluation without Marini data agrees
290 with ENDF/B-VIII.0 within 0.5% and meanders around ENDF/B-VIII.0 pointing to differences in
291 the smoothing algorithms chosen by Phil and the first author. When Marini data are introduced, the
292 evaluation gets lower above 5 MeV.

293 It is also clear from Figs. 2 and 3 that the evaluated uncertainties including Marini data are lower
294 again. That is justified given the low uncertainties of Marini data that were not considered in the
295 PUBs analysis.

296 All in all, we were able to produce evaluated data with only experimental data that match ENDF/B-
297 VIII.0 closely enough to show that the results are realistic. This evaluation is now the starting point
298 for including the CGMF model.

299 **Evaluated Results of $^{239}\text{Pu}(\text{n},\text{f}) \bar{\nu}_p$ Including CGMF** Several test evaluations were performed
300 before we zeroed in on one particular evaluation that corresponds to our final reported data. We are

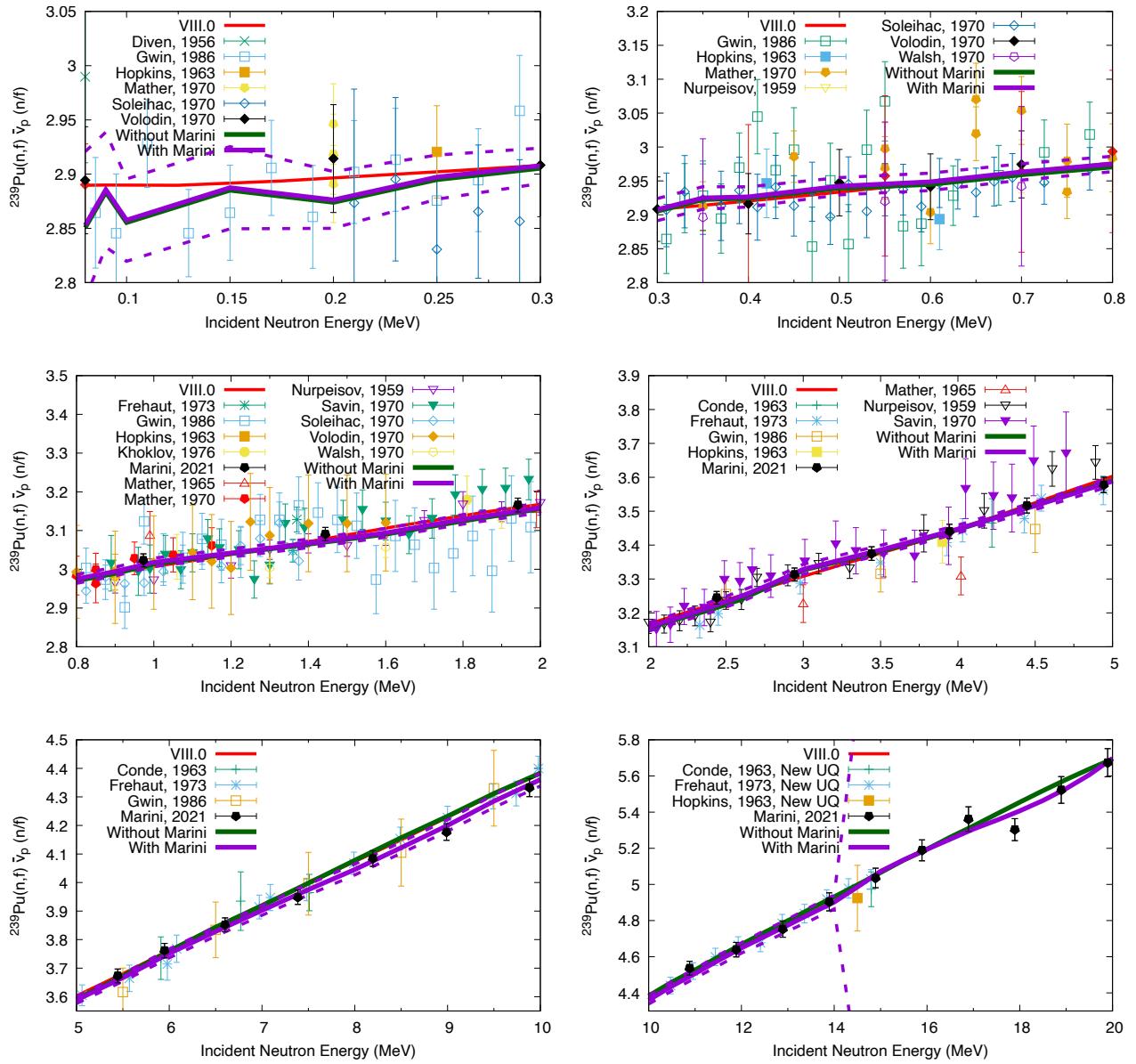


Figure 1: Evaluated $^{239}\text{Pu}(n,f) \bar{\nu}_p$ are shown in comparison to ENDF/B-VIII.0 and experimental data that were used for the evaluation. The evaluated data were obtained with a statistical analysis of only experimental data. One evaluation is shown with and without Marini experimental data.

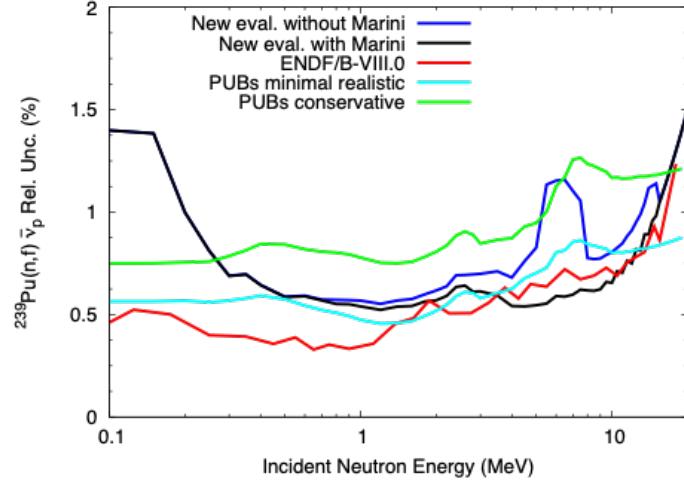


Figure 2: Evaluated uncertainties with and without Marini are compared to ENDF/B-VIII.0 uncertainties and PUBs bounds.



Figure 3: Ratios of evaluated mean values (left-hand side) and uncertainties (right-hand side) for $^{239}\text{Pu}(\text{n},\text{f}) \bar{\nu}_p$ are shown for ENDF/B-VIII.0 and the evaluations presented in Fig. 1.

301 only going to show a few of those example evaluations to illustrate why the selected evaluation was
302 deemed the most appropriate one in the interest of length.

303 The evaluation described here was obtained by using all experimental data that were indicated as
304 accepted in Table II and the CGMF model. The PPP effect was corrected for and the experimental data
305 were used in the evaluation as is (*i.e.*, not brought to a common grid before the evaluation). The larger
306 parameter uncertainties mentioned in Section 2.1 were assumed as one- σ bound. To be explicit, what
307 the second author assumed to be covering the full distribution of parameters (*i.e.*, three sigma) was
308 assumed as one- σ bound. That might sound like a large over-estimate of the prior parameter space.

309 However, as was already mentioned at the end of Section 2.1, the second- and third-chance fission
310 parameters could not be well-defined due to missing experimental data. Hence, we assume that the
311 parameter uncertainties were under-estimated to begin with. So, we enlarged the parameter space to
312 allow for all necessary changes in the parameters. These changes in the parameter space are shown in
313 ratio to the prior parameters in Figs. 4, 5 and 6. The first-chance fission parameter uncertainties all
314 decrease indicating that the parameter space is large enough for the evaluation. That is true for most,
315 but not all, second- and third-chance fission parameters.

316 Another issue, that is indicated in Figs. 4, 5 and 6 is the grid chosen for the evaluation. There is
317 a lot of freedom in fitting the model parameters (more than 90 parameters are fitted to about 40 grid
318 points). Hence, the model is prone to overfitting, especially in the energy range where we had scarce
319 and scattered experimental data. To avoid over-fitting to statistical variations in experimental data,
320 the grid was down-selected to (thermal, 0.1, 0.2, 0.5, 0.8, 1.3, 1.75, 2.5, 3.0, 3.5, etc.). The impact
321 on the evaluated parameters can be seen in Figs. 4, 5 and 6. The changes in first-chance fission
322 parameters is more modest while second-chance fission parameters change distinctly (and led to better
323 predicted FY(A), *etc.*).

324 It is interesting to note that μ_1^a , μ_2^a and a for first-chance fission change very little in the evaluation.
325 These parameters were tuned previously to predict a $^{239}\text{Pu}(n,f)$ $\bar{\nu}_p$ agreeing to experimental data.
326 These tuned parameters entered the evaluation. This tuning was very successful as is indicated by the
327 small changes from the Kalman filter. Instead we see changes in the width of FY(A), parameterization
328 of $\langle TKE \rangle$ and the spin-parity distribution which is not well understood. It will be later shown that
329 these evaluated parameters reproduce experimental data linked to them reasonably well.

330 When we use the evaluated parameters obtained by the Kalman filter and calculate $^{239}\text{Pu}(n,f)$ $\bar{\nu}_p$
331 with CGMF based on these parameters, we obtain the evaluated data in Fig. 7. These evaluated data
332 agree very well with differential data and seemingly lie on top of ENDF/B-VIII.0 from 0.9 to 4 MeV.
333 When one plots the evaluated results in ratio to ENDF/B-VIII.0 in Fig. 8, one sees that the changes
334 are in the range of $\pm 0.5\%$ up to the second-chance fission threshold.

335 When one compares Fig. 8 to Fig. 3, one sees that the general trend of changes is caused by the
336 differential data but that CGMF has smoothing effects that perpetuate trends seen in the differential
337 data. For instance, differential data indicate an increase in the evaluated data compared to ENDF/B-
338 VIII.0 at 0.4, 0.5, 0.8 and 1 MeV that CGMF smoothes through and leads to an overall increase of
339 $^{239}\text{Pu}(n,f)$ $\bar{\nu}$ below 1 MeV compared to ENDF/B-VIII.0. It is shown with criticality testing that this
340 is not favorable and a slight tweak below 1 MeV might be needed. Changes from 1–5 MeV in Fig. 8
341 resemble those due to differential data but balance them out more. Criticality tests indicate that these
342 changes are indeed favorable. Above 5 MeV, changes are coming from both Marini data and CGMF.
343 These data cannot be validated with any of the integral data available.

344 4.2 Validation of $^{239}\text{Pu}(n,f)$ $\bar{\nu}_p$

345 **Validation of Evaluated Parameters Against Various Fission Data** The fitted parameter
346 sets can be used as input to CGMF, not only to ensure the fitted $\bar{\nu}_p$ calculation matches the exact CGMF
347 calculation, but also to understand whether the fission fragment initial conditions and other prompt
348 observables have remained physical, even though they were not included in the optimization. Here, we

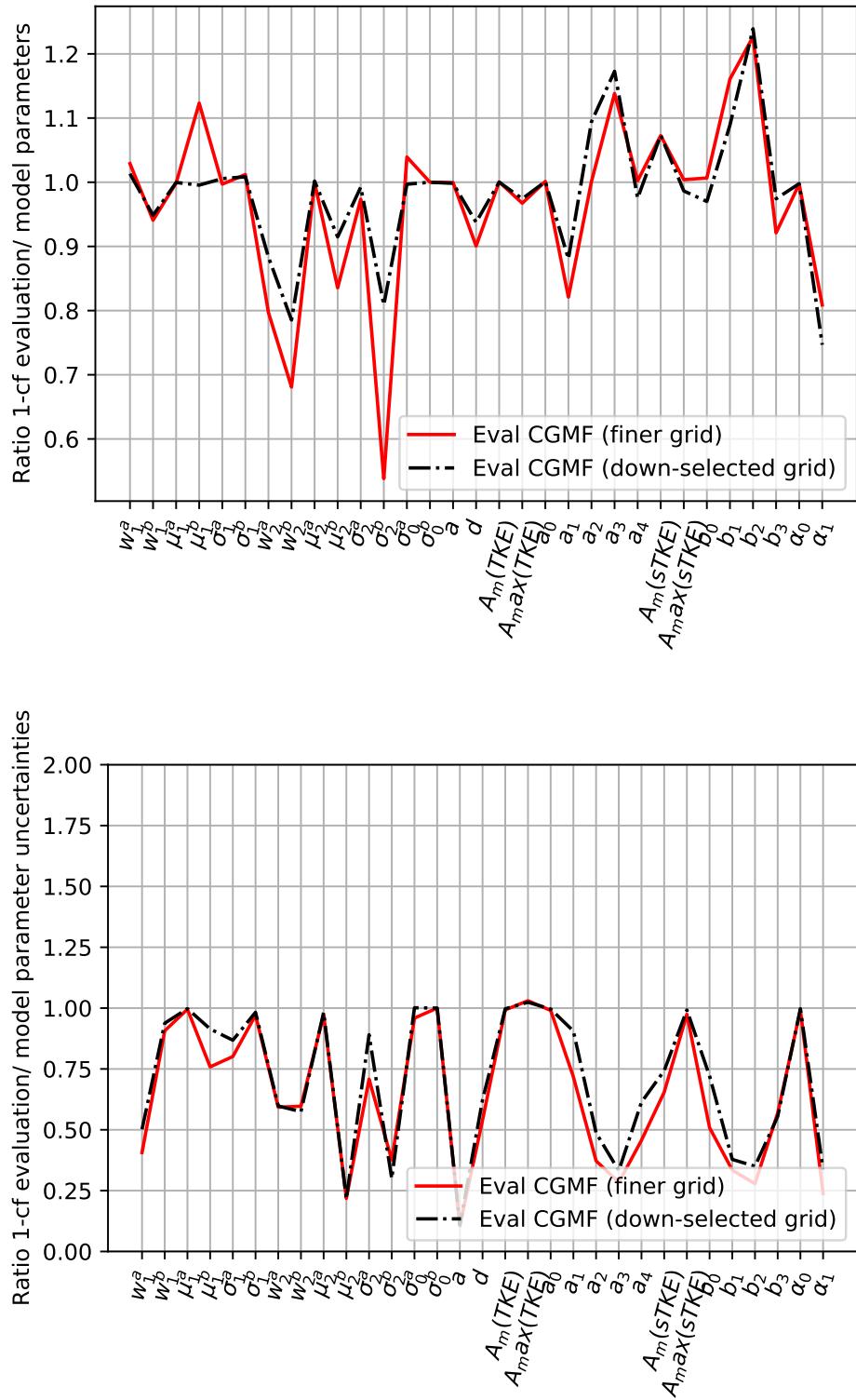


Figure 4: Impact on evaluated parameters and their uncertainties if all E_{inc} are fitted at once at a down-selected grid and 18-MeV point of Marini removed. Changes in first-chance fission parameters are shown.

349 show four different evaluated parameter sets: 1) the first-chance fission parameters are fit first then
 350 held constant while the remaining parameters were fit, 2) all parameters were fit simultaneously, 3)

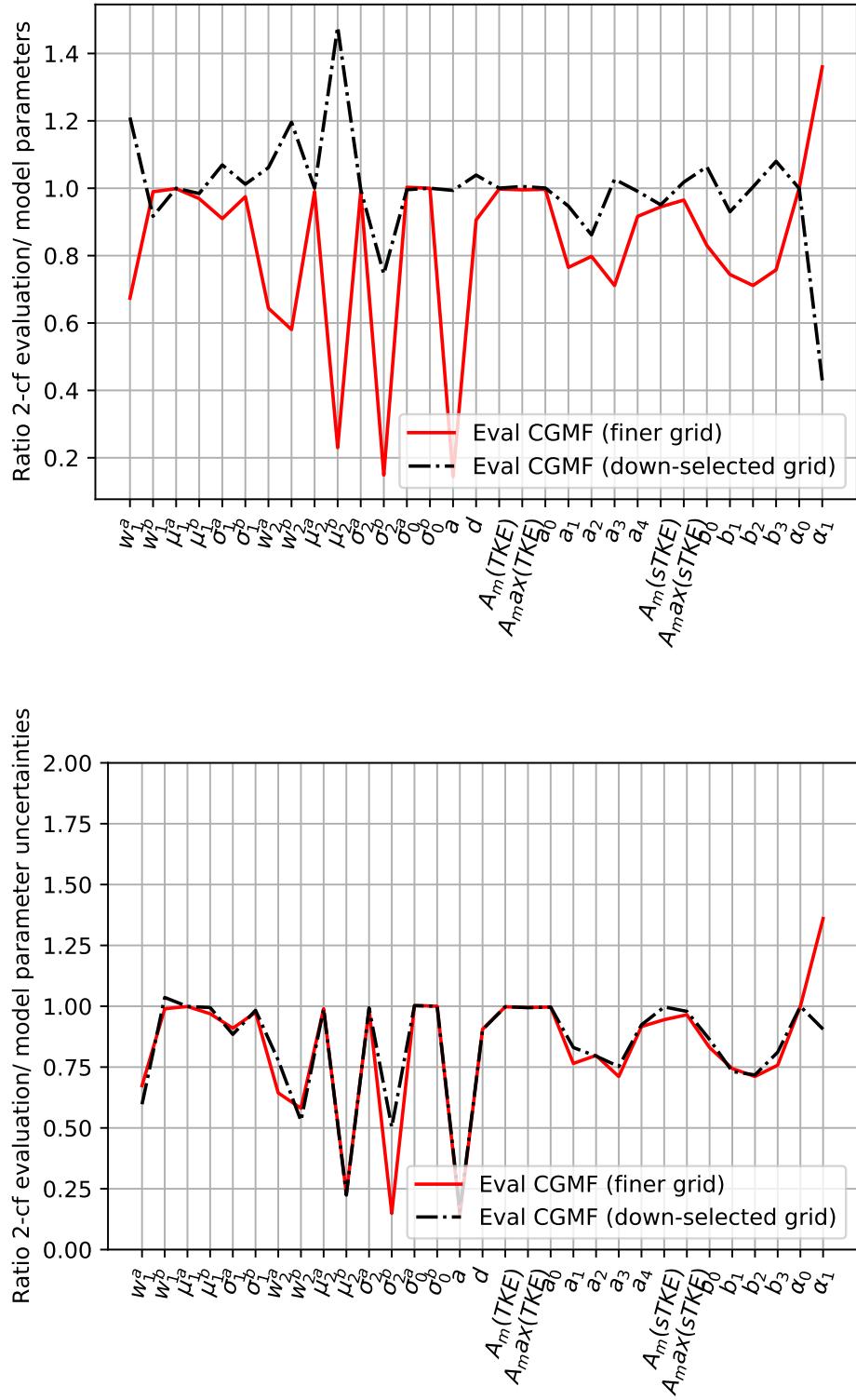


Figure 5: Impact on evaluated parameters and their uncertainties if all E_{inc} are fitted at once at a down-selected grid and 18-MeV point of Marini removed. Changes in second-chance fission parameters are shown.

351 the fit was performed to the ENDF/B-VIII.0 evaluation instead of experimental data, and 4) a finer
 352 but then down-selected energy grid was used in the optimization. The CGMF evaluation in Fig. 7

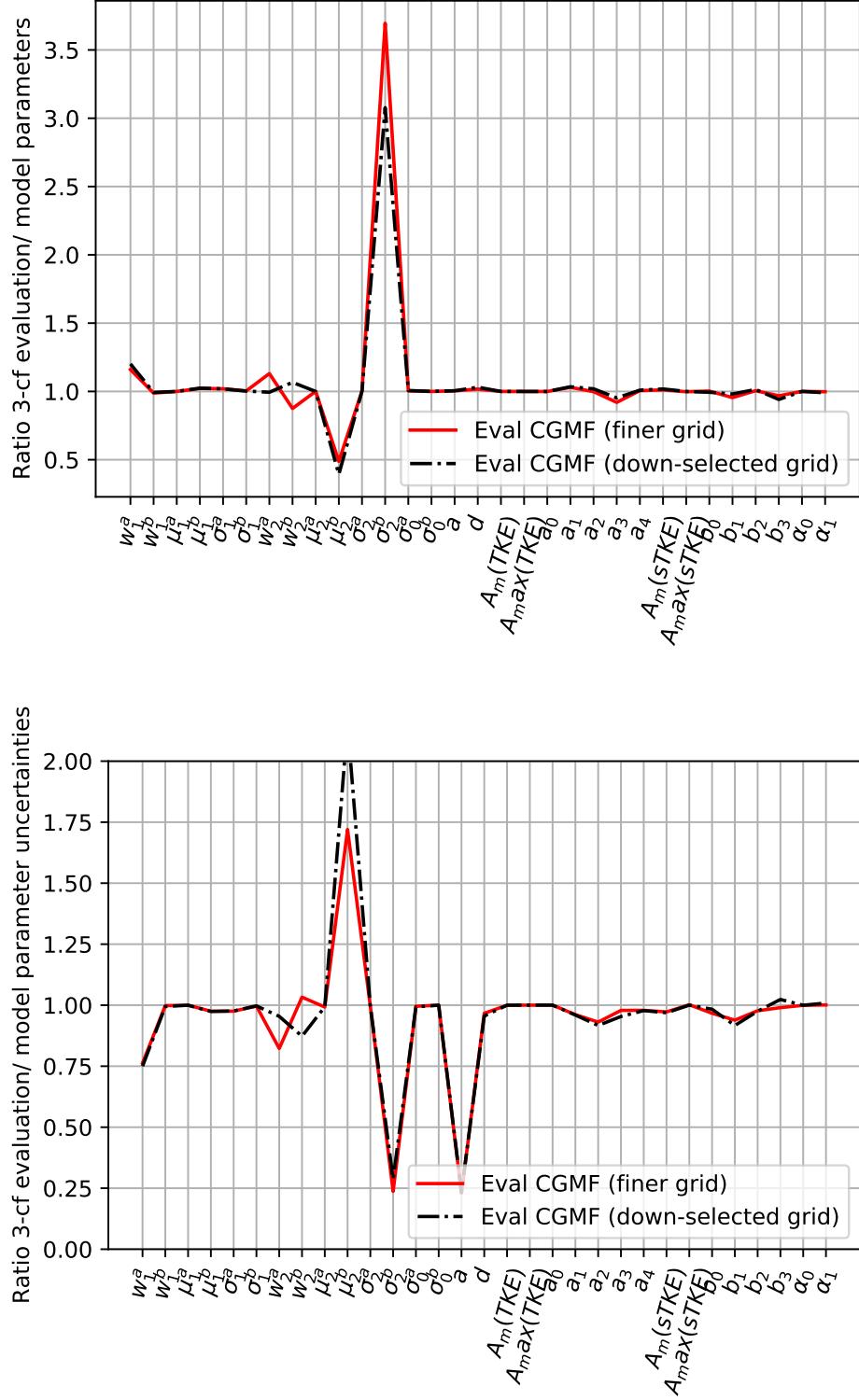


Figure 6: Impact on evaluated parameters and their uncertainties if all E_{inc} are fitted at once at a down-selected grid and 18-MeV point of Marini removed. Changes in third-chance fission parameters are shown.

353 corresponds to this fourth parameter set. Still, we show the comparison between all four parameter
 354 sets and experimental data to further justify the use of this fourth fit as the final evaluated value.

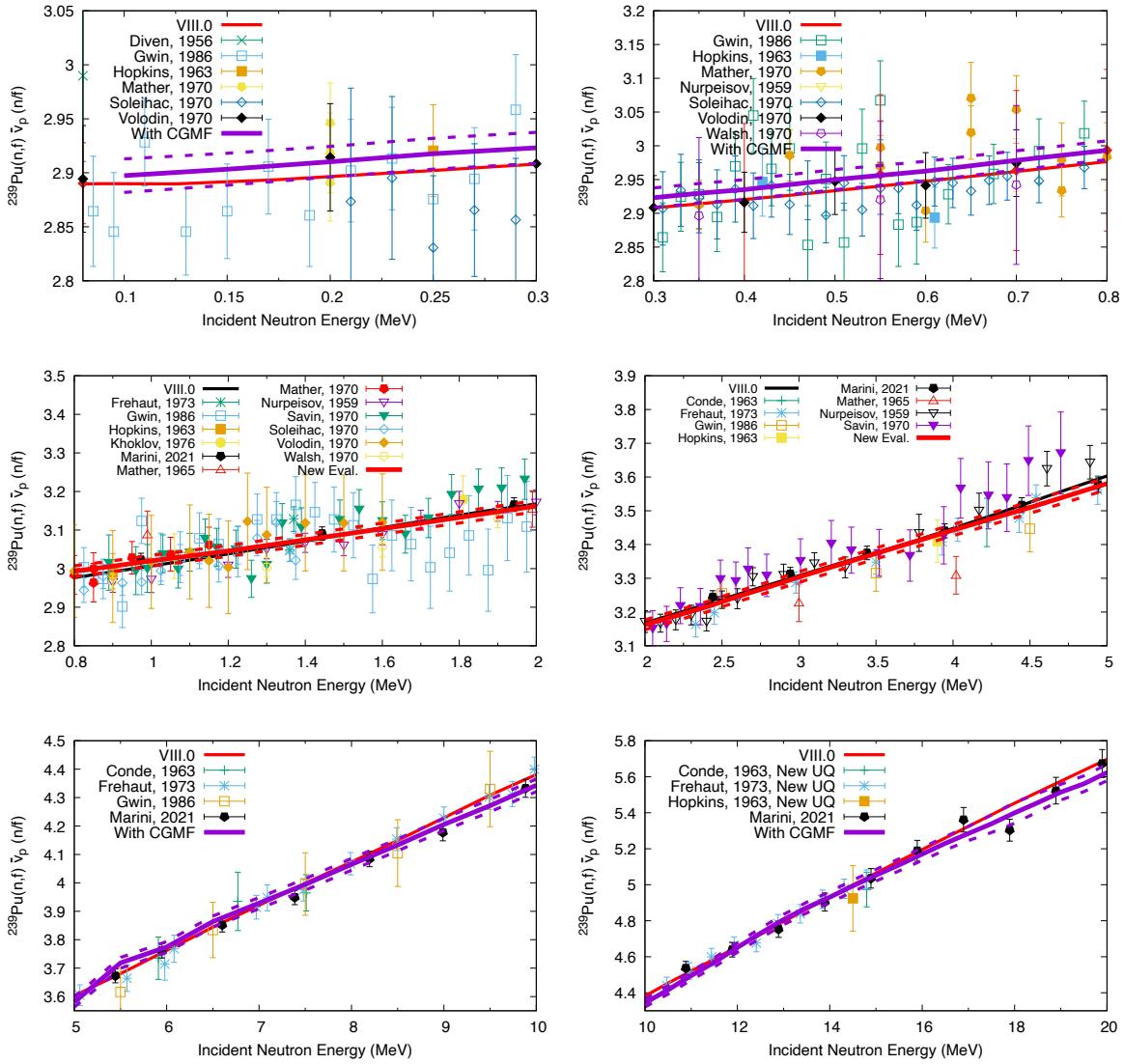


Figure 7: Evaluated $^{239}\text{Pu}(\text{n},\text{f}) \bar{\nu}$ are shown in comparison to ENDF/B-VIII.0 and experimental data that were used for the evaluation. The evaluated data were obtained with CGMF.

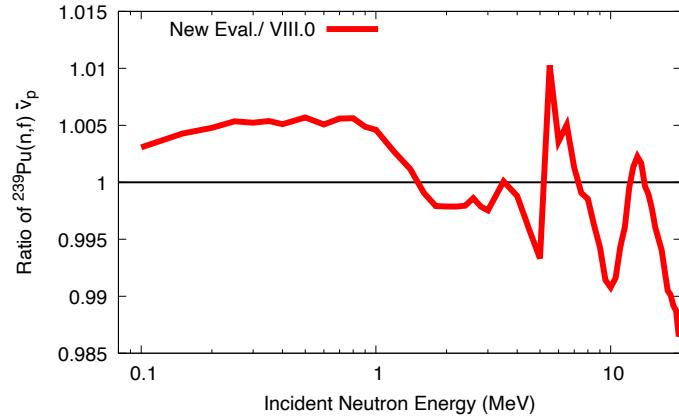


Figure 8: Ratios of evaluated mean values for $^{239}\text{Pu}(\text{n},\text{f}) \bar{\nu}$ are shown for the final evaluation presented here to ENDF/B-VIII.0.

355 First, we show the pre-neutron mass yield, $Y(A)$, for the four parametrizations at specific incident
 356 energies where there is available experimental data in Fig. 9. We see that the fit with the finer and
 357 then down-select grid (green dot-dashed) is the only parameter set that is not above the experimental
 358 data in the valley of $Y(A)$. Additionally, if we were to plot $Y(A)$ for each incident energy on the
 359 same plot (not shown here), we would see that the finer and then down-selected grid evaluation is the
 360 only one where the symmetric valley is filled as the incident energy increases, which is what is seen
 361 in experimental data as well. The other three optimizations have a less filled valley as the incident
 362 energy increases.

363 We then plot the total kinetic energy as a function of incident energy, $\langle \text{TKE} \rangle(E_{\text{inc}})$ in Fig. 10 (left).
 364 All three evaluations roughly follow the shape of $\langle \text{TKE} \rangle(E_{\text{inc}})$, when allowing for the approximately
 365 2-MeV spread in the experimental data. The differences in magnitude are compensated by the spin
 366 cutoff parameter, which has an impact on the γ -ray observables (shown later but not explicitly a part
 367 of this milestone). The finer and then down-selected grid fit additionally smooths out the bump at
 368 the opening of second-chance fission that is seen in the other three parameter sets. In the right panel
 369 of Fig. 10, we show $Y(\text{TKE})$ for thermal incident neutrons (the only incident energy where there is
 370 experimental data). The fit to ENDF clearly best reproduces the experimental data. However, the
 371 $\langle \text{TKE} \rangle$ will always be renormalized to $\langle \text{TKE} \rangle(E_{\text{inc}})$ —which has a large experimental uncertainty—and
 372 we typically find that we need to decrease σ_{TKE} by about 20% to be able to reproduced the neutron
 373 multiplicity distribution, $P(\nu)$. This observable will be discussed later in this report, but it does not
 374 necessarily mean that the ENDF optimization is better able to reproduce TKE observables—at least
 375 not based on our previous studies.

376 Next, we show the average prompt neutron and γ -ray multiplicities in Fig. 11. If we first look
 377 at $\bar{\nu}_p$ and disregard the fit to ENDF, we see that all three optimizations are able to reproduce the
 378 experimental data, as we would expect since CGMF was fit to these data. We can see that the two fits
 379 when first-chance fission was fixed and when all parameters were fit simultaneously (black solid and red
 380 dashed) are slightly below the data in the second-chance fission incident energy range. This difference
 381 is removed when the finer and then down-selected grid is used for the optimization. The fit to ENDF
 382 also has some challenges in the third-chance incident energy range, which was also seen in the output
 383 of the Kalman filter. The cause of this discrepancy is still under further investigation. For the average
 384 prompt γ -ray multiplicity, \bar{N}_γ , we have significantly different results when the four optimizations are
 385 performed. As had been mentioned when looking at the $\langle \text{TKE} \rangle(E_{\text{inc}})$, to keep $\bar{\nu}_p$ consistent with
 386 experimental data, the differences in the $\langle \text{TKE} \rangle(E_{\text{inc}})$ parametrizations are compensated by changes
 387 to the spin cutoff parameters. These parameter changes have a significantly larger impact on the γ -ray
 388 multiplicity. Therefore, in the right panel, even though the four optimizations give very similar results
 389 at thermal, the shape of the energy dependence varies greatly between the four calculations, and we
 390 once again see that there is something odd going on with the ENDF fit above third-chance fission.
 391 While we do not expect to reproduce the ENDF/B-VIII.0 evaluation with CGMF, since the shape is
 392 based on photon production data, we do expect the average multiplicity to increase with increasing
 393 incident energy. Once again, the multiplicity does not increase across the whole energy range for the
 394 fit to ENDF (again, compensation for the $\langle \text{TKE} \rangle(E_{\text{inc}})$ parametrization).

395 We then plot the average outgoing energies of the prompt neutrons and γ rays in Fig. 12. As
 396 expected based on our previous sensitivity studies, these optimizations have very little impact on the
 397 outgoing neutron energies, particularly above first-chance fission. We do see some differences coming
 398 from the spread in the $\langle \text{TKE} \rangle(E_{\text{inc}})$ —causing a larger or smaller boost on the neutrons. The γ -ray
 399 energies are also very similar between the optimizations, not including the fit to ENDF, where we once
 400 again see unresolved problems in the third-chance energy range.

401 Figures 13 and 14 show the multiplicity distributions for the neutrons and γ rays where experimen-
 402 tal data are available (significantly more incident energy values for $P(\nu)$ compared to $P(N_\gamma)$). For the
 403 neutron multiplicity, we see better agreement to the experimental data from each of the parametriza-
 404 tions except for the fit to ENDF. The disagreement between $P(\nu)$ and the ENDF fit is to be expected

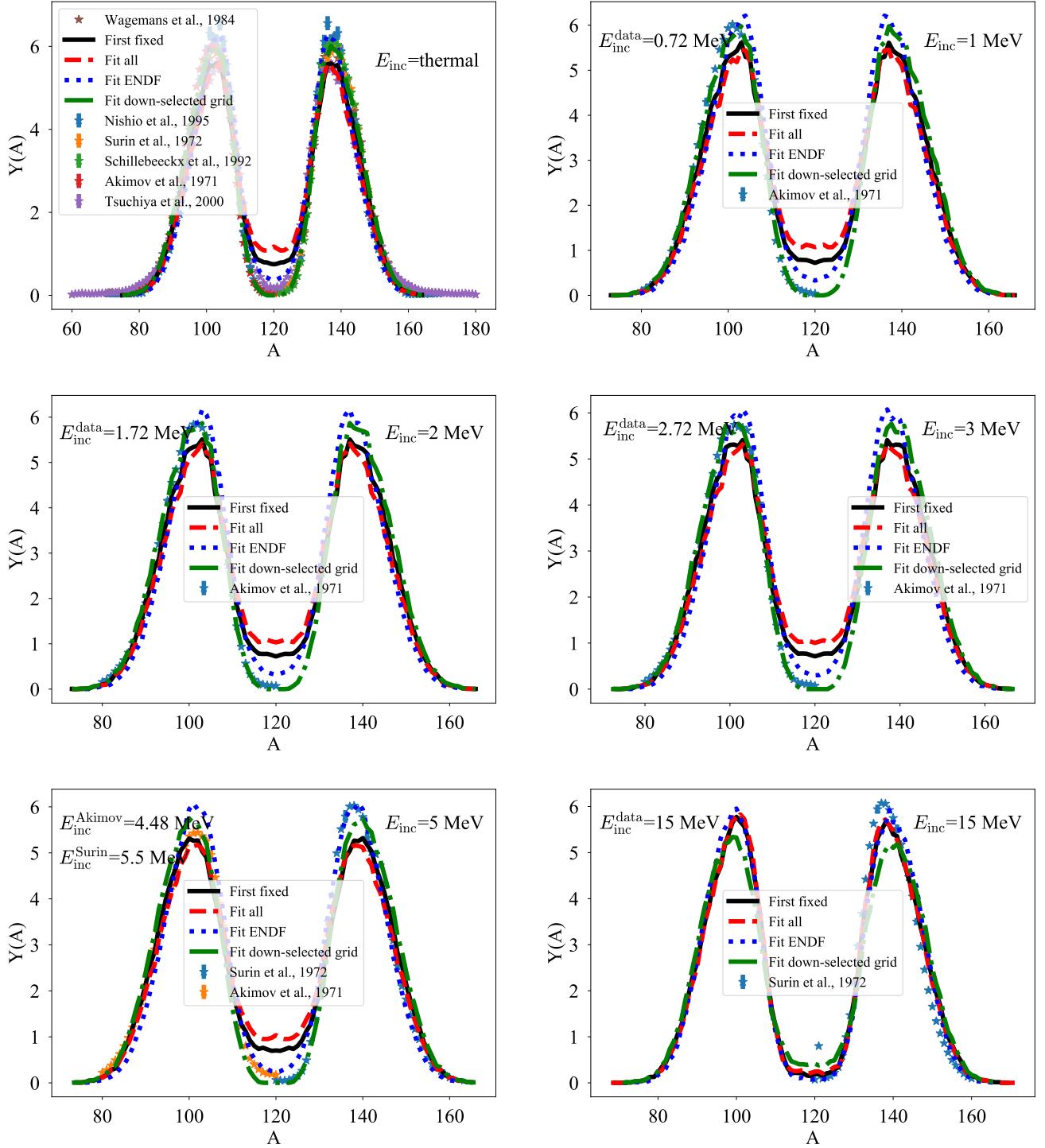


Figure 9: Comparison of the pre-neutron emission mass yield, $Y(A)$, among the four optimizations with CGMF and available experimental data.

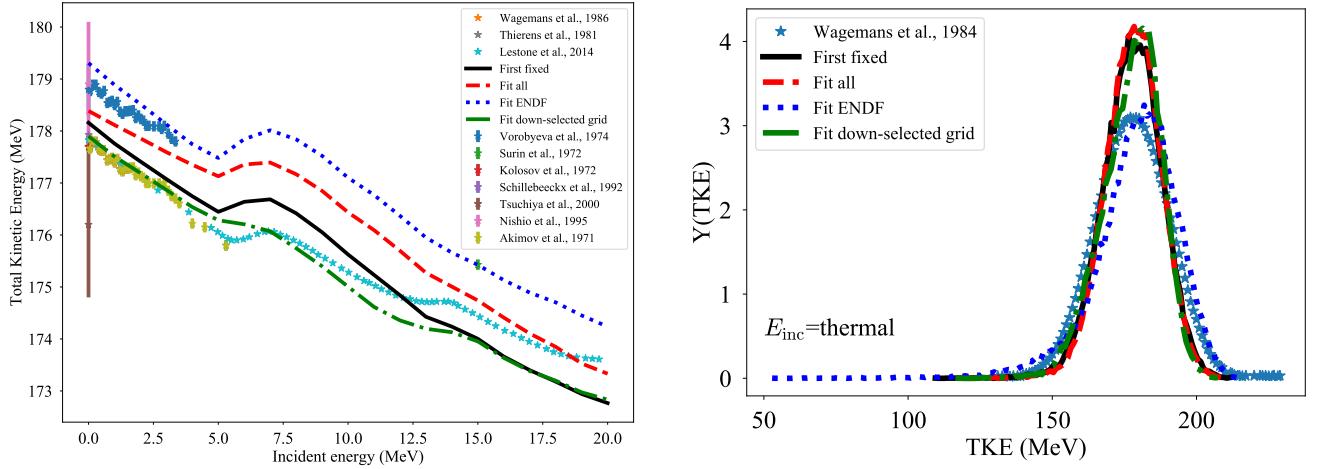


Figure 10: (Left) Comparison among the four CGMF optimizations and available experimental data for the total kinetic energy as a function of incident neutron energy, $\langle \text{TKE} \rangle(E_{\text{inc}})$. (Right) Same comparison for the distribution of TKE, $Y(\text{TKE})$, for thermal incident neutrons.

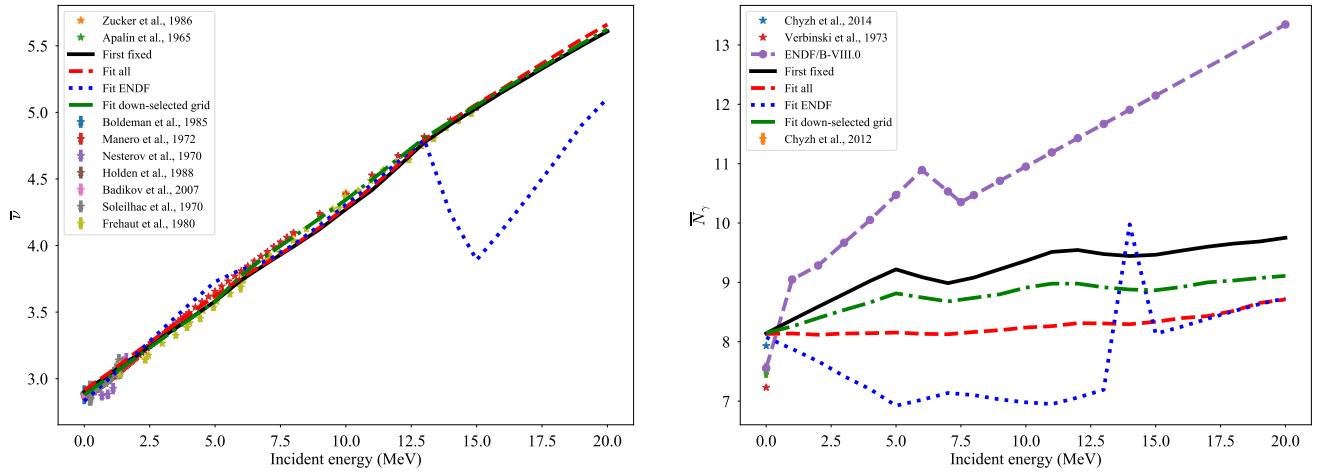


Figure 11: Comparison among the four optimizations with CGMF and available experimental data for (left) average prompt neutron multiplicity, \bar{v}_p and (right) average prompt γ -ray multiplicity, \bar{N}_γ . For \bar{N}_γ , we also show the comparison to the ENDF/B-VIII.0 evaluation.

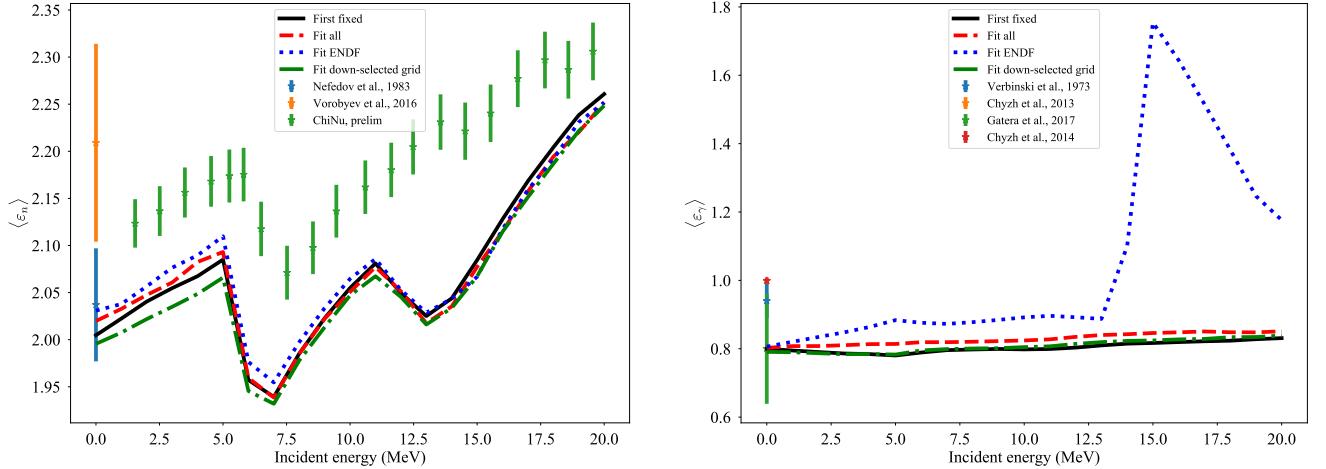


Figure 12: Comparison among the four optimizations with CGMF and available experimental data for (left) average outgoing neutron energy and (right) average outgoing γ -ray energy.

405 based on the difference between that fit and the others for $Y(\text{TKE})$. In each case, the peak of the
 406 multiplicity distribution is not quite reproduced, but we typically see slight discrepancies in this region
 407 between data and CGMF. As with the other γ -ray observables, there is not much difference in $P(N_\gamma)$
 408 between the four calculations. We also should note that there is no γ -ray threshold energy taken into
 409 account in the CGMF calculations, which would shift the peak of the distribution to somewhat lower
 410 values for N_γ .

411 Overall, while each of the parameter sets besides the one that was fit to ENDF give reasonable
 412 observables compared to data, the fit with the down-selected grid produces the most physically sensible
 413 results. This calculation is ultimately what we propose for the new ENDF/B-VIII.I evaluation and
 414 what is included in all of the validation calculations.

415 **Validation of Evaluated Nuclear Data Versus Validation Experiment Responses** The final
 416 $^{239}\text{Pu}(\text{n,f}) \bar{\nu}_p$ was also validated with respect to various integral responses. To this end, we included
 417 the new data (with the help of N. Gibson and W. Haeck, both XCP-5) into the ^{239}Pu ENDF/B-VIII.0
 418 file. The only differences between the the ^{239}Pu ENDF/B-VIII.0 file are:

- 419 • The $^{239}\text{Pu}(\text{n,f}) \bar{\nu}_p$,
- 420 • $^{239}\text{Pu}(\text{n,f}) \bar{\nu}_t$ (which has to absorb changes in $^{239}\text{Pu}(\text{n,f}) \bar{\nu}_p$ to maintain the sum-rule of $\bar{\nu}_t$ in the
 421 file),
- 422 • A new PFNS including Chi-Nu and CEA data from 0.5–30 MeV,
- 423 • The INDEN PFNS at thermal,
- 424 • A new $^{239}\text{Pu}(\text{n,f})$ cross section including fissionTPC data [4] and updates due to the templates
 425 of expected measurement uncertainties in (n,f) measurements [53],
- 426 • An (n,el) cross section that absorbs changes in the (n,f) cross to ensure that the sum-rule of cross
 427 sections (all partials sum to total) is obeyed.

428 In short, we changed the observables of the fission-source term all at once. That is necessary because
 429 if one changes only one constituent of the fission-source term (like the cross section, PFNS or $\bar{\nu}_p$),
 430 criticality, k_{eff} , will invariably be off as they are balanced out against each other.

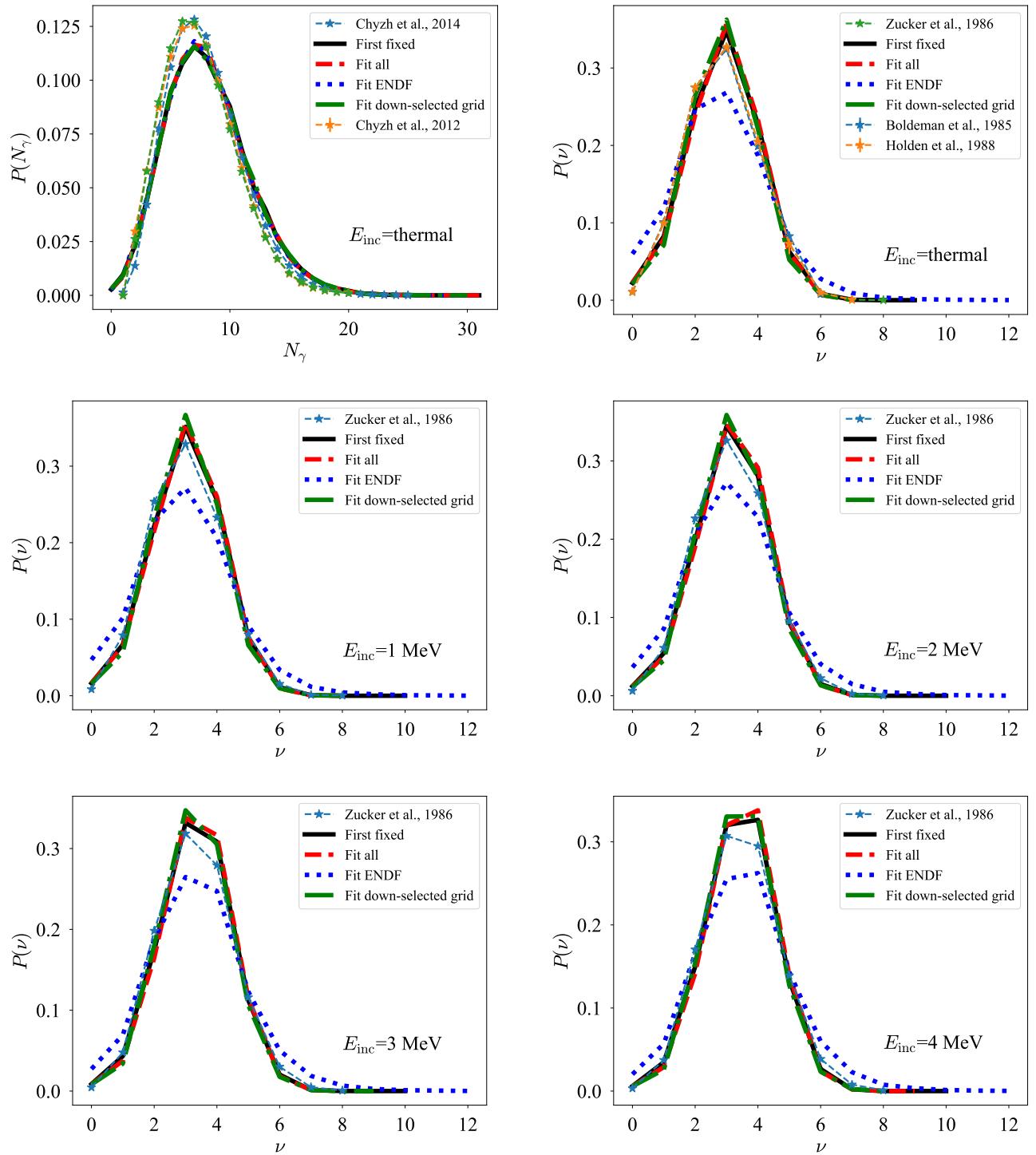


Figure 13: Comparison among the four optimizations with CGMF and available experimental data for the γ -ray multiplicity distribution, $P(N_\gamma)$ for thermal incident neutrons (upper left panel), and the neutron multiplicity distribution, $P(\nu)$, for incident neutrons between thermal and 4 MeV (remaining panels). Incident energies are given in the lower right corner of each panel.

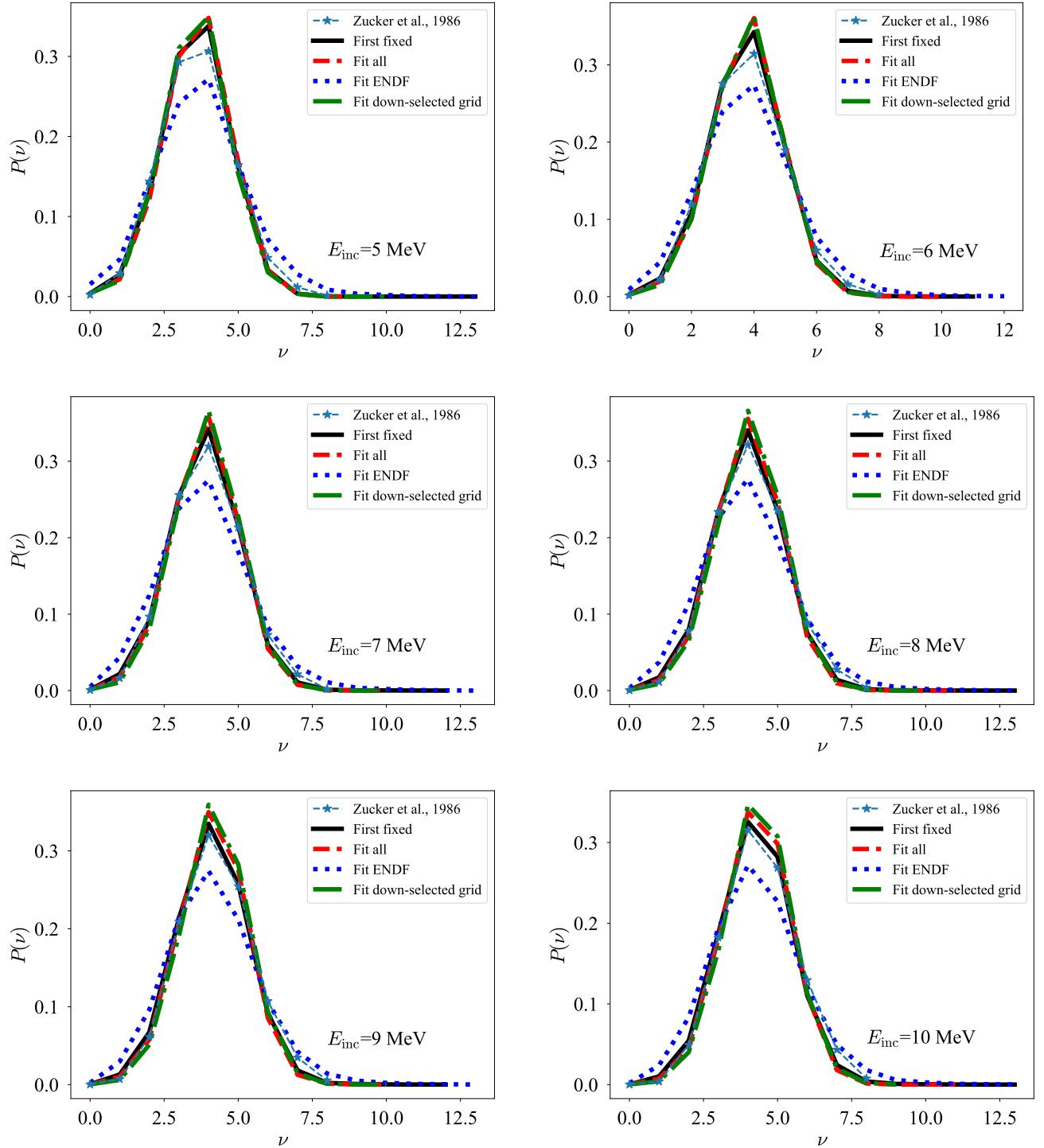


Figure 14: Same as Fig. 13 with $P(\nu)$ for incident energies between 5 MeV and 10 MeV.

Figure 15: Calculated over experimental, C/E, values are shown for criticality, k_{eff} , of PU-MET-FAST assemblies in ICSBEP. C/E values are given for ENDF/B-VIII.0 as well as the new ^{239}Pu files including new $^{239}\text{Pu}(n,f)$ cross sections, PFNS or $\bar{\nu}_p$.

431 However, and this should be emphasized, we did **NOT** balance out the (n,f) cross section, PFNS
 432 or $\bar{\nu}_p$ with each other here. We implemented all of them as obtained from the most recent analyses
 433 including a wealth of new, high-precision experimental data on all three observables simultaneously. So,
 434 all changes just reflect our improved understanding thanks to measurement campaigns and informed
 435 by other fission observables through CGMF for the case of the $\bar{\nu}_p$.

436 It was very surprising for us to see in Fig. 15 that the criticality, k_{eff} , values of PU-MET-FAST
 437 assemblies of ICSBEP [54] simulated with the new ^{239}Pu files are reasonably close to the ENDF/B-
 438 VIII.0 file despite the fact that sizable changes happened in $^{239}\text{Pu}(n,f)$ cross sections, PFNS and $\bar{\nu}_p$.
 439 If one takes the mean bias over all ENDF/B-VIII.0 C/E values, it is 18 pcm, while it is slightly
 440 increased with 58 pcm for the new file. It is interesting to note here that those benchmarks with the
 441 hardest spectrum are in general simulating better. For instance, Jezebel (PMF001, v.4), dirty Jezebel
 442 (PMF002) and Falttop-Pu (PMF006) all move closer to their respective experimental values with the
 443 new value, while those PU-MET-FAST assemblies with a softer spectrum (011, 018, 019, 021.1, 021.2,
 444 024, 027, 031, 032, 033, 036, 038 and all cases of 044) have worse C/E than when simulated with
 445 ENDF/B-VIII.0.

446 This trend can be also observed when simulating PU-MET-INT assemblies, which have an inter-
 447 mediate (even softer) spectrum. The C/E values with the new file are distinctly worse in Fig. 16
 448 than when simulated with ENDF/B-VIII.0. The mean bias over PMI C/E goes from 601 pcm with
 449 ENDF/B-VIII.0 to 767 pcm with the new file.

450 All of this points to the fact that the new $^{239}\text{Pu}(n,f)$ $\bar{\nu}_p$ is performing well together with PFNS
 451 and (n,f) cross section from a few hundred keV to 5 MeV. However, a slight tweak in the $^{239}\text{Pu}(n,f)$

Figure 16: Calculated over experimental, C/E, values are shown for criticality, k_{eff} , of PU-MET-INT assemblies in ICSBEP. C/E values are given for ENDF/B-VIII.0 as well as the new ^{239}Pu files including new $^{239}\text{Pu}(n,f)$ cross sections, PFNS or $\bar{\nu}_p$.

452 $\bar{\nu}_p$ might be needed from 80 keV to a few hundred keV. This tweak will be undertaken at a later point
 453 as T-2 evaluators are currently working on updating other reaction cross sections.

454 Changes in nuclear data above 5 MeV cannot be validated with criticality benchmarks. However,
 455 LLNL pulsed spheres [55] allow us to validate ^{239}Pu from approximately 10–15 MeV, where we also
 456 observed changes in $\bar{\nu}_p$, PFNS and (n,f) cross sections. These changes did not significantly impact
 457 the simulation of Pu LLNL pulsed spheres as can be seen in Fig. 17. This can be attributed to the
 458 modest changes in all three observables compared to the significant C/E bias in the simulated values,
 459 but also to the fact that changes in a narrow energy range in (n,f) cross section and $\bar{\nu}$ lead mostly to
 460 a constant off-set of the simulated neutron-leakage spectra. As they are treated as shape data and are
 461 re-normalized to yield an integral of one over the entire spectrum, changes in $\bar{\nu}$ and (n,f) cross section
 462 have little effect.

463 The last integral response we study here are reaction rates in the center of the Jezebel and Flattop-
 464 Pu critical assemblies. The main objective here was to “do no harm” and be reasonably close to
 465 ENDF/B-VIII.0 values which was achieved as shown in Table IV.

466 All in all, the new ^{239}Pu file performed surprisingly well when simulating various integral responses,
 467 despite the fact that we did not tune any of the nuclear data with respect to each other. In addition
 468 to that, the evaluated parameters tied to the $^{239}\text{Pu}(n,f)$ $\bar{\nu}_p$ link back favorably to various fission data
 469 through CGMF. Hence, the new evaluated $\bar{\nu}_p$ is being considered as a potential candidate for ENDF/B-
 470 VIII.1.

471 4.3 Evaluated Results of $^{235}\text{U}(n,f)$ $\bar{\nu}_p$

472 Again, two types of evaluations were performed here, a GLS evaluation including only experimental
 473 data and a second one using the Kalman filter to include the CGMF model. The first type of evaluation
 474 was undertaken to better compare to ENDF/B-VIII.0 as we assume that Phil Young evaluated his $\bar{\nu}$
 475 based on only experimental data and a covariance analysis.

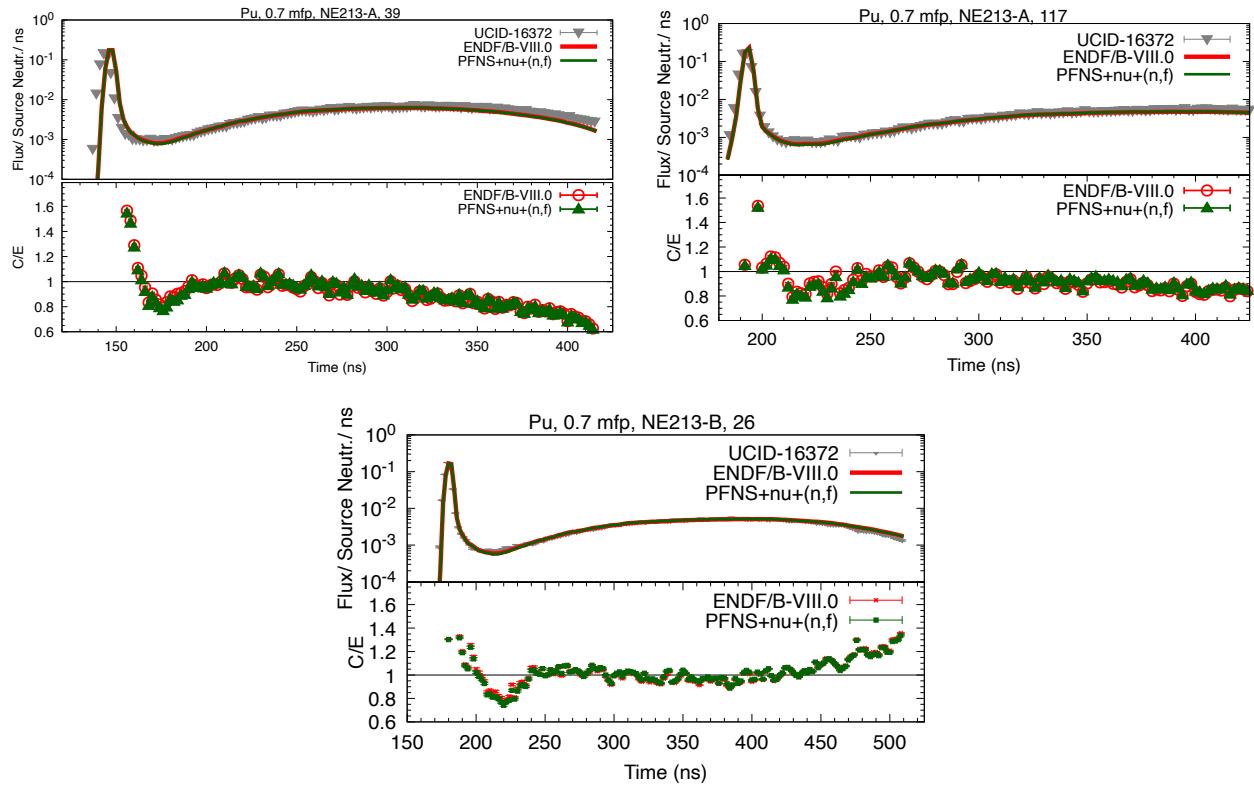


Figure 17: Calculated and experimental values are shown for Pu LLNL pulsed spheres. Calculated values are given for ENDF/B-VIII.0 as well as the new ^{239}Pu files including new $^{239}\text{Pu}(n,f)$ cross sections, PFNS or $\bar{\nu}_p$.

Table IV: Calculated values are shown for reaction rates of various reactions in the Jezebel and Flattop-Pu critical assemblies. Calculated values are given for ENDF/B-VIII.0 as well as the new ^{239}Pu files including new $^{239}\text{Pu}(\text{n},\text{f})$ cross sections, PFNS or $\bar{\nu}_p$.

Assembly	Observable	ENDF/B-VIII.0	VIII.0+PFNS+(n,f) cs+ $\bar{\nu}$
Jezebel	k_{eff}	1.00069(1)	1.00047(1)
Jezebel	$^{239}\text{Pu}(\text{n},2\text{n})/^{239}\text{Pu}(\text{n},\text{f})$	0.00230(5)	0.00224(5)
Jezebel	$^{239}\text{Pu}(\text{n},\gamma)/^{239}\text{Pu}(\text{n},\text{f})$	0.0345(2)	0.355(2)
Jezebel	$^{238}\text{U}(\text{n},\text{f})/^{235}\text{U}(\text{n},\text{f})$	0.212(1)	0.209(1)
Jezebel	$^{237}\text{Np}(\text{n},\text{f})/^{235}\text{U}(\text{n},\text{f})$	0.9768(5)	0.9662(5)
Jezebel	$^{233}\text{U}(\text{n},\text{f})/^{235}\text{U}(\text{n},\text{f})$	1.566(7)	1.566(7)
Jezebel	$^{239}\text{Pu}(\text{n},\text{f})/^{235}\text{U}(\text{n},\text{f})$	1.427(6)	1.423(6)
Flattop-Pu	k_{eff}	0.99971(1)	0.99981(1)
Flattop-Pu	$^{239}\text{Pu}(\text{n},2\text{n})/^{239}\text{Pu}(\text{n},\text{f})$	0.00197(4)	0.00193(4)
Flattop-Pu	$^{239}\text{Pu}(\text{n},\gamma)/^{239}\text{Pu}(\text{n},\text{f})$	0.0455(1)	0.0464(1)
Flattop-Pu	$^{238}\text{U}(\text{n},\text{f})/^{235}\text{U}(\text{n},\text{f})$	0.1800(9)	0.1774(9)
Flattop-Pu	$^{237}\text{Np}(\text{n},\text{f})/^{235}\text{U}(\text{n},\text{f})$	0.8581(4)	0.8497(4)

476 **Evaluated Results of $^{235}\text{U}(\text{n},\text{f}) \bar{\nu}_p$ using Only Experimental Data** As mentioned before, we
 477 know only a little in how far the $^{235}\text{U}(\text{n},\text{f}) \bar{\nu}_p$ evaluation presented here differs from that currently in
 478 ENDF/B-VIII.0. The ENDF/B-VIII.0 evaluation is based on a covariance analysis using differential
 479 experimental data, possibly, nearly all the data available at the time of the evaluation if one extrapolates
 480 from what was done for the $^{239}\text{Pu}(\text{n},\text{f}) \bar{\nu}_p$ evaluation. We also know that Boikov and Khoklov data
 481 were not included in the evaluation of ENDF/B-VIII.0 given that they were released after the time of
 482 the evaluation. Hence, we show two evaluated results with GLS in Fig. 18: (a) one with all accepted
 483 data of Table I, and (b) one excluding Boikov and Khoklov data.

484 The evaluation with Boikov and Khoklov is noticeably lower than the one without the data below
 485 800 keV. This decrease of the evaluated data is likely caused by Khoklov data because Boikov data
 486 are only provided at 4 and 14 MeV. This corresponds to the fact that Khoklov data are systematically
 487 lower than the bulk of the data until about 2 MeV. The evaluation without Boikov and Khoklov data,
 488 however, meanders around ENDF/B-VIII.0 and one can assume that some of the differences observed,
 489 especially up to 5 MeV, could be eradicated by smoothing the evaluation without Boikov and Khoklov
 490 data.

491 Also, differences in the evaluation with only experimental data and ENDF/B-VIII.0 are observed
 492 around multiple-chance fission thresholds, at 6.5 MeV and 13 MeV. ENDF/B-VIII.0 has a strictly linear
 493 behavior, while the GLS evaluation shows small enhancements in $\bar{\nu}_p$ around the threshold. This trend
 494 in the data is actually expected from physics point of view and it is encouraging that the experimental
 495 data are precise enough to resolve these structures.

496 Hence, differences between ENDF/B-VIII.0 and the GLS evaluation (only experimental data) are
 497 caused by:

- 498 • Khoklov data that lead to an overall lower trend in $\bar{\nu}_p$ until 800 keV,
- 499 • Smoothing assumptions that remove statistical fluctuations in the data for ENDF/B-VIII.0 but
 500 also removed structures in $\bar{\nu}_p$ around the second- and third-chance fission thresholds.

501 It can be also seen from Fig. 19 that the evaluated uncertainties are distinctly higher for the new
 502 evaluation than ENDF/B-VIII.0. ENDF/B-VIII.0 uncertainties are so low because they were not
 503 enlarged commensurate with the enlarged $^{252}\text{Cf}(\text{sf}) \bar{\nu}$ uncertainties.

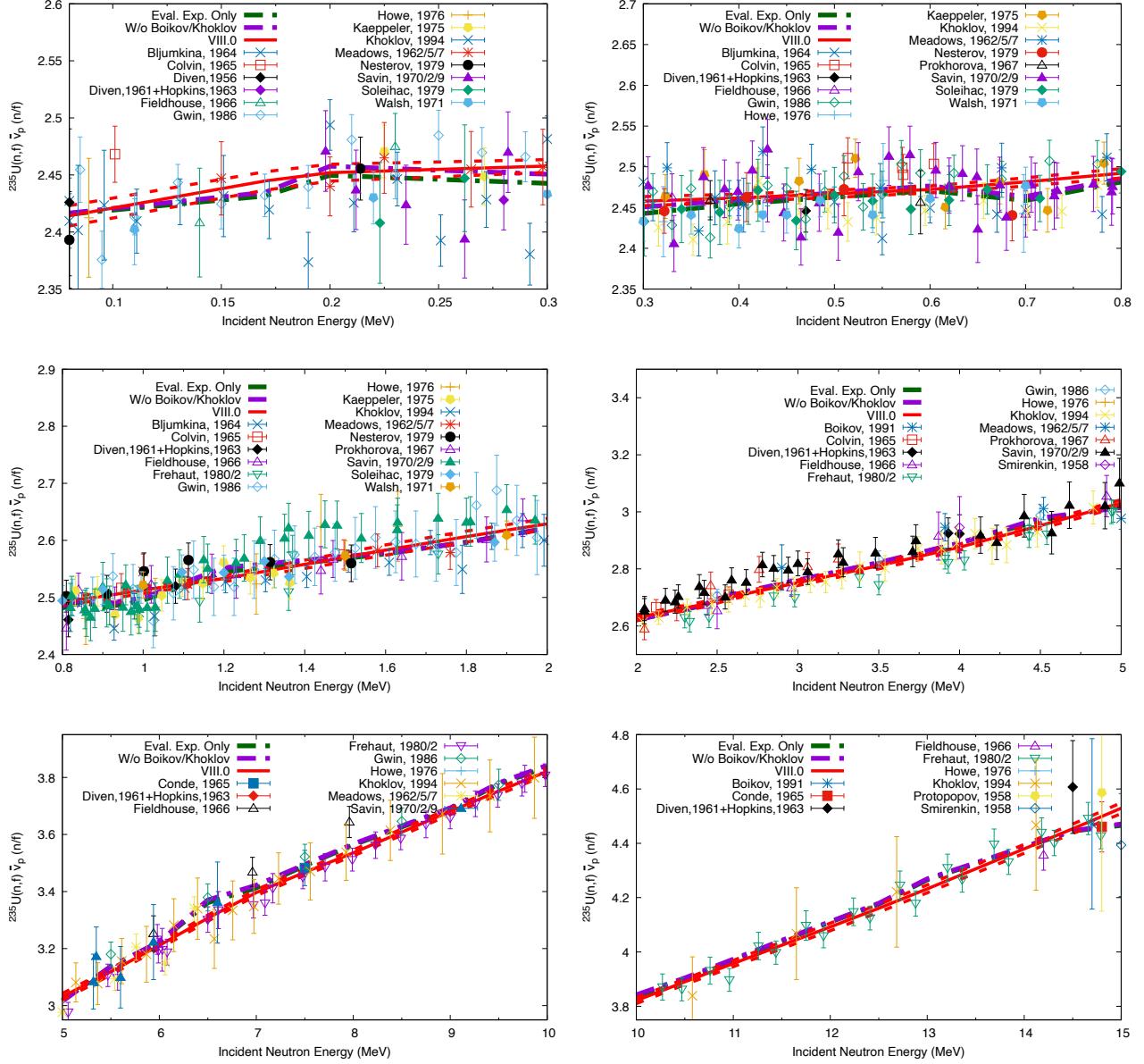


Figure 18: Evaluated $^{235}\text{U}(\text{n,f}) \bar{\nu}_p$ are shown in comparison to ENDF/B-VIII.0 and experimental data that were used for the evaluation. The evaluated data were obtained with a statistical analysis of only experimental data. One evaluation is shown with and another without Boikov and Khoklov experimental data.

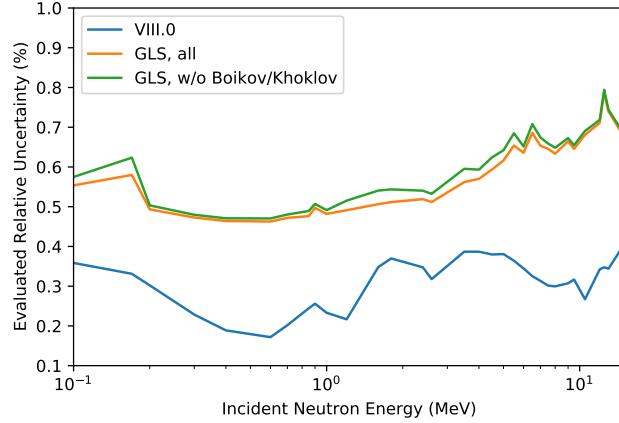


Figure 19: Evaluated uncertainties with and without Marini are compared to ENDF/B-VIII.0 uncertainties and PUBs bounds.

504 **Evaluated Results of $^{235}\text{U}(\text{n},\text{f}) \bar{\nu}_p$ Including CGMF** Again several evaluations of the $^{235}\text{U}(\text{n},\text{f})$
 505 $\bar{\nu}_p$ including the CGMF model via the Kalman filter were undertaken; we show in Fig. 20 the results
 506 obtained with two different scenarios:

507 1. A denser or a smaller grid; the latter takes into account points at \{thermal, 0.1, 0.2, 0.5, 0.6, 1.2,
 508 1.3, 1.4, 1.5, 1.75, 2.25\}, then every half MeV until 7 MeV and then every MeV,
 509 2. Allowing or excluding a bend in the $\langle TKE \rangle$.

510 As can be seen in the upper two rows of Fig. 20, the evaluated results until 2 MeV are closer to our
 511 baseline, the evaluation based on only experimental data, when one down-selects the grid. The reason
 512 for that lies in the fact that differential data, especially below 800 keV have a wide spread and some
 513 data show wave-like structures around 0.7 MeV (see data of Savin, Kaeppeller, Nesterov and Gwin),
 514 while others are smoother (Khoklov) and again others show random behavior (Meadows, Soleihac,
 515 Walsh) that are difficult to reproduce by a model that predicts a straight line. Down-selecting the grid
 516 allows for an averaging of these structures in the data where they are not predicted by the model and
 517 give more stable results. Therefore, we show in the following only results for a down-selected grid.

518 The second consideration concerns the $\langle TKE \rangle$. The data of Duke et al. in the left-hand side lower
 519 row of Fig. 30 show a distinct bend in the $\langle TKE \rangle$ below 1 MeV, while this effect is less clear in the
 520 data of Vorobyeva and Meadows. Preliminary data from the fissionTPC also do not support this bend.
 521 The default parameterization of CGMF models this bend in $\langle TKE \rangle$ and perpetuates it for the second-
 522 and third-chance fission threshold parameters.

523 When we use this parameterization for the evaluation, including the bend in $\langle TKE \rangle$, the Kalman
 524 filter changes the parameters related to this bend (E_0 and b) significantly for first-chance fission in
 525 Fig. 21. Moreover, it drives the parameter E_0 either to zero or negative values for second- and third-
 526 chance fission (Figs. 22 and 23), which effectively removes the bend for parametrizing $\langle TKE \rangle$ for these
 527 two regimes.

528 Given that behavior of evaluated parameters and the fact that the bend in $\langle TKE \rangle$ is supported
 529 only by a part of the data sets, and it is somehow unclear at what exact energy it is situated, we
 530 decided to try a second parameterization of $\langle TKE \rangle$ without the bends. If we do that, changes in
 531 $\langle TKE \rangle$ -related parameters (a and d) are more modest in Figs. 24–26. It should also be mentioned
 532 that evaluated parameter uncertainties are less erratic, when we take the bends out of $\langle TKE \rangle$ for the
 533 second- and third-chance fission parameters.

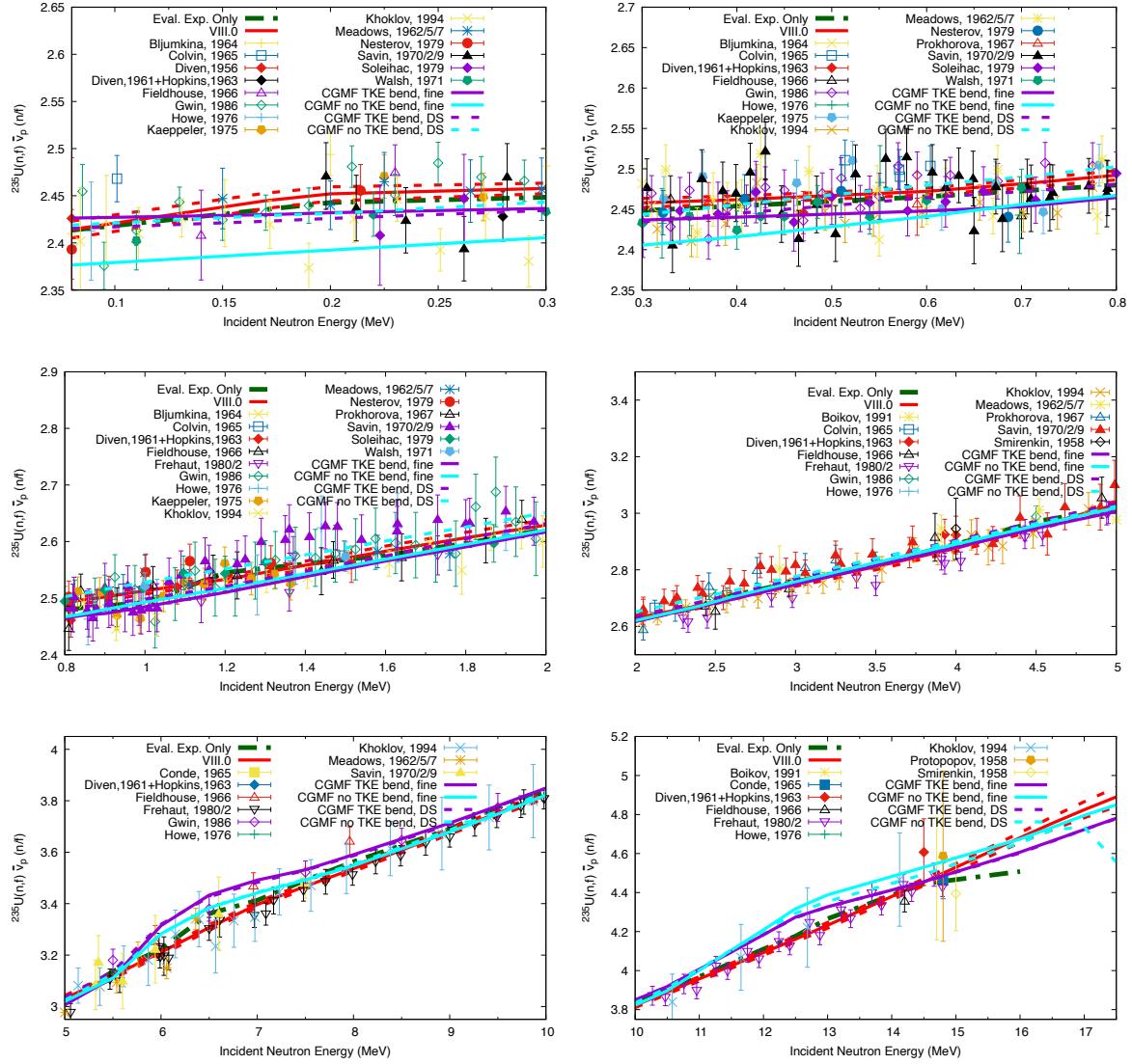


Figure 20: Evaluated $^{235}\text{U}(\text{n},\text{f}) \bar{\nu}_p$ are shown in comparison to ENDF/B-VIII.0 and experimental data that were used for the evaluation. The evaluated data were obtained with CGMF and only experimental data.

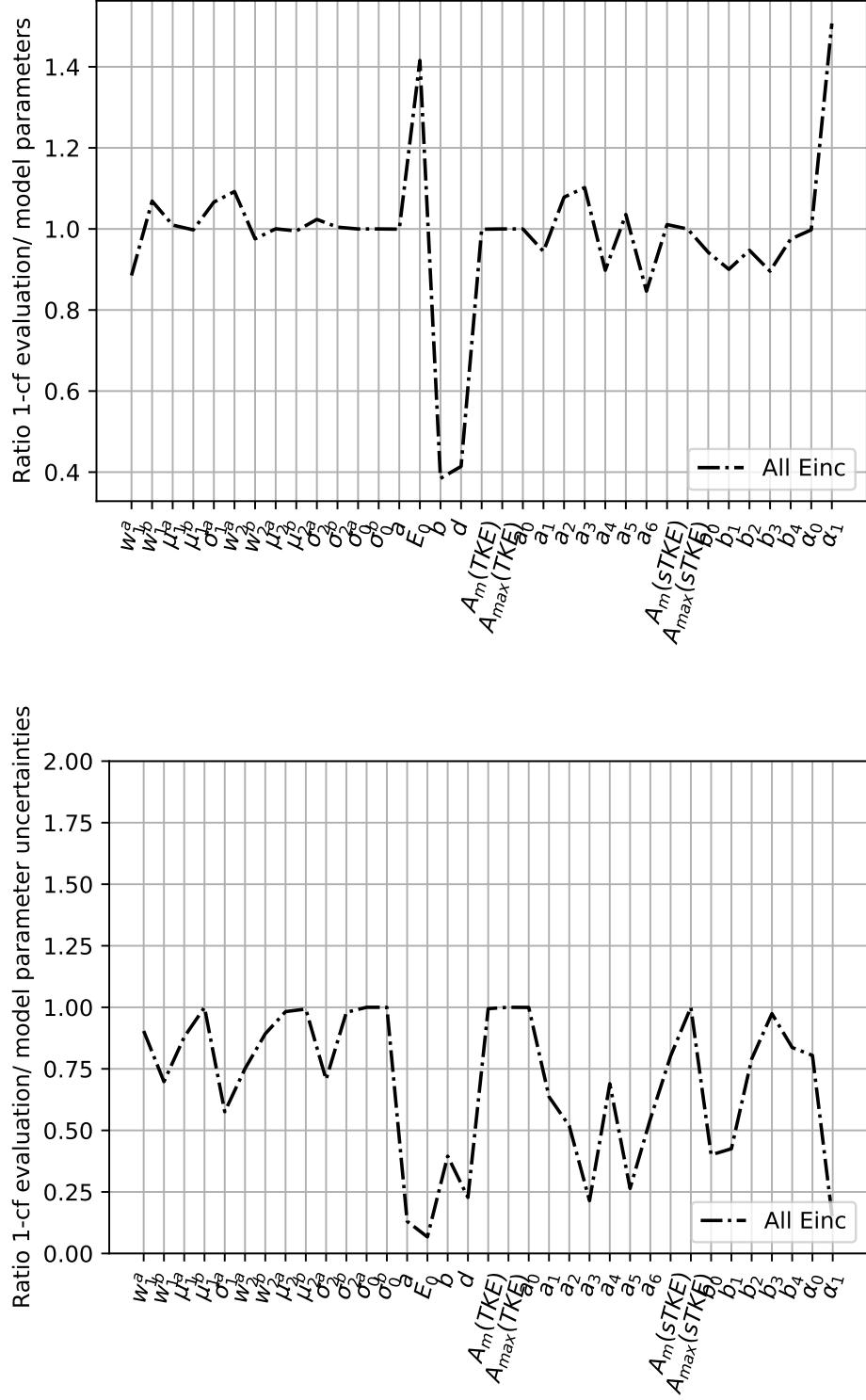


Figure 21: Impact on evaluated parameters and their uncertainties if all E_{inc} are fitted at once using ENDF/B-VIII.0 nuclear data above 14 MeV. Changes in first-chance fission parameters are shown.

534 However, evaluated \bar{v}_p in Fig. 20 agree overall better up to 2 MeV if we consider the bend in
 535 $\langle TKE \rangle$ as part of the CGMF modeling, while the agreement at second-chance fission is better if we take
 536 the bends out. From that we conclude that it might be best to just consider a bend in $\langle TKE \rangle$ for

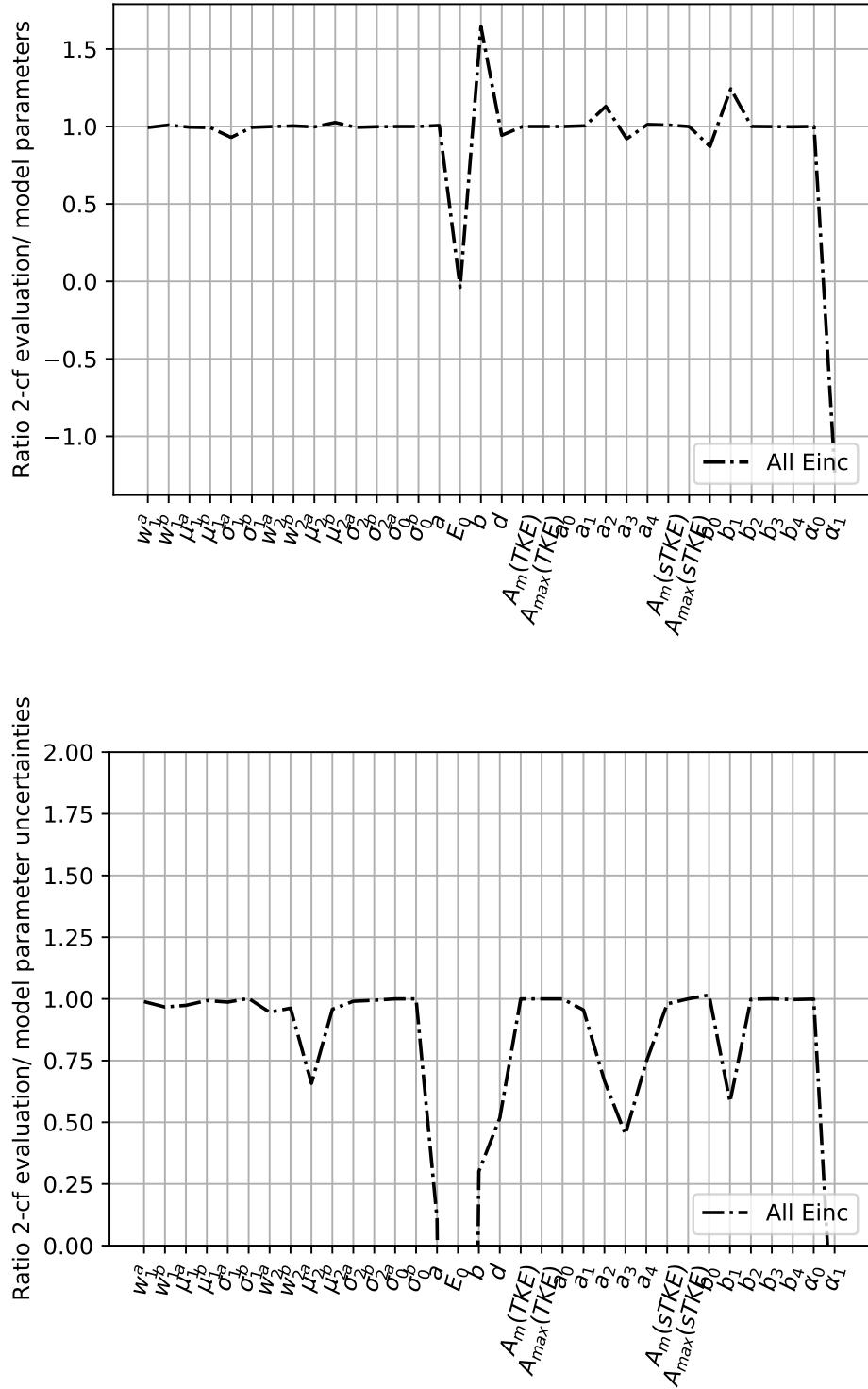


Figure 22: Impact on evaluated parameters and their uncertainties if all E_{inc} are fitted at once using ENDF/B-VIII.0 nuclear data above 14 MeV. Changes in second-chance fission parameters are shown.

537 first-chance fission and otherwise not. Work is currently under-way to try this out.

538 Another feature that is worth noticing is the dip in the evaluated data at 17 MeV for $\langle TKE \rangle$ without
 539 a bend and a down-selected grid; also, problems in fitting third-chance fission can be observed. This
 540 could be related to the spin-parity parameter α_1 that varies widely. We will try to constrain this

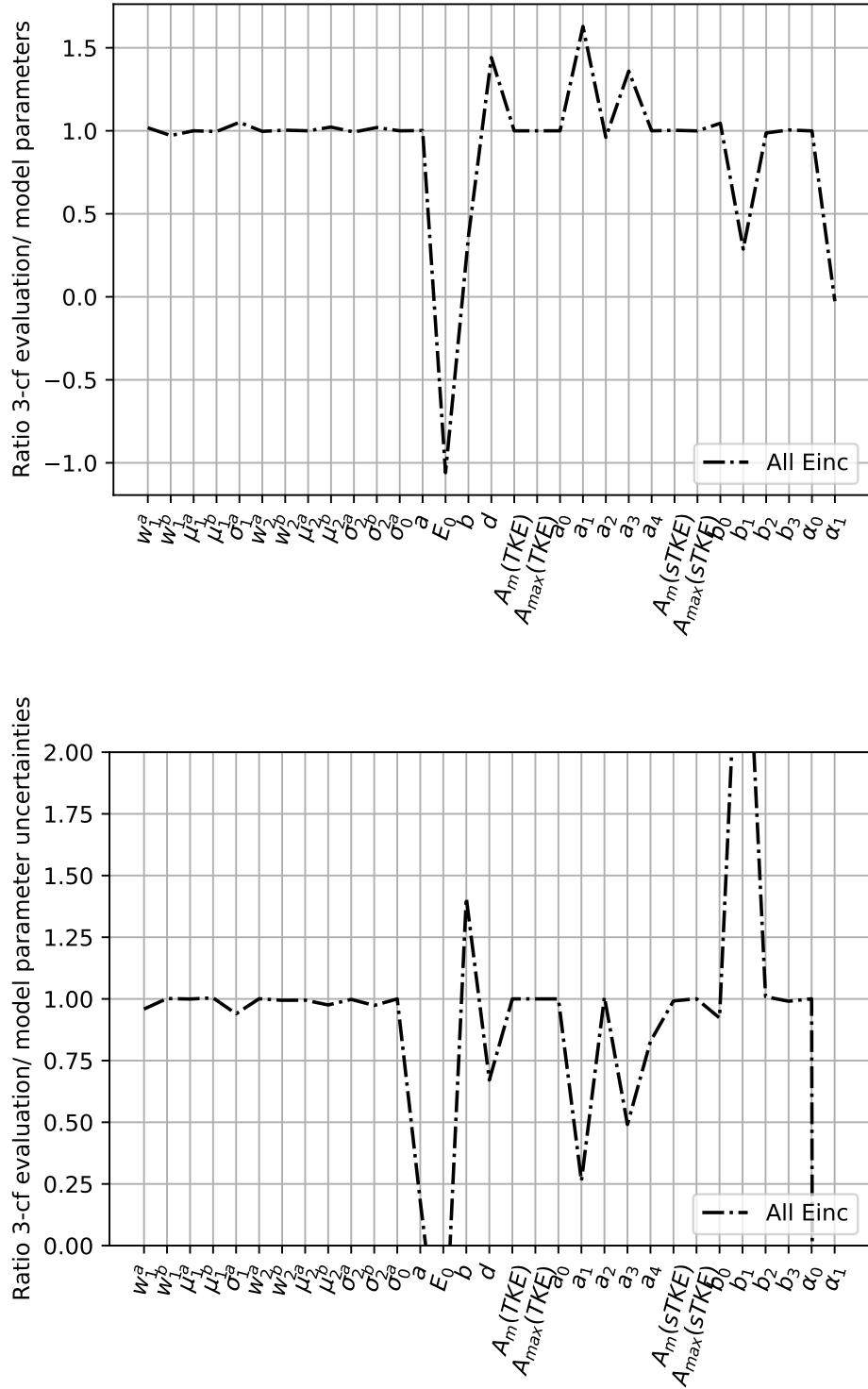


Figure 23: Impact on evaluated parameters and their uncertainties if all E_{inc} are fitted at once using ENDF/B-VIII.0 nuclear data above 14 MeV. Changes in third-chance fission parameters are shown.

parameter more tightly and see if the features in the evaluated data will then vanish.

Lastly, it should be mentioned that the evaluated uncertainties obtained with CGMF are reasonably close in Fig. 27 to the evaluation with only experimental data (our baseline) to conclude that the evaluated uncertainties are not adversely impacted by the CGMF model.

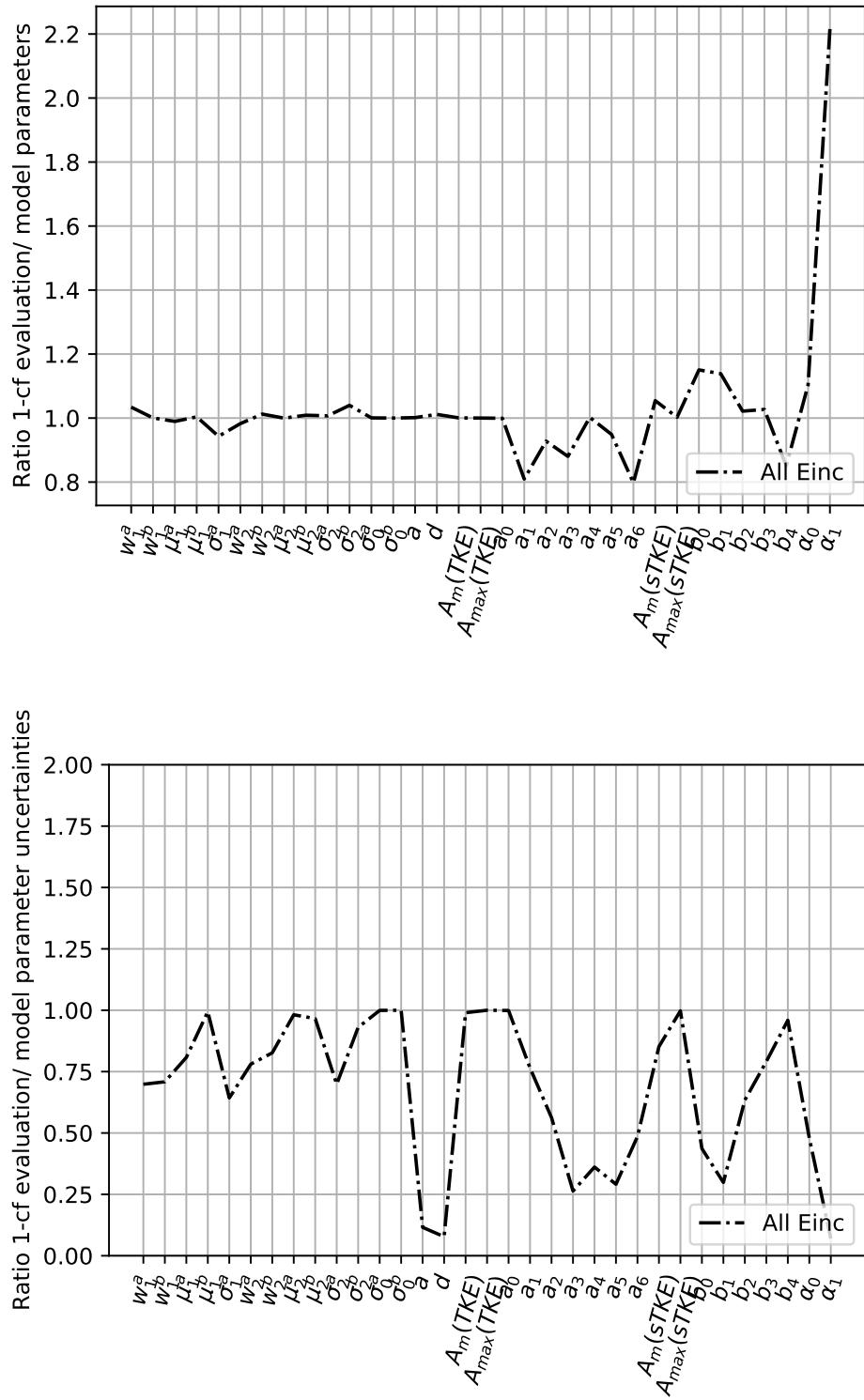


Figure 24: Impact on evaluated parameters and their uncertainties if all E_{inc} are fitted at once on a down-selected grid and taking out a bend in $\langle TKE \rangle$ at approximately 1 MeV. Changes in first-chance fission parameters are shown.

Figure 25: Impact on evaluated parameters and their uncertainties if all E_{inc} are fitted at once on a down-selected grid and taking out a bend in $\langle TKE \rangle$ at approximately 1 MeV. Changes in second-chance fission parameters are shown.

545 4.4 Validation of Evaluated Parameters Against Various Fission Data

546 We again compare the CGMF calculations to a variety of prompt-fission observables beyond $\bar{\nu}_p$, that were
 547 not included in the optimization. Here, we show the comparison of two optimizations; the first keeping

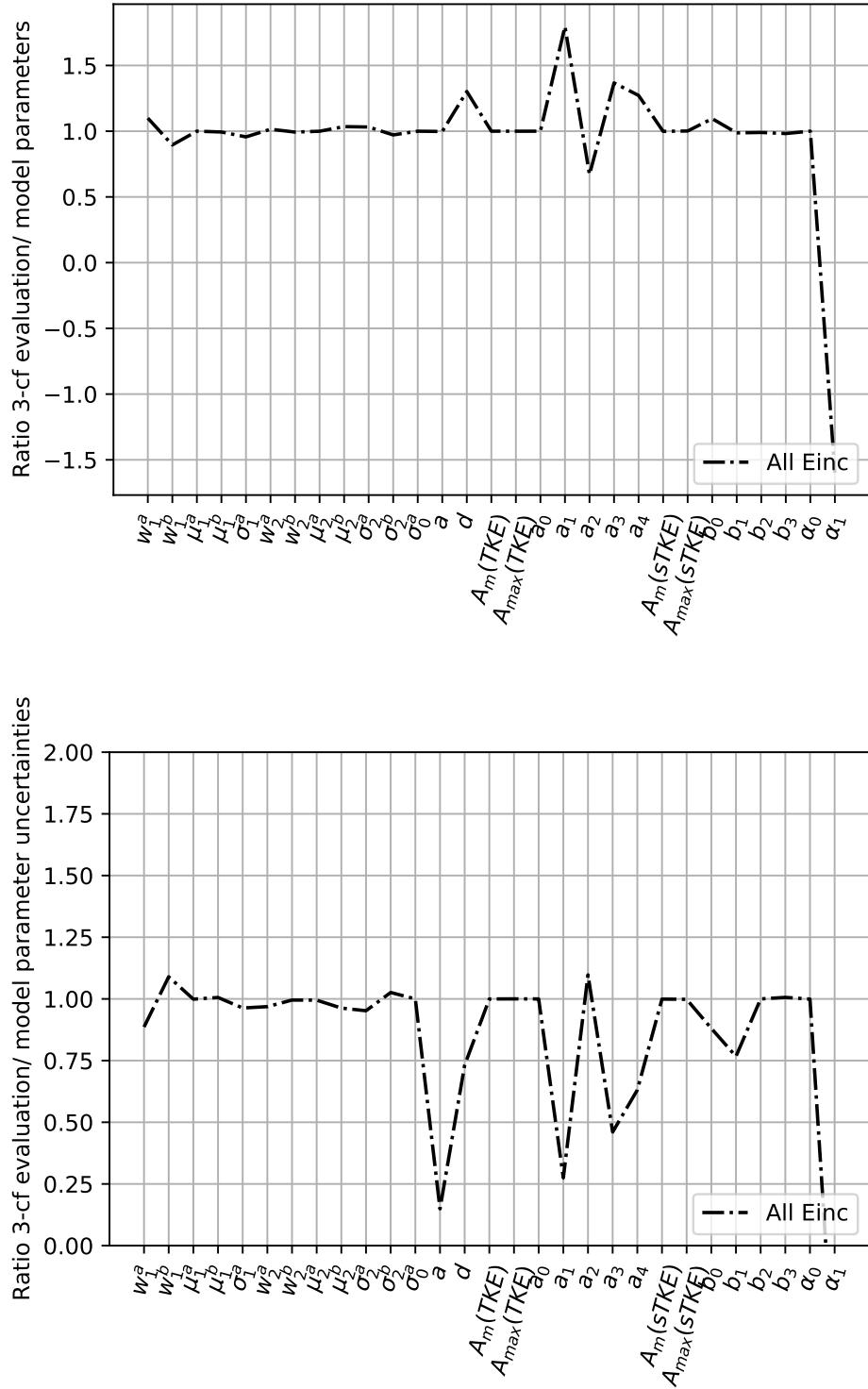


Figure 26: Impact on evaluated parameters and their uncertainties if all E_{inc} are fitted at once on a down-selected grid and taking out a bend in $\langle TKE \rangle$ at approximately 1 MeV. Changes in third-chance fission parameters are shown.

548 the slope change in the TKE parametrization for each chance fission and the second removing the slope
 549 change (having a more similar shape of $\langle TKE \rangle(E_{inc})$ to that of $^{239}\text{Pu}(n,f)$). For both calculations, the
 550 parametrization from the down-selected grid is used.

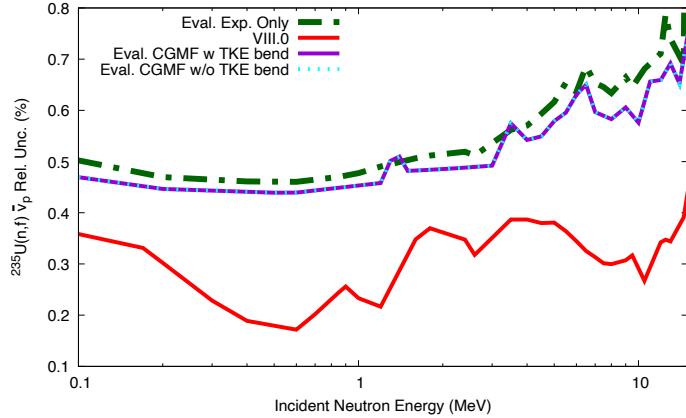


Figure 27: Evaluated $^{235}\text{U}(n,f)$ $\bar{\nu}$ uncertainties are shown in comparison to ENDF/B-VIII.0. The evaluated data were obtained with CGMF and only experimental data.

551 First, in Figs. 28 and 29, we show $Y(A)$ for the two calculations compared to available experimental
 552 data at the incident energy listed on each subplot. The parametrization with the slope change (red
 553 dashed) has is narrower as well as higher in the peak region, above the data. The higher peaks also
 554 cause fewer events in the symmetric mass region, which, due to the current statistics, causes $Y(A)$
 555 to be flat in this region. On the other hand, the parametrization without the slope change better
 556 reproduces the magnitude of the experimental data in the peaks of the mass distributions. For both
 557 parametrizations, the symmetric mass region is filled in as the incident energy is increased, following
 558 the expected trend (unlike what was seen for many of the parametrizations with $^{239}\text{Pu}(n,f)$).

559 We then compare directly the average TKE as a function of incident energy (left) and the distribution
 560 of TKE values (right) in Fig. 30. When the bend in the average TKE is included, the $\langle \text{TKE}(E_{\text{inc}}) \rangle$
 561 is much flatter in the first-chance fission incident energy range than for the parametrization without
 562 the bend, even though the TKE at thermal is essentially identical. For both parametrizations, there is
 563 a slight upturn in the TKE near where fourth-chance fission comes in. For the distribution of TKE at
 564 thermal, $Y(\text{TKE})$, it is wider without the bend included, more similar to the available experimental
 565 data for $\sigma_{\text{TKE}}(A)$. However, as we will see in the neutron multiplicity distribution, this wider TKE
 566 distribution leads to a worse comparison in $P(\nu)$ between experiment and the CGMF calculations. Still,
 567 it is interesting to see that this fit leads to a larger σ_{TKE} .

568 In Fig. 31, we show the comparison between the two TKE parametrizations for the average prompt
 569 neutron and γ -ray multiplicities, $\bar{\nu}_p$ and \bar{N}_γ . These are compared to available experimental data and,
 570 in the case of \bar{N}_γ , the ENDF/B-VIII.0 evaluation. For $\bar{\nu}_p$, it is not surprising that the CGMF calculations
 571 go through the experimental data, as this observable was fitted; however, we see a large discrepancy
 572 in the third-chance fission energy region; this change is still under investigation. For \bar{N}_γ , we do not
 573 expect to reproduce ENDF, as the shape comes from γ -ray production data, but we do notice that
 574 both parametrizations cause an increase in the average γ -ray multiplicity up through the first-chance
 575 energy region, then is flat—or even decreasing—at higher incident energies. The decrease is due to a
 576 negative slope for $\alpha(E_{\text{inc}})$, which is probably unphysical, as the multiplicity should increase.

577 Next, we show the average neutron and γ -ray energies in Fig. 32. The shape and magnitude of
 578 the neutron energies is nearly identical for the two parametrizations (although TKE should have an
 579 impact on the neutron energies in the lab frame, from the boost of the fragments), there is almost
 580 no difference seen after first-chance fission. However, at the lowest incident energies, we see that the
 581 parametrization without the bend in TKE reproduces the preliminary Chi-Nu measurement—which we
 582 have not seen before. On the other hand, the average γ -ray energies are nearly identical until the
 583 opening of third-chance fission, where the TKE parametrization without the bend causes a drastic
 584 increase in the average energy. This feature again indicates that there is something wrong with the

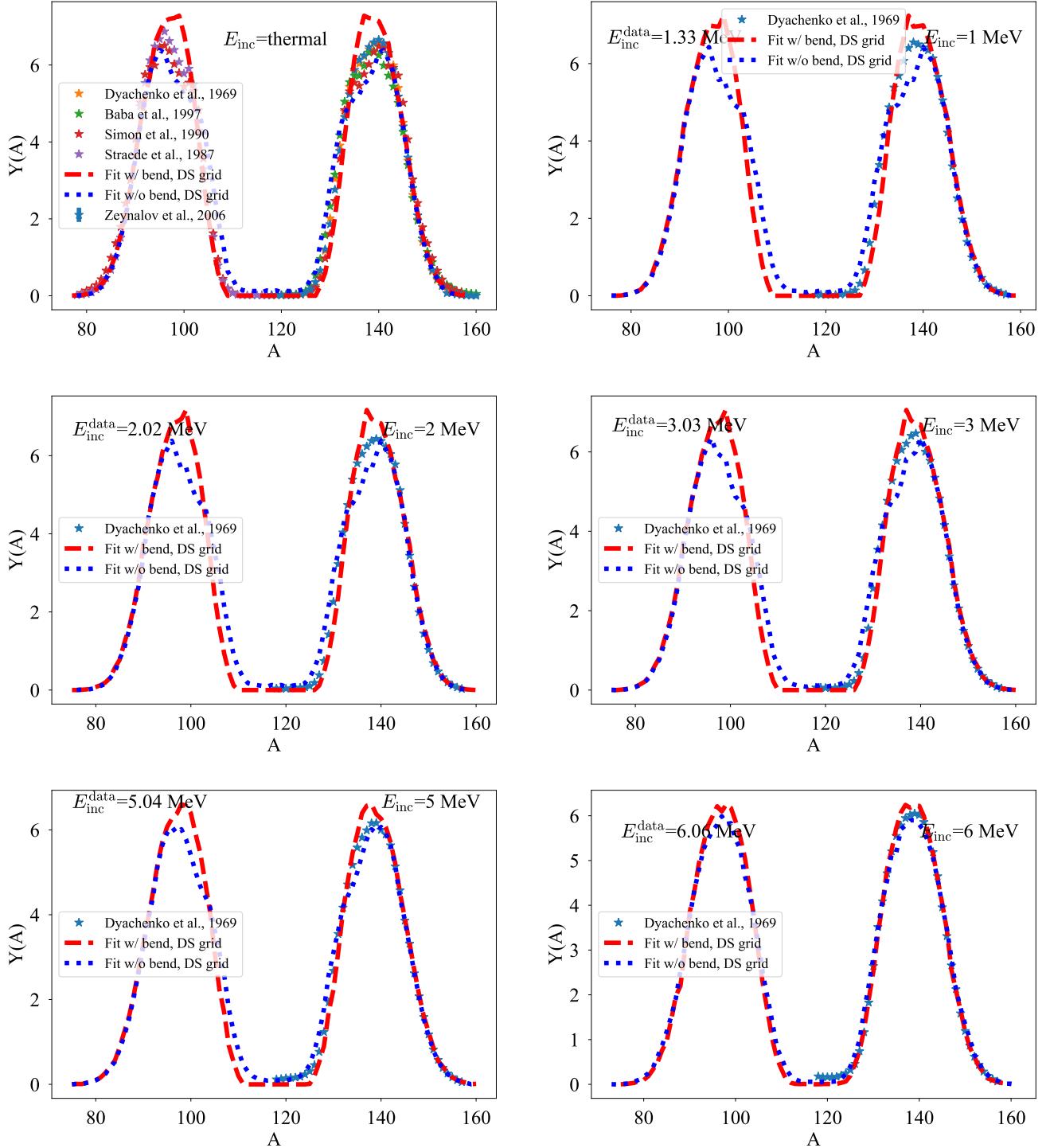


Figure 28: Comparison of the pre-neutron emission mass yield, $Y(A)$, among the two optimizations with CGMF and available experimental data.

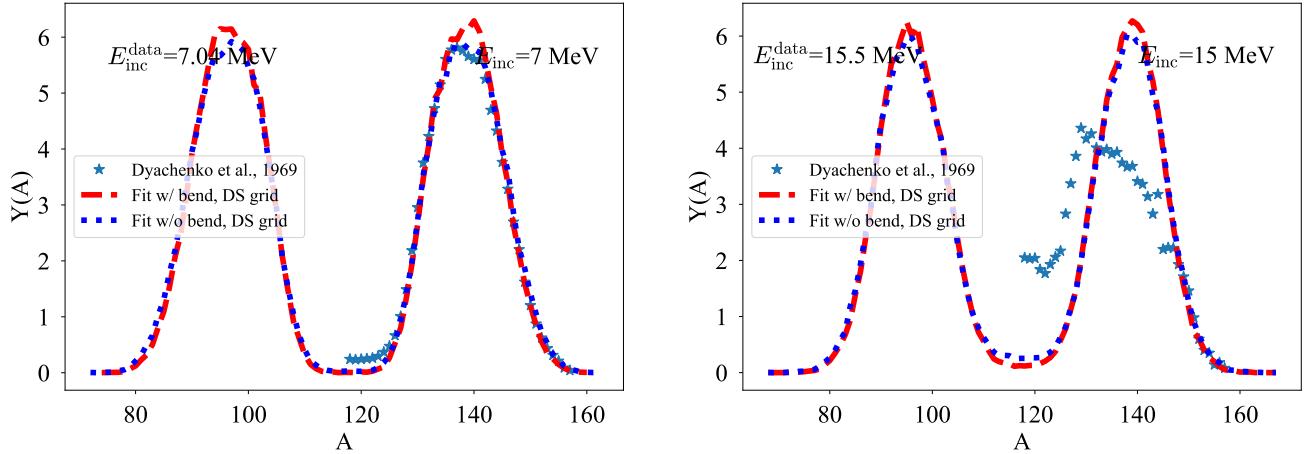


Figure 29: Comparison of the pre-neutron emission mass yield, $Y(A)$, among the two optimizations with CGMF and available experimental data.

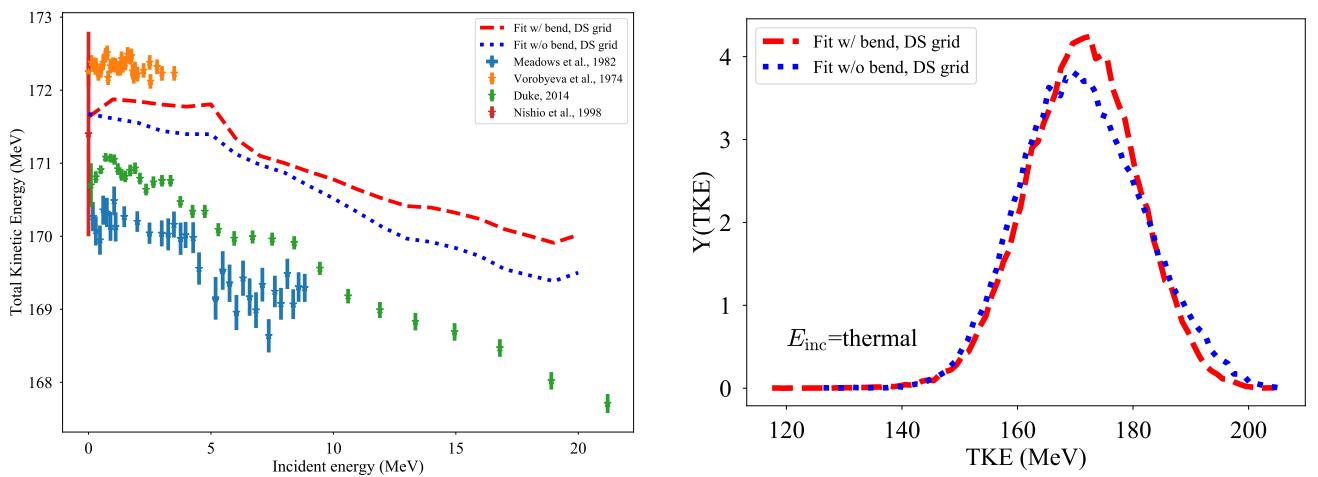


Figure 30: (Left) Comparison among the two CGMF optimizations and available experimental data for the total kinetic energy as a function of incident neutron energy, $\langle \text{TKE} \rangle(E_{\text{inc}})$. (Right) Same comparison for the distribution of TKE, $Y(\text{TKE})$, for thermal incident neutrons.

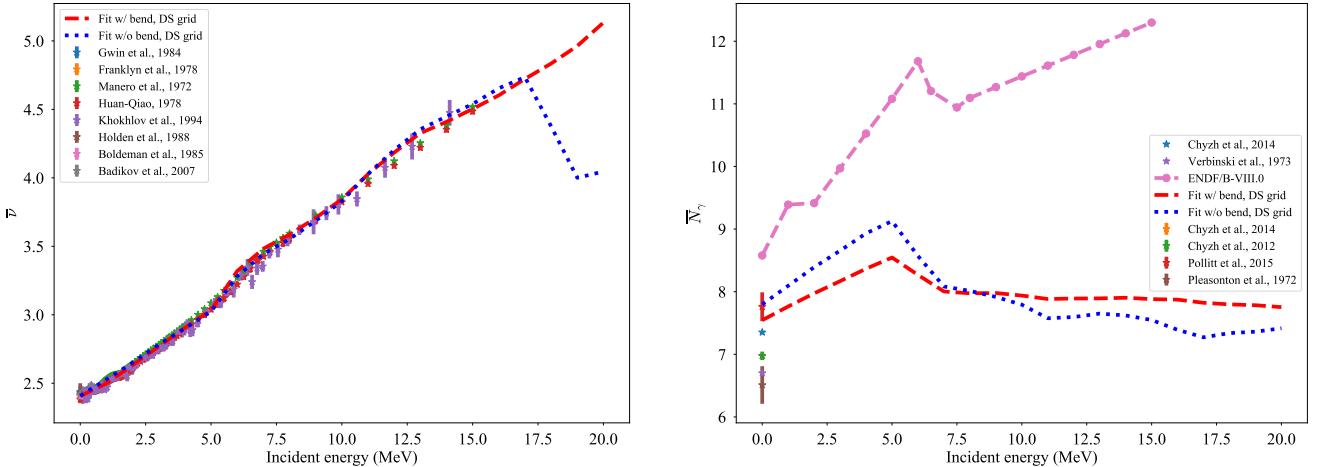


Figure 31: Comparison among the two optimizations with CGMF and available experimental data for (left) average prompt neutron multiplicity and (right) average prompt γ -ray multiplicity, \bar{N}_γ . For \bar{N}_γ , we also show the comparison to the ENDF/B-VIII.0 evaluation.

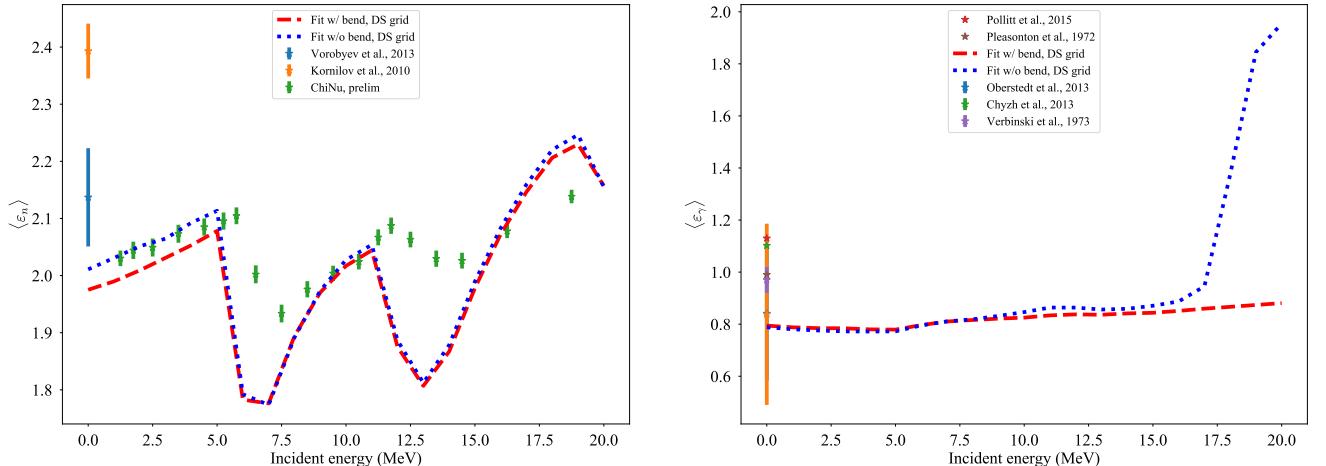


Figure 32: Comparison among the two optimizations with CGMF and available experimental data for (left) average outgoing neutron energy and (right) average outgoing γ -ray energy.

585 spin cutoff parametrization.

586 Finally, in Fig. 33, we show the comparison between the two parametrizations and experimen-
 587 tal multiplicity distributions. On the right, $P(N_\gamma)$, we see very little difference between the two
 588 parametrizations. The average experimental multiplicity is slightly lower than the calculated one, but
 589 there is no energy threshold considered in the CGMF calculation, which would lower the average multipli-
 590 city. If we look at $P(\nu)$ instead (left), we see a significant difference between the two parametrizations,
 591 which, as mentioned before, is due to the 20% difference in σ_{TKE} . In this case, we trust more the
 592 parametrization with the bend, as the best comparison to the data is to Holden. These differences are
 593 typically why we need to lower σ_{TKE} compared to experimental data.

594 5 Conclusions and Outlook

595 This report is in answer to a FY21 NCSP (Nuclear Criticality Safety Program) milestones for LANL
 596 that aims to evaluate PFNS and multiplicity, $\bar{\nu}_p$, consistently for ^{235}U and ^{239}Pu . While we did not

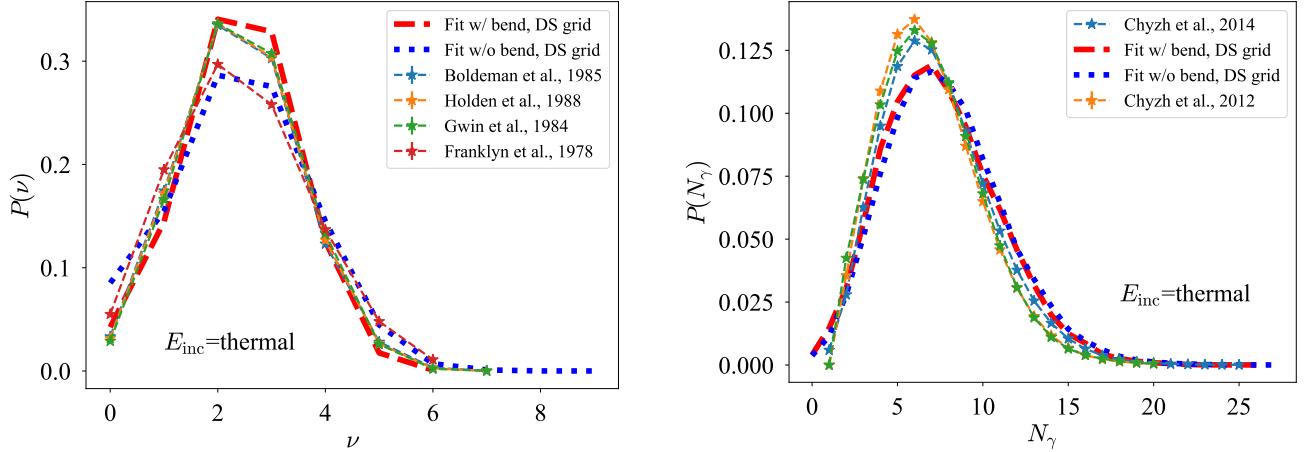


Figure 33: Comparison among the four optimizations with CGMF and available experimental data for (left) average outgoing neutron energy and (right) average outgoing γ -ray energy.

succeed in obtaining consistent evaluated data of PFNS and $\bar{\nu}_p$ due to significant model defects in PFNS, we were able to show that CGMF can be used to produce ENDF/B-quality $\bar{\nu}_p$ data.

This was shown by performing an evaluation of the $^{239}\text{Pu}(\text{n},\text{f})$ $\bar{\nu}_p$ that was started from scratch. We started out by a re-assessment of all experimental data and obtained evaluated data in line with previous evaluations that were also based on only experimental data showing that the approach worked this far. When we included the CGMF model in the evaluation, the evaluated results did not change drastically but were smoother showing the physics constraints introduced through the model.

In addition to that, we could show that the evaluated model parameters link favorably back to other fission data like FY(A), TKE, *etc.* when parameterized through these evaluated parameters. Hence, our evaluated $^{239}\text{Pu}(\text{n},\text{f})$ $\bar{\nu}_p$ ties back well to other fission data. Moreover, this new $^{239}\text{Pu}(\text{n},\text{f})$ $\bar{\nu}_p$ performed well when used in integral testing of various validation responses (k_{eff} of PU-MET-FAST and PU-MET-INT ICSBEP assemblies, various reaction rates in Jezebel and Flattop-Pu, Pu LLNL pulsed spheres) if considering at the same time changes in the PFNS and (n,f) cross section coming from new high-precision experiments. Given the good performance of these new $\bar{\nu}_p$ in validation testing, it is being considered as candidate for ENDF/B-VIII.1.

So, in short, one can produce ENDF/B-quality nuclear data for $\bar{\nu}$ with the CGMF model.

In the near future, we will finalize the evaluation of the $^{235}\text{U}(\text{n},\text{f})$ $\bar{\nu}_p$ and commence then with integral testing. The next step is extending this approach to $^{238}\text{U}(\text{n},\text{f})$ and Pu minor isotope $\bar{\nu}_p$.

615 Acknowledgments

DN thanks N. Gibson and W. Haeck (both XCP-5) for their help in assembling the new ^{239}Pu file. Work at LANL was carried out under the auspices of the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE) under contract 89233218CNA000001. We gratefully acknowledge partial support of the Advanced Simulation and Computing program at LANL and the DOE Nuclear Criticality Safety Program, funded and managed by NNSA for the DOE.

621 References

[1] P. Talou, T. Kawano, I. Stetcu et al. , “Fission Fragment Decay Simulations with the CGMF Code,” COMP. PHYS. COMM. **269**, 108087 (2021).

624 [2] A.E. Lovell and D. Neudecker, "Correcting the PFNS for more consistent fission modeling," Los
625 Alamos National Laboratory Report LA-UR-21- (2021).

626 [3] D. Neudecker, O. Cabellos, A.R. Clark, "Informing Nuclear Physics via Machine Learning Methods
627 with Differential and Integral Experiments," PHYS. REV. C **104**, 034611 (2021).

628 [4] D. Neudecker, V.G. Pronyaev and L. Snyder, "Including $^{238}\text{U}(\text{n},\text{f})/^{235}\text{U}(\text{n},\text{f})$ and
629 $^{239}\text{Pu}(\text{n},\text{f})/^{235}\text{U}(\text{n},\text{f})$ NIFFTE fissionTPC Cross-sections into the Neutron Data Standards
630 Database," Los Alamos National Laboratory Report LA-UR-21-24093 (2021).

631 [5] A.E. Lovell, D. Neudecker, P. Talou, et al. , "Consistent Evaluation of the Prompt-Fission Neutron
632 Spectrum and Multiplicity for $\text{n}+^{235,238}\text{U}$ and $\text{n}+^{239}\text{Pu}$," Los Alamos National Laboratory Report
633 LA-UR-20-26932 (2020).

634 [6] G.B. King, A.E. Lovell, L. Neufcourt, and F.M. Nunes et al. , "Direct Comparison between Bayesian
635 and Frequentist Uncertainty Quantification for Nuclear Reactions," PHYS. REV. LETT **122**, 232502
636 (2019).

637 [7] Ju.A. Bljumkina, I.I. Bondarenko, V.F. Kuznetsov, V.G. Nesterov, V.N. Okolovitch,
638 G.N. Smirenkin, L.N. Usachev, "Channel effects in the energy dependence of the number of prompt
639 neutrons and the kinetic energy of fragments in the fission of U^{235} and U^{233} by neutrons," NUCL.
640 PHYS., **52** 648 (1964).

641 [8] G. S. Boykov, V. D. Dmitriev, G. A. Kudyaev, Yu. B. Ostapenko, M. I. Svirin, G. N. Smirenkin,
642 "Spectrum of Neutrons Accompanying Fission of ^{232}Th , ^{235}U , and ^{238}U by 2.9-MeV and 14.7-MeV
643 Neutrons (Below and Above the Threshold of Emission Fission)", YAD. FIZ. **53**, 628–648 (1991)
644 [Sov. J. NUCL. PHYS. **53**, 392–406 (1991)].

645 [9] D.W. Colvin, M.G. Sowerby, "Boron pile nu-bar measurements," PROC. OF NUCLEAR DATA FOR
646 REACTORS CONF., PARIS 1966 **1**, 307 (1966).

647 [10] H. Conde, "Average number of neutrons from the fission of U-235," ARKIV FOER FYSIK **29**, 293
648 (1965).

649 [11] B.C. Diven, H.C. Martin, R.F. Taschek, "Multiplicities of Fission Neutrons," PHYS. REV. **101**
650 1012–1016 (1956).

651 [12] B.C. Diven, J.C. Hopkins, "Numbers of prompt neutrons per fission for U^{233} , U^{235} , Pu^{239} and
652 Cf^{252} ," PROC. REACTOR PHYSICS SEM., VIENNA 1961 **1**, 149 (1961).

653 [13] D.S. Mather, M.H. McTaggart, A. Moat, "Revision of the Harwell ^{240}Pu source strength and nu
654 for ^{235}U and ^{252}Cf ," J.NUCLEAR ENERGY A&B **20**, 549 (1966).

655 [14] M. Soleihac, J. Frehaut and J. Gauriau, "Energy Dependence of $\bar{\nu}_p$ for Neutron-induced Fis-
656 sion of ^{235}U , ^{238}U and ^{239}Pu from 1.3 to 15 MeV," J. OF NUCL. ENERGY **23**, 257–282 (1969);
657 J. Frehaut, G. Mosinski and M. Soleihac, "Recent Results in $\bar{\nu}_p$ Measurements between 1.5 and
658 15 MeV," Topical Conference on $\bar{\nu}_p$ The Average Number of Neutrons Emitted in Fission, France,
659 1972, Report EANDC(E)-15 "U" (1973).

660 [15] J. Frehaut, A. Bertin, R. Bois, "Mesure de $\bar{\nu}_p$ et E-bar $_{\gamma}$ pour la fission de ^{232}Th , ^{235}U et ^{237}Np
661 induite par des neutrons d'énergie comprise entre 1 et 15 MeV," CENTRE D'ETUDES NUCLEAIRES
662 **2196**, (1981).

663 [16] R. Gwin, R.R. Spencer and R.W. Ingle, "Measurements of the Energy Dependence of Prompt
 664 Neutron Emission from ^{233}U , ^{235}U , and ^{239}Pu for $E_n = 0.0005$ to 10 MeV Relative to Emission
 665 from Spontaneous Fission of ^{252}Cf ," NUCL. SCI. ENG. **94**, 365–379 (1986); R. Gwin, R.R. Spencer
 666 and R.W. Ingle, "Measurements of the Energy Dependence of Prompt Neutron Emission from
 667 ^{233}U , ^{235}U , ^{239}Pu , and ^{241}Pu for $E_n = 0.0005$ to 10 eV Relative to Emission from Spontaneous
 668 Fission of ^{252}Cf ," NUCL. SCI. ENG. **87**, 381–404 (1984); R. Gwin, R.R. Spencer, R.W. Ingle et
 669 al. , "Measurements of the Average Number of Prompt Neutrons Emitted per Fission of ^{239}Pu and
 670 ^{235}U ," Oak Ridge National Laboratory ORNL/TM-6246 (1978).

671 [17] J.C. Hopkins and B.C. Diven, "Prompt neutrons from fission," NUCLEAR PHYSICS, **48**, 433 (1963).

672 [18] R.E. Howe, T.W. Phillips, "Fission nu-bar measurements," BROOKHAVEN NATIONAL LABORA-
 673 TORY REPORTS **21501**, 66 (1976).

674 [19] F. Kaeppeler, R.E. Bandl, "The average number of prompt neutrons from neutron induced
 675 fission of U-235 between 0.2 and 1.4 MeV," PROC. OF CONF. ON NUCL. CROSS-SECT. AND
 676 TECHN., WASHINGTON 1975 **2**, 549 (1975).

677 [20] Yu.A. Khokhlov, I.A. Ivanin, V.I. Inkov, Yu.I. Vinogradov, L.D. Danilin, B.N. Polynov, "Mea-
 678 surements Results of Average Neutron Multiplicity From Neutron Induced Fission of Actinides in
 679 0.5-10 MeV Energy Range," PROC. OF CONF. ON NUCL. DATA FOR SCI. AND TECHN., GATLIN-
 680 BURG 1994 **1**, 272 (1994).

681 [21] J.W. Meadows, J.F. Whalen, "Energy Dependence Of Prompt $\bar{\nu}$ -For Neutron-Induced Fission Of
 682 ^{235}U ," PHYS. REV. **126**, 197 (1962).

683 [22] J.W. Meadows, "MEASUREMENT OF NU BAR(P) FOR U-235," U.S. REPORT TO EANDC
 684 **70**, 9 (1964).

685 [23] J.W. Meadows, J.F. Whalen, "Energy dependence $\bar{\nu}_p$ for neutron-induced fission of ^{235}U below
 686 1.0 MeV," J. NUCL. ENERGY **21**, 157 (1967).

687 [24] L.I. Prokhorova, R.E. Bagdasarov, I.I. Kotukhov et al. , "Yield of Prompt Neutrons $\bar{\nu}_{\text{tot}}$ in the
 688 Fission of ^{235}U by Neutrons with Energies up to 1.5 MeV," ATOMNAYA ÉNERGIYA **30**, 250–257
 689 (1971).

690 [25] L.I. Prokhorova, G.N. Smirenkin, "Average Number of Prompt Neutrons from ^{235}U and ^{232}Th
 691 Fission Induced by Neutrons Having Energies up to 3.3 MeV," YADERNAYA FIZIKA **7**, 961 (1968).

692 [26] A.N. Protopopov, M.V. Blinov, "Mean number of neutrons emitted in ^{235}U fission induced by
 693 14.8-MeV neutrons," ATOMNAYA ENERGIYA **4**, 374 (1958).

694 [27] M.V. Savin, Yu.A. Khokhlov, Yu.S. Zamjatnin et al. , "The Average Number of Prompt Neutrons
 695 in Fast Neutron Induced Fission of U-235, Pu-239 and Pu-240," IAEA Report IAEA-CN-26/40
 696 (1970).

697 [28] M.V. Savin, Y.A. Khokhlov, A.E. Savelev, I.N. Paramonova, "Energy Dependence of $\bar{\nu}$ in the
 698 Fission of ^{235}U by Fast Neutrons," PROC. OF THIRD ALL UNION CONF. ON NEUTRON PHYS.,
 699 KIEV, 9-13 JUN 1975 **5**, 186 (1975).

700 [29] M.V. Savin, Ju.A. Khokhlov, V.N. Ludin, "AVERAGE NUMBER OF PROMPT NEUTRONS AT
 701 THE U-235 FISSION BY THE NEUTRONS IN THE ENERGY INTERVAL 0.2 - 1.0 MEV," PROC.
 702 OF SEC. CONF. ON NEUTRON PHYSICS, KIEV 1973 **4**, 63 (1973).

703 [30] G.N. Smirenkin, I.I. Bondarenko, L.S. Kutsaeva et al. , “Mean Number of Prompt Neutrons in
 704 the Fission of U^{233} , U^{235} , Pu^{239} by 4 and 15 MeV Neutrons,” Sov. ATOMIC ENERGY **4**, 253–255
 705 (1958).

706 [31] M. Soleihac, J. Fréhaut, J. Gauriau et al. , “Average Number of Prompt Neutrons and Relative
 707 Fission Cross-Sections of U-235 and Pu-239 in the 0.3 to 1.4 MeV Range,” Proc. of the Conference
 708 for Nuclear Data for Reactors, Helsinki, **2**, 145– (1970); J.W. Boldeman, J. Fréhaut and R.L. Walsh,
 709 “A Reconciliation of Measurements of $\bar{\nu}_p$ for Neutron-induced Fission of Uranium-235,” NUCL.
 710 SCI. ENG. **63**, 430–436 (1977).

711 [32] R.L. Walsh and J.W. Boldeman, “The Energy Dependence of $\bar{\nu}_p$ for ^{233}U , ^{235}U and ^{239}Pu below
 712 5.0 MeV,” J. NUCL. ENERGY **25**, 321–330 (1971).

713 [33] J.W. Boldeman and M.G. Hines, “Prompt Neutron Emission Probabilities Following Sponta-
 714 neous and Thermal Neutron Fission,” NUCL. SCI. ENG. **91**, 114–116 (1985); J.W. Boldeman and
 715 R.L. Walsh, “The Energy Dependence of $\bar{\nu}_p$ for Neutron Induced Fission of ^{235}U below 2.0 MeV,” J.
 716 NUCL. ENERGY **24**, 191–205 (1970).

717 [34] H. Condé, J. Hansén and M. Holmberg, “Prompt $\bar{\nu}_{tot}$ in Neutron-induced Fission of ^{239}Pu and
 718 ^{241}Pu ,” J. OF NUCL. ENERGY **22**, 53–60 (1968).

719 [35] Z. Huanqiao, X. Jincheng, L. Zuhua et al. , “The Dependence of Average Numbers of Prompt
 720 Fission Neutron of Pu-239 on Incident Fast Neutron Energies,” CHIN. J. OF NUCL. PHYS. **2**, 29
 721 (1980).

722 [36] I. Johnstone, “A Measurement of the Average Number of Prompt Neutrons Emitted in Fission at
 723 High Energy,” Atomic Energy Research Establishment Report A.E.R.E NP/R 1912 (1956).

724 [37] V.I. Kalashnikova, V.I. Lebedev, P.E. Spivak et al. , “Absolute Evaluation of the Average Number
 725 of Neutrons Emitted in the Fission of some Isotopes of Uranium and Plutonium,” Proc. of the USSR
 726 Conf. peaceful Uses of Atomic Energy, USSR 1955, 156 (1955).

727 [38] M.V. Savin, Yu.A. Khokhlov, A.E. Savelév et al. , “Energy Dependence of $\bar{\nu}_{tot}$ in the Fission of
 728 U^{235} by Fast Neutrons,” SOVIET J. OF NUCL. PHYSICS **16**, 638–640 (1973).

729 [39] P.J. Leroy, “Nombres Moyens de Neutrons Prompts Émis Dans La Fission de ^{238}U , ^{239}Pu ,
 730 ^{232}Th ,” LE JOURNAL DE PHYSIQUE ET LE RADIUM **21**, 617–628 (1960).

731 [40] P. Marini, J. Taieb, D. Neudecker, “Energy Dependence of Prompt Fission Neutron Multiplicities
 732 in the $^{239}Pu(n,f)$ Reaction,” PHYS. REV. L. **xx**, submitted (2021).

733 [41] D.S. Mather, P. Fieldhouse and A. Moat, “Measurement of Prompt $\bar{\nu}_{tot}$ for the Neutron-induced
 734 Fission of Th^{233} , U^{233} , U^{234} , U^{238} and Pu^{239} ,” NUCL. PHYS. A **66**, 149–160 (1965).

735 [42] D.S. Mather, P. Fieldhouse, A. Moat, “Measurement Of Prompt $\bar{\nu}$ For The Neutron-Induced
 736 Fission Of Th^{232} , U^{233} , U^{234} And Pu^{239} ,” NUCL. PHYS. **66**, 149 (1965).

737 [43] B. Nurpeisov, K.E. Volodin, V.G. Nesterov et al. , “Dependence of $\bar{\nu}_{tot}$ on Neutron Energies up
 738 to 5 MeV for ^{233}U , U^{235} , and ^{239}Pu ,” ATOMNAYA ÉNERGIYA **39**, 199–205 (1975).

739 [44] K.E. Bolodin, V.F. Kuznetsov, V.G. Nesterov et al. , “Average Number of Prompt Neutrons in
 740 Pu^{239} Fission,” ATOMNAYA ÉNERGIYA **33**, 901–906 (1972).

741 [45] D. Neudecker, “ARIADNE—a program estimating covariances in detail for neutron experi-
 742 ments,” EPJ-N **4**, 34 (2018).

743 [46] D. Neudecker, A. Lewis, E. Matthews *et al.*, “Templates of Expected Measurement Uncertainties,” Los Alamos National Laboratory Report LA-UR-19-31156 (2019).

744 [47] A.D. Carlson *et al.* , “Evaluation of the Neutron Data Standards,” NUCL. DATA SHEETS **148**, 143 (2018).

745 [48] P.G. Young, M.B. Chadwick, R.E. MacFarlane *et al.*, “Evaluation of Neutron Reactions for ENDF/B-VII: $^{232-241}\text{U}$ and ^{239}Pu ,” NUC. DATA SHEETS **108**, 2589–2654 (2007).

746 [49] D. Neudecker, P. Talou, T. Kawano *et al.* , “Evaluations of Energy Spectra of Neutrons Emitted Promptly in Neutron-induced Fission of ^{235}U and ^{239}Pu ,” NUCL. DATA SHEETS **148**, 293 (2018).

747 [50] D. Neudecker, R. Fröhwirth and H. Leeb, “Peelle’s Pertinent Puzzle: A Fake due to Improper Analysis,” NUC. SCI. ENG. **170**, 54–60 (2012).

748 [51] D. Neudecker *et al.* , “Validating Nuclear Data Uncertainties Obtained from a Statistical Analysis of Experimental Data with the “Physical Uncertainty Bounds” Method,” EPJ NUCLEAR SCI. TECHNOL. **6**, 19 (2020).

749 [52] D.E. Vaughan and D.L. Preston, “Physical Uncertainty Bounds (PUB),” Los Alamos National Laboratory Report LA-UR-14-20441.

750 [53] D. Neudecker, V.G. Pronyaev and L. Snyder, “Including $^{238}\text{U}(\text{n},\text{f})/^{235}\text{U}(\text{n},\text{f})$ and $^{239}\text{Pu}(\text{n},\text{f})/^{235}\text{U}(\text{n},\text{f})$ NIFFTE fissionTPC Cross-sections into the Neutron Data Standards Database,” Los Alamos National Laboratory Report LA-UR-21-24093 (2021).

751 [54] J. Bess (editor), “International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP),” Organization for Economic Co-operation and Development-Nuclear Energy Agency Report NEA/NSC/DOC(95)03 (2019).

752 [55] C. Wong, J.D. Anderson, P. Brown *et al.* , “Livermore Pulsed Sphere Program: Program Summary through July 1971,” Lawrence Livermore Laboratory Report UCRL-ID-51144 (1972); C. Wong, E.F. Plechaty, R.W. Bauer *et al.* , “Measurements and Calculations of the Leakage Multiplication from Hollow Beryllium spheres,” Lawrence Livermore Laboratory Report UCRL-ID-91774 (1985); W. Webster and C. Wong, “Measurements of the neutron emission spectra from spheres of N, O, W, ^{235}U , ^{238}U , and ^{239}Pu , pulsed by 14-MeV neutrons,” Lawrence Livermore Laboratory Report UCID-17332 (1976); A.A. Marchetti and G.W. Hedstrom, “New Monte Carlo Simulation of the LLNL Pulsed-Sphere Experiments,” Lawrence Livermore Laboratory Report UCRL-ID-131461 (1998); E.R. Plechaty and R.J. Howerton, “Calculation Models for LLL Pulsed Spheres (CSEWG Shielding Benchmark Collection No. SDT 10),” Lawrence Livermore Laboratory Report UCID-16372 (1973).

774 A Definition of Template Uncertainties

775 Total covariances had to be estimated for each data set in Tables I and II that was accepted for the evaluation. Unfortunately, specific uncertainty sources were missing (i.e., no uncertainty values defined) for all accepted data sets, although they would have been expected to occur for a $\bar{\nu}_p$ measurement. However, one also has to estimate these missing uncertainties. Otherwise, one data set with many missing uncertainties might have an unjustified higher weight in the evaluation than one where the author provided many uncertainty sources adequately. Also, a complete uncertainty estimate of all input experimental data is the basis to obtain a realistic evaluated uncertainty.

782 We took recourse to templates of expected measurement uncertainties in ratio and absolute liquid-
783 scintillator measurements of Ref. [46] in order to estimate the missing uncertainty sources. In Table XIII
784 of Ref. [46], uncertainty values and correlation coefficient are estimated for these types of experiments

785 for all pertinent uncertainty sources. These values were used here and are summarized in Table V
 786 and Fig. 34. If one particular uncertainty source is listed in the last columns of Tables I and II for
 787 a measurement entering any of the evaluations presented here, the uncertainty values and correlation
 788 coefficients defined in Table V and Fig. 34 are used.

Table V: Uncertainty values and correlation coefficients are provided based on templates of expected measurement uncertainties of Ref. [46] for those uncertainty sources typically encountered in $\bar{\nu}_p$ measurements (defined in Table III). These values are used if values for a specific uncertainty source are missing for a particular measurement. If one particular uncertainty source is listed in the last columns of Tables I and II, the uncertainty values and correlation coefficients defined in this table are used.

Unc. source	Ratio (%)	Cor(Exp _i ,Exp _i)
δc_{DG}	0.12%	Full
δb	0.5%	Gaussian
δc_{ff}	0.22%	Gaussian
$\delta \omega$	^{235}U : 0.05%; ^{239}Pu : 0.07%	Full
$\delta \tau$	0.08%	Full
$\delta \chi$	See Fig. 34	Gaussian
δa	See Fig. 34	Full
$\delta \bar{\nu}^m$	0.42%	Full
δd	0.2%	Full
$\delta d_{s/m}$	0.05%	Full
ΔE_{inc}	Estimate from Similar Facilities	Full

789 **B Experimental Data for $^{235}\text{U}(\text{n},\text{f}) \bar{\nu}_p$**

790 **Bljumkina, 1964** This is an unusual measurement in as far as the ratio of neutron and fission count
 791 rate is taken. They use a Th fission chamber and a scintillator as neutron detector. They provide
 792 correction factors (but not uncertainties) for deadtime, multiple scattering, angular distribution and
 793 PFNS. They are all reasonable compared to template information. I use template uncertainties for
 794 this measurement. Missing corrections: sample roughness (can play a role for the Th measurement!)
 795 and impurity.

796 **Boikov, 1991** This is yet another unusual measurement. It is a PFNS measurement, from which
 797 they extracted a nu-bar. The experimental data agree well at 14 MeV and are high at 2.9 MeV, but
 798 within the spread of differential data. The "total" uncertainties are fairly high which is not surprising
 799 given that they extracted a nu-bar from PFNS. The only uncertainty they truly give is the time
 800 resolution (2.5 ns on a flight path of 205 cm). The PFNS uncertainty for ^{252}Cf is given with 3% but
 801 that applies to the PFNS part of the measurement. I would assume that one third of that applies
 802 to nu-bar and take 1.5% instead of 3% and the rest of the total uncertainties as statistical in nature.
 803 Missing corrections: multiple scattering, deadtime, false fission, sample thickness, beam stability. I am
 804 worried about their missing multiple-scattering correction as this can cause a sizable contribution on a
 805 PFNS measurement. However, they took the ratio to ^{252}Cf . The correction in their PFNS can amount
 806 to 2%. Hence, I add a 1.0% multiple scattering uncertainty for $\bar{\nu}_p$. Admittedly, I am wary about this
 807 measurement as their Pu-9 PFNS measurement at high E_{inc} was rejected, because they measure at
 808 one angle only, and hence, the PFNS is only good for one angle, which is not good for a PFNS at 14.5
 809 MeV (pre-equilibrium component!). However, they considered that in their calculations and seem to
 810 have taken that into account for $\bar{\nu}_p$. There are two data sets given in EXFOR. I don't know why and
 811 what is the difference. I take the second one.

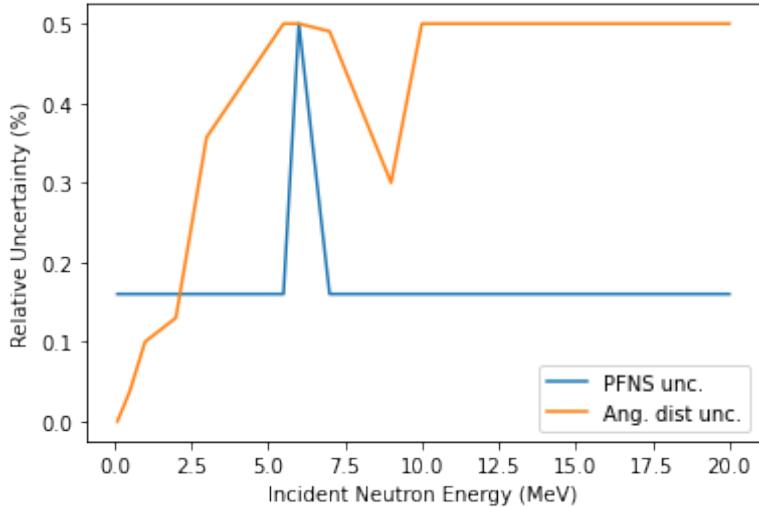


Figure 34: Uncertainty values assumed for $\delta\chi$, PFNS uncertainties, and δa , uncertainties in the correction for the angular distribution of fission neutrons, are shown as a function of E_{inc} . These values were used if $\delta\chi$ and δa are not provided for a particular experiment. These uncertainties were estimated based on Table XIII of Ref. [46].

812 **Colvin, 1965** This is an unusual measurement that uses the Boron pile technique. This technique
 813 was pretty strongly criticized for $^{252}\text{Cf}(\text{sf})\bar{\nu}$ given that it produced lower results than Mn-baths and
 814 liquid scintillators on average. Hence, the experimentalist studied a lot of effects and provided many
 815 uncertainties. The data are systematically higher than VIII.0 until 1 MeV, but agree otherwise well.
 816 I adopt many of their uncertainties.

817 **Conde, 1965** They measured with mono-energetic neutron sources but also performed TOF for en-
 818 ergy determination to distinguish spontaneous fission. They used the ratio liquid-scintillator technique.
 819 A coincidence between FF and PF gammas in the scintillator was used as a start of the gate. First,
 820 background was corrected, then impurities. Corrections were given for PuncertaintiesFNS, angular
 821 distribution, $\bar{\nu}$ from impurities, background from thermal neutrons, deadtime, sample thickness and
 822 false fissions. I assumed half of the corrections as uncertainty except for PFNS and angular distribution
 823 uncertainties as these seem distinctly underestimated. This is not surprising as second-chance fission
 824 effects in PFNS likely were not well understood in the mid-60s, nor was the angular distribution. I
 825 used template values instead. Energy uncertainties were taken from EXFOR. I backed statistical un-
 826 certainties out by assuming the rest of uncertainties not accounted for were of random nature. I added
 827 uncertainties for delayed gammas and sample displacement from the template.

828 **Diven, 1956** This is a very old measurement with short gate time ($30 \mu\text{s}$) and double coincidence
 829 as trigger. They measured the detector efficiency. Uncertainties encompass: statistics, detector effi-
 830 ciency and coincidences (background). Effects not mentioned to be corrected: geometry, neutron flux
 831 variations, delayed gammas, displacement of sample. The data are 3.5% away from VIII.0. I corrected
 832 their $\bar{\nu}_p$ value for sample thickness following Boldeman and Frehaut, NSE 76, p. 49 (1980).

833 **Diven, 1961 & Hopkins, 1963** This measurement used the same equipment as for Diven 1956
 834 (also same co-authors). The efficiency was determined by scattering $d+d$ and $T+d$ neutrons in the
 835 scintillator and a NE 102 plastic scintillator. I.e., the determined their detector efficiency experimen-
 836 tally like Diven, 1956. They counter-checked this measurement with simulations (1963!). The counting

837 gate was opened by pulses in the fission chamber and prompt gammas in scintillator which could re-
838 duce the effect of false fissions? The gate is open for a reasonably long time ($64 \mu\text{s}$). The background
839 is measured by a random gate several milliseconds after the main gate. Energy spread is explicitly
840 given. Systematic uncertainties are due to pile-up and neutron-flux contamination (down-scattering to
841 thermal). Not corrected for: impurities in the sample, displacement of the sample (definitely a problem
842 because in the same time in the beam), angular distribution & forward-boost (definitely a problem at
843 14 MeV), sample thickness, delayed gammas. I corrected for sample thickness following Boldeman and
844 Frehaut, NSE 76, p. 49 (1980). From the EXFOR entry alone and the journal article it was not clear
845 if the monitor is prompt or total $^{252}\text{Cf}(0,\text{f}) \bar{\nu}$. After considerable amount of digging it became clear
846 that it is total.

847 **Fieldhouse, 1966** The level of documentation and knowledge that went in this experiment of 1966
848 (!) is impressive. It is no wonder that Fieldhouse and Moat provided standard data. One data set is
849 systematically high but still well within the spread of data while the 14-MeV point is systematically
850 low. They had a neutron-detection efficiency of 0.89%, with 0.2% uncertainties explicitly given. The
851 gate was open reasonably long ($40 \mu\text{s}$). They give PFNS uncertainties, but I rather take my own
852 as they seem low. They were aware of many corrections and did a great job. They did an estimate
853 of corrections needed for delayed gammas but could not calculate the correction factor. Not many
854 uncertainties are given but templates fit well together with the reported sizes of their corrections.

855 **Frehaut, 1980 to 1982** They measured with mono-energetic neutron sources but also performed
856 TOF for energy determination to distinguish spurious neutron groups. They used the ratio liquid-
857 scintillator technique. A coincidence between fission fragment and prompt-fission gammas in the
858 scintillator (doped with Gd) was used as a start of the gate. Most uncertainties are taken from the
859 template as they are either missing or the template uncertainties are within a credible range given the
860 corrections that Frehaut mentions in his journal articles. The level of documentation on these data
861 sets is fair. Frehaut was aware of many necessary corrections, but his documentation is confusing at
862 best. One example is that the monitor is 3.782 for 1980 and 3.732 for 1982 leading to a systematic
863 off-set at high E_{inc} that is not explained. It is also not clear to me why he did less corrections for
864 the 1982 than for the 1980 data set. The data seems systematically lower than the ENDF/B-VIII.0
865 evaluation but that might be caused by the a bit too low a monitor value that Frehaut used. I am
866 not sure which data set is the final one, especially as fewer corrections were undertaken for the 1982
867 data set. I adopt both as Phil seems to have done looking at the final evaluated data (no input data
868 found). The gate is open for a reasonably long time ($50 \mu\text{s}$). Julien Taieb mentioned there is an issue
869 with the data because the $(\text{n},2\text{n})$ and $\bar{\nu}_p$ competition was not correctly resolved. Frehaut cites a total
870 systematic uncertainty of 0.2% in the 1982 paper which is too low.

871 **Gwin, 1986** I adopted their statistical, deadtime, false-fission, impurity, background (considered in
872 statistical), delayed-gamma, displacement of sample and sample thickness uncertainties. I replaced
873 their PFNS and angular distribution uncertainties with template values as they did not take into
874 account the effect of second-chance fission. One thing that seems missing is that the forward-boost
875 was not corrected for. However, their data end at 10 MeV, where this effect should be smaller, so
876 missing this particular correction could be fine. Energy uncertainties are also not provided and I adopt
877 them from other data measured with ORELA at that time.

878 **Howe, 1976** This is a really weird experiment. They did not use the typical liquid scintillator but
879 rather a combination of shells (U, Li, Pb) going to a benzene liquid scintillator, where they had to
880 correct for a lot of multiple scatters. They corrected multiple scattering via neutron-transport codes,
881 in 1976! Their complete efficiency is on the order of 50% which is pretty low and reflects how many

882 mistakes they could have. They did not corrections for angular distributions of fission fragments. You
883 see that in their data. They are systematically high above 4 MeV. In a later publication (1984), they
884 talk at considerable length about the need for this correction, which I assume is their way of saying
885 that they should have done it. So, I reject the data above 1.6 MeV and remove one outlier at 2 MeV.
886 I will generously add a multiple scattering uncertainty of 1.0% (expert judgment) given how many
887 materials they had in the beam and that I don't believe that they can get it that right and it will
888 matter for a 50%-detector-efficiency correction.

889 **Käppeler, 1975** The data are measured with an absolute technique (neutrons versus fission rate)
890 but re-normalized to an evaluation. I re-normalize to VIII.0. The measurement is fairly well described.
891 Most pertinent corrections were undertaken, except for deadtime (maybe just not documented) and
892 false fissions (likely forgotten). The uncertainties are realistic given the templates. All in all, a fairly
893 good job and likely good data. I take from templates, deadtime and false fission uncertainties as these
894 should apply as well.

895 **Khoklov, 1994** The data are systematically below VIII.0 below 0.8 MeV. The data set is very
896 well-documented. The gate is open for a reasonable time, maybe a bit too short for low energies?
897 The uncertainties are all half of template uncertainties. I adopt all uncertainties except for PFNS
898 and angular distribution which are much higher from the templates (0.1 and 0.2, respectively). The
899 reason for that is that the authors do no comment on taking into account the E_{inc} -dependence of the
900 PFNS and do not mention forward boost which can be substantial for this measurement). Impurity
901 uncertainties times a factor of 0.5 are adopted from templates as they use rather pure samples. I
902 took energy uncertainty from their ^{239}Pu measurement. The only missing correction is that due to
903 forward-boost. This can matter at higher E_{inc} .

904 **Meadows, 1962–1967** This is one of the earliest measurements. It is a coincidence measurement
905 but the neutron-detector efficiency is incredibly (5-9%) LOW!! Alone for that I would have rejected
906 that. But weirdly enough their data lie well within the bulk of the data if a bit high for the 1967 data
907 set. So, they seem to have known what they are doing. It is fairly well documented but only two partial
908 uncertainties are given (PFNS, sample displacement) which I adopt. I adopt template uncertainties
909 otherwise. Statistical uncertainties are given for the 1965 and 1967 data sets. It is not specified what
910 1962 uncertainties are but the size suggests statistical uncertainties. Energy uncertainties are given
911 for the 1965 and 1967 data sets. No uncertainties are given for the 1962 data set. I adopt the 1967
912 ones as those are for the same neutron beam.

913 **Nesterov, 1970** This is a fairly well-documented data sets with many corrections and uncertainties
914 described. I am worried about missing corrections for delayed gammas. Also, the neutron-detector
915 efficiency is very low. The data lie pretty much on top of VIII.0. I rejected the data from the same
916 group for ^{239}Pu which was clearly off and the authors attributed the problem to contaminations in their
917 sample and published new ^{239}Pu results. However, no issue seems to affect the ^{235}U measurement.
918 They explicitly give PFNS, background, deadtime, impurity, statistical and energy uncertainties. I
919 assume uncertainties for false fissions, delayed gammas, sample displacement and sample thickness.
920 The sample thickness is five times larger than that of Gwin which did not need a correction. However,
921 for this experiment, one needs to correct for that. I re-normalize the data by a factor of 1.0013 following
922 Boldeman & Frehaut, NSE 76, p. 49 (1980), Fig. 1.

923 **Prokhorova, 1967** I could not find any of the publications. Hence, I don't know much. A lot
924 corrections are missing: delayed gamma, deadtime, sample thickness, displacement of sample, energy
925 spread. multiple scattering.

926 **Protopopov, 1958** The data agree well within their uncertainties with ENDF/B-VIII.0. This
927 measurement is more like an absolute measurement where one measures the fission and neutron count
928 rates. They use an ionization chamber for neutron-detection measurements. It is very unusual but
929 has the advantage of being insensitive to gammas and, therefore no delayed-gamma correction applies.
930 They did correct for many effects. Exceptions are samples thickness, displacement of sample and
931 deadtime. No uncertainty information is provided; total uncertainties are very large and statistical.
932 The remaining uncertainties are adopted from the templates. While the measurement has little weight
933 due to large uncertainties, it is amazing that such a good measurement was performed in 1958 and
934 that they were aware of so many effects.

935 **Savin, 1970–1979** The data lie systematically above the evaluation and have a wave-like structure
936 that makes me wonder about their statistical uncertainties. One can calculate an energy uncertainty
937 from the TOF length of 35 m and time resolution of 1 ns/m. I wonder if this data set could be correlated
938 with Khoklov because they use the same flight-path length and Khoklov is the second author. Fission
939 was detected by prompt gammas. They accounted for scattering in the sample holder/ backing (Pb) by
940 doing measurements just with the sample holders/ backing. The neutron-detector efficiency assumes
941 a value of 70%. That is not the best value but reasonable. The statistical uncertainty of the combined
942 data set is 0.5-0.7%. The neutron-detection efficiency is given with 0.5% which replaces the PFNS
943 uncertainty. Background uncertainty of 0.5% is provided. Weirdly enough in EXFOR ERR-3 is given
944 with 1% citing background uncertainties. It seems that the total uncertainties in EXFOR consist
945 of neutron-detection efficiency uncertainties, background uncertainties and statistical uncertainties.
946 Hence, the latter can be backed out. The journal article is in Russian. Hence, I cannot be sure what
947 was corrected and what not. No mention of delayed gammas, deadtime, sample thickness, displacement
948 of sample, energy spread and beam-stability monitoring was made in the EXFOR entry. Uncertainties
949 taken from template: delayed gamma, false fission deadtime, angular distribution, sample thickness,
950 sample displacement and impurity uncertainties.

951 **Smirenkin, 1958** This is an unusual measurement in as far as a double fission chamber is used.
952 The first half is used to detect fission fragments, the second half is used to detect fission neutrons by
953 registering fission. Hence, no delayed-gamma correction applies and no displacement of sample needs
954 to be taken into account. Very scarce uncertainty information is provided. I take most uncertainties
955 from templates. Missing corrections: thickness, forward boost, neutron flux.

956 **Soleihac, 1970** This measurement used the same equipment as Frehaut 1983. They measured
957 with mono-energetic neutron sources but also performed TOF for energy determination to distinguish
958 spurious neutron groups. They used the ratio liquid-scintillator technique. A coincidence between
959 fission fragments and prompt-fission gammas in scintillator (doped with Gd) was used as a start of the
960 gate. Most uncertainties are estimated with the template following the procedure for Frehaut data as
961 they are missing or the template uncertainties are within a credible range given the corrections that
962 Frehaut mentions in his journal articles.

963 **Walsh, 1971** The data agree partially with ENDF/B-VIII.0. Some of them are outlying but overall
964 the agreement is fine. The counting gate was open for 40 μ s which is reasonable. Many uncertainties
965 were explicitly given. Background uncertainties seem low but maybe ok as many background related
966 uncertainties are treated as separate uncertainties and give reasonable total background uncertainties
967 The description of the measurement is very detailed and I do not see any red flags. They were aware
968 of many pertinent effects.

969 **Rejected Data** Rejected data sets because measured at lower or larger E_{inc} than the evaluation
970 (from 100 keV to 30 MeV):

- 971 • Apalin (1962) measured at thermal.
- 972 • Apalin (1965) measured at thermal.
- 973 • Barnard (1955) measured at thermal.
- 974 • Boldeman (1985) measured at thermal.
- 975 • DeVolpi (1966) measured at thermal.
- 976 • Diven (1961; 2) measured at thermal.
- 977 • Frehaut (1973) measured from 2.0e-6 to 4.45e-5 MeV.
- 978 • Fultz (1966) measured at thermal.
- 979 • Gwin (1984) measured from 2e-8 to 4.1e-5 MeV.
- 980 • Howe (1976) measured from 5.2e-7 to 8.43e-5 MeV.
- 981 • Kalashnikova (1955) measured at thermal.
- 982 • Kappor (1963) measured at thermal.
- 983 • Nefedov (1983) measured at thermal.
- 984 • Reed (1973) measured from 1.2e-8 to 2.64e-5 MeV.
- 985 • Sanders (1956) measured at thermal.
- 986 • Simon (1976) measured from 2.03e-6 to 7.46e-5 MeV.
- 987 • Snyder (1970) measured at thermal.
- 988 • Vorobyev (2016) measured at 3.63e-8 MeV.
- 989 • Widen (1973) measured at thermal.

990 Rejected data sets because they were either clearly outlying, or for physics reasons, too large
991 uncertainties or insufficient uncertainty information:

- 992 • Bethe (1955): The data are 8.2% off at 4.0 MeV and 9.5% at 4.5 MeV! The uncertainties are in
993 the range of 10%. The information in EXFOR is extremely scarce. This measurement will have
994 no impact on the evaluation and is clearly biased. While interesting from science history point
995 of view, not useful for the evaluation.
- 996 • Frehaut (1980, 2), EXFOR-number: 2167.002: The experimental data are a factor 2 larger than
997 ENDF/B-VIII.0. No information provided on the data. I am not sure what is going on. Maybe a
998 wrong tabulation? Anyway, I have to reject those data. The other Frehaut data are much better
999 documented.
- 1000 • Nadkarni (1967): The data are only documented in an abstract according to the EXFOR entry.
1001 The information in the EXFOR entry is very scarce and do not contain critical points that
1002 encourage trust in the data. While they detect fission fragments, it is unclear how they count
1003 neutrons for starters. Not even the monitor is documented! The data are systematically off by
1004 5% with an uncertainty of 5%. The data would have little impact and are biased.

- Johnstone (1965): The gate was open too long (500 μ s); hence, they will measure a lot of background. The monitor is also not properly described in the EXFOR entry. (It seems to be natural uranium!) The statistical uncertainty is large (4.5%). The data will likely have no impact at all and are rejected. Not surprisingly, the data are outlying. Missing corrections: attenuation, sample thickness, angular distribution of fission fragments, forward boost (14 MeV), geometry, displacement of sample. The data point at 2.5 MeV is too low, at 14 MeV too high but uncertainties overlap. The problem is less severe than for ^{239}Pu as the effect of the wrong monitor (natural uranium) will wash out more in the ratio. Still, the data are problematic.
- Diven (1957): This data set is very, very scarcely described. Not even the monitor is given and in Diven's case this could be both $^{235}\text{U}(\text{n},\text{f}_{\text{th}})$ or $^{252}\text{Cf}(\text{sf}) \bar{\nu}$. The publication is a theoretical paper with no experimental details; the EXFOR entry is incredibly short. I cannot do anything with this. Also, the data are systematically high which could be due to an outdated monitor.
- Flerov (1958): This is a really weird experiment. They measure the total production of neutrons for 14.1-MeV neutrons in then subtsrate, (n,2), (n,inl) and divide through the fission cross section. They did not have an (n,inl) cross section, so they extrapolated it. We do not know (today, not 1958!) the cross section to better than 25%! It is amazing that the datapoint is only 6% lower than VIII.0. While conceptually interesting, this data set is much too uncertain and riddled with too many systematic unknowns to be considered.
- Howe (1984): The data are actually very well described and many important corrections were undertaken. The real problem with the data is the very complicated monitor: An average detector efficiency for the neutron detector (scintillator) was backed out by comparing the $^{235}\text{U} \bar{\nu}_p$ from 1–15 MeV to Manero data from 1–15 MeV. I could not find Manero evaluated data to see how accurate that data are, they seem reasonably close to VIII.0 but that was only on a plot. They were also re-normalized to a new $^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$. So, in short they used an approximate detector efficiency that would be hard to correct for. In addition to that, the detector efficiency does change with incident energy because of the angular distribution but also the PFNS and is not the same averaged from 1–15 MeV and energies from 15–30 MeV. The angular distribution was corrected for but not the PFNS. The experimental data are systematically higher from VIII.0. One could, in principle, assign a pretty high detector-efficiency uncertainty. The reason I did not do that is that the data are systematically higher than ENDF/B-VIII.0. The same is true for 1976_2 Howe data and for those we can actually compare to other data.
- Vasilev (1960): I could not find the article (journal out of print) and the EXFOR entry is the barest skeleton I have seen so far. I have no clue what was corrected for, if there was a monitor used, what the uncertainties are. In addition to that, the data point is highly outlying and highly uncertain. I reject it given the lack of information.

1040 C Experimental Data for $^{239}\text{Pu}(\text{n},\text{f}) \bar{\nu}_p$

1041 **Conde, 1968** They measured with mono-energetic neutron sources but also performed TOF for en-
 1042 ergy determination to distinguish spontaneous fissioning (important for ^{241}Pu and impurities). They
 1043 used the ratio liquid-scintillator technique. A coincidence between fission fragments and prompt-fission
 1044 gammas in scintillator was used as a start of the gate. First, background was corrected, then impu-
 1045 rities. Corrections were given for PFNS, angular distribution, $\bar{\nu}_p$ from impurities, background from
 1046 thermal neutrons, deadtime, sample thickness and false fissions. I assumed half of the corrections
 1047 as uncertainties except for PFNS and angular distribution uncertainties as these seem distinctly un-
 1048 derestimated. This is not surprising as second-chance fission effects in PFNS likely were not well
 1049 understood in the mid-60s, nor was the angular distribution. I used template values instead. Energy

1050 uncertainties were taken from EXFOR. I backed statistical uncertainties out by assuming the rest of
1051 uncertainties not accounted for were of random nature. I added uncertainties for delayed gammas and
1052 sample displacement from the template.

1053 **Diven, 1956** This is a very old measurement with a short gate time ($30 \mu\text{s}$) and double coincidence
1054 as trigger. They measured the detector efficiency. Uncertainties encompass: statistics, detector effi-
1055 ciency and coincidences (background). Effects not mentioned to be corrected: geometry, neutron flux
1056 variations, delayed gammas, displacement of samples. The data are 3.5% from VIII.0. I corrected for
1057 sample thickness following Boldeman and Frehaut, NSE 76, p. 49 (1980).

1058 **Frehaut, 1973** They measured with mono-energetic neutron sources but also performed TOF for
1059 energy determination to distinguish spurious neutron groups. They used the ratio liquid-scintillator
1060 technique. A coincidence between fission fragments and prompt-fission gammas in the scintillator
1061 (doped with Gd) was used as a start of the gate. Most uncertainties are taken from the template as
1062 they are either missing or the template uncertainties are within a credible range given the corrections
1063 that Frehaut mentions in his journal articles.

1064 **Gwin, 1986** I adopted their statistical, deadtime, false-fission, impurity, background (considered in
1065 statistical), delayed-gamma, displacement of sample and sample thickness uncertainties. I replaced
1066 their PFNS and angular distribution uncertainties with template values as they did not take into
1067 account the effect of second-chance fission. One thing that seems missing is that the forward-boost
1068 was not corrected for. However, their data ends at 10 MeV, where this effect should be smaller, so
1069 could be fine. Energy uncertainties are also not provided and I adopt them from other data measured
1070 with ORELA in the same time period.

1071 **Hopkins, 1963** This measurement used the same equipment as Diven 1956 (same co-authors). The
1072 efficiency was determined by scattering d+d and T+d neutrons in the scintillator and a NE102 plastic
1073 scintillator. They counter-checked this detector-efficiency measurement with simulations (1963!). The
1074 counting gate was opened by pulses in the fission chamber and prompt gammas in the scintillator.
1075 That could have possibly reduced false fissions? The gate is open for a reasonably long time ($64 \mu\text{s}$).
1076 The background is measured by a random gate several milliseconds after the main gate. The energy
1077 spread is explicitly given. Systematic uncertainties are due to pile-up and neutron-flux contamination
1078 (down-scattering to thermal). Not corrected for: impurities in the sample, displacement of the sample
1079 (definitely a problem because in the same time in the beam), angular distribution & forward-boost
1080 (definitely a problem at 14 MeV), sample thickness, delayed gammas. I corrected for sample thickness
1081 following Boldeman and Frehaut, NSE 76, p. 49 (1980).

1082 **Khoklov, 1976** This experiment is fairly well-documented for ^{235}U but not ^{239}Pu . A TOF length of
1083 35 m and time resolution of 1 ns/m is given to calculate an energy uncertainty from. Fission registration
1084 was undertaken through detecting prompt gammas. The neutron-detection efficiency was 0.7 which
1085 is not great but not too bad either. Background from sample backing and other unspecified sources
1086 were quantified. Reported uncertainties in EXFOR contain counting statistics and detector efficiency.
1087 I would assume this contains statistics, PFNS and deadtime. Hence, I set statistical uncertainties to
1088 0, PFNS to reported uncertainties and deadtime to 0. I took from the ^{235}U paper a 1% background
1089 uncertainty. Missing corrections: sample thickness, neutron flux variation, delayed gammas, false
1090 fissions, sample displacement. Uncertainties not provided (Delayed gammas, false fissions, angular
1091 distribution, sample thickness, sample displacement and impurity) were taken from the template.

1092 **Marini, 2021** Uncertainties called out by Paola: multiple scattering, limited E_{out} range (extrapolation), limited coverage of angular distributions. Explicitly given uncertainties: energy uncertainties, extrapolation, angular distribution, wrap-around background uncertainties. Uncertainties that are missing and I asked about: random coincidences, gamma background uncertainties, impurity uncertainties, and multiple-scattering uncertainties. The impurity level of ^{252}Cf was such that no impurity uncertainties apply. The purity level ^{239}Pu is 99.9% (rest Pu-240) comparable to Conde who cites 0.2% uncertainties while Julien states a 0.01% impact. I take the middle ground of 0.1%. They correct random coincidences by randomly triggering a gate and measuring it and claim no uncertainty. Zero uncertainties in this correction is not supported by literature. I take the template value. They apply the same gamma cuts to ^{239}Pu and ^{252}Cf , which also cut out some neutrons because they really want to get out gammas. I think that could bias the PFNS and there is also a difference between gammas from ^{239}Pu than from ^{252}Cf . So, there is a remaining uncertainty; I take the template value. Data are cut above 20 MeV after private communication with Paola who wrote: "We corrected for the forward boost of fission fragments when accounting for the angular distribution of neutrons. However I have to mention that, as we do not measure $E_{\text{out}} > 14\text{MeV}$, we trust our $\bar{\nu}$ values up to 20 MeV. Above this energy, the pre-equilibrium emission above 14 MeV [outgoing energy in the spectrum] becomes significant, so you should consider the $\bar{\nu}_p$ values only as a lower limit. I take multiple scattering uncertainties at uncertainties of 0.2% as Paola said the uncertainties are similar in size. As should be obvious from the discussion above private communication with authors took place.

1111 **Mather, 1965** This is a reasonably well-documented data sets. They were aware of many effects that need to be corrected for. I am worried by the fact that they use Pt backing foils that are known to lead to necessary Colomn corrections for (n,f) cross sections. Not sure if they studied it here. They were aware of deadtime issues with ^{239}Pu and tried to minimize it with PTFE slabs between samples. I wonder if that could lead to multiple scattering. They studied the effect via an experiment and concluded that the effect should be small. ^{240}Pu contamination (spontaneous fission) was studied by a beam-off measurement. It sounds like they are using $^{252}\text{Cf(sf)}$ $\bar{\nu}$ TOTAL as a monitor. They got the detector efficiency with that measurement. Strongly related to Mather1970 (same reference). Missing correction: delayed gammas, sample thickness and displacement of sample.

1120 **Mather, 1970** This is a reasonably well-documented data sets. They were aware of many effects that need to be corrected for. I am worried by the fact that they use Pt backing foils that are known to lead to necessary Colomn corrections for (n,f) cross sections. Not sure if they studied it here. They were aware of deadtime issues with ^{239}Pu and tried to minimize it with PTFE slabs between samples. I wonder if that could lead to multiple scattering. They studied the effect via an experiment and concluded that the effect should be small. ^{240}Pu contamination (spontaneous fission) was studied by a beam-off measurement. It sounds like they are using $^{252}\text{Cf(sf)}$ $\bar{\nu}$ TOTAL as a monitor. They got the detector efficiency with that measurement. Strongly related to Mather1965 (same reference). Missing correction: delayed gammas, sample thickness and displacement of sample.

1129 **Nurpeisov, 1975** They did a good job describing what was corrected. Their data agrees well with the bulk of other experimental data. An 80% detector efficiency is very reasonable. The gate is open for a very long time ($100\ \mu\text{s}$). However, this is explained by the time the neutron spends inside the detector ($50\ \mu\text{s}$) on average and seems to be a material-dependent quantity. They get the random coincidence (sometimes termed false-fission events) by measuring 250 ns after the fission pulse is detected which sounds reasonable. Multiple scattering effects were reduced by shielding. Detector efficiency was measured due to that PFNS uncertainties are replaced by detector efficiency uncertainties. They had problems with beam stability above 3.5 MeV. They did a good job at UQ and corrections. Explicit uncertainties are given for correction factors which will be used as uncertainties. Two effects they

1138 missed: delayed gammas and sample displacement where I take uncertainties from the $\bar{\nu}$ template. I
1139 added also impurity uncertainties as I don't have much information to go by.

1140 **Savin, 1970** The data lie systematically above the evaluation and have a wave-like structure that
1141 makes me wonder about their statistical uncertainties. One can calculate an energy uncertainty from
1142 the TOF length of 35 m and time resolution of 1 ns/m. I wonder if this data set could be correlated
1143 with Khoklov because they use the same flight-path length and Khoklov is the second author. Fission
1144 was detected by prompt gammas. They accounted for scattering in the sample holder/ backing (Pb) by
1145 doing measurements just with the sample holders/ backing. The neutron-detector efficiency assumes
1146 a value of 70%. That is not the best value but reasonable. The statistical uncertainty of the combined
1147 data set is 0.5-0.7%. The neutron-detection efficiency is given with 0.5% which replaces the PFNS
1148 uncertainty. Background uncertainty of 0.5% are given. Weirdly enough in EXFOR ERR-3 is given
1149 with 1% citing background uncertainties. It seems that the total uncertainties in EXFOR consist
1150 of neutron-detection efficiency uncertainties, background uncertainties and statistical uncertainties.
1151 Hence, the latter can be backed out. The journal article is in Russian. Hence, I cannot be sure what
1152 was corrected and what not. No mention of delayed gammas, deadtime, sample thickness, displacement
1153 of sample, energy spread and beam-stability monitoring was made in the EXFOR entry. Uncertainties
1154 taken from template: delayed gamma, false fission deadtime, angular distribution, sample thickness,
1155 sample displacement and impurity uncertainties.

1156 **Soleihac, 1970** This measurement used the same equipment as Frehaut 1983. They measured
1157 with mono-energetic neutron sources but also performed TOF for energy determination to distinguish
1158 spurious neutron groups. They used the ratio liquid-scintillator technique. A coincidence between
1159 fission fragments and prompt-fission gammas in the scintillator (doped with Gd) was used as a start
1160 of the counting gate. Most uncertainties are estimated with the template following the procedure for
1161 Frehaut data as they are missing or the template uncertainties are within a credible range given the
1162 corrections that Frehaut mentions in his journal articles.

1163 **Volodin, 1970** This data set is strongly correlated with Volodin_2. The latter set is given in ratio
1164 to one point (at 0.4 MeV) of this data set here. Data agree well with ENDF/B-VIII.0 and the bulk of
1165 the data. There is a wave-like structure from 1.1–1.5 MeV that could be more than statistics. Authors
1166 state in EXFOR that these data superseed 40033.003 by V.G. Nesterov with the following statement:
1167 “Previously measured data published in 70HELSINKI are considered as overruled due to strong dis-
1168 agreement with this measurement in energy range $0.4 < E_{\text{inc}} < 1.3$ MeV caused by high (~ 10 times
1169 this one) admixture of ^{240}Pu in the sample used at the previous measurement.” The start signal is
1170 from a fission-fragment measurement. Then neutron counting is in coincidence with the gate. They
1171 don't mention how long the gate was open nor the neutron-detection efficiency. EXFOR uncertain-
1172 ties consist of statistical uncertainties, correction uncertainties and those of individual measurement
1173 cycles. Total systematic uncertainties (called correction uncertainties) of 0.4-0.5%. I backed out sta-
1174 tistical uncertainties with this information. The correction uncertainties contain those due to angular
1175 distributions, PFNS, coincidence losses (false fissions), background and deadtime. You can use that to
1176 counter-check the uncertainties you have from the template. The background was not exceeding 3%.
1177 So, we can estimate 0.3% alone due to background which is smaller. Delayed-gamma uncertainties are
1178 zero. If I sum up all template uncertainties for what is considered in their total correction uncertainties
1179 and assume 0.3% uncertainty for background, I end up with 0.42% systematic uncertainties which is
1180 a reasonable estimate. I still take the template uncertainties and just replace the background uncer-
1181 tainties coming out at a similar uncertainty value. Additional uncertainties from template: impurity,
1182 sample displacement, sample thickness. Fairly well-documented data set and agrees with our current
1183 knowledge.

1184 **Volodin, 1970 (2)** This data set is strongly correlated with Volodin_1. The latter set is given
1185 in ratio to one point (at 0.4 MeV) of this data set here. The data agree well with ENDF/B-VIII.0
1186 and the bulk of the data. There is a wave-like structure from 1.1–1.5 MeV that could be more
1187 than statistics. Authors state in EXFOR that these data superseed 40033.003 by V.G. Nesterov
1188 with the following statement: “Previously measured data published in 70HELSINKI are considered
1189 as overruled due to strong disagreement with this measurement in energy range $0.4 < E_{\text{inc}} < 1.3$
1190 MeV caused by high (~10 times this one) admixture of ^{240}Pu in the sample used at the previous
1191 measurement.” The start signal is from a fission-fragment measurement. Then neutron counting
1192 is in coincidence with the gate. They don’t mention how long the gate was open nor the neutron-
1193 detection efficiency. EXFOR uncertainties consist of statistical uncertainties, correction uncertainties
1194 and those of individual measurement cycles. Additional uncertainties from template: impurity, sample
1195 displacement, sample thickness. This is a fairly well-documented data set and agrees with our current
1196 knowledge. The monitor is their $^{239}\text{Pu}(\text{n},\text{f}) \bar{\nu}_p$ measurement at 400 keV from Volodin_1 which is a
1197 bit a circular argument. This particular measurement uses another neutron detector (Th-detector)
1198 than Volodin_1. Hence, delayed gamma uncertainties should be zero. I learned from the Volodin_1
1199 measurement that template uncertainties approximate their uncertainties well except for the fact that
1200 background uncertainties should be smaller (0.3%) which I correct here and then take the template
1201 uncertainties to extract statistical uncertainties. The data are given in ratio to their own data at 0.4
1202 MeV from Volodin_1 which I add in. The data are treated as absolute with the reference’s uncertainties
1203 added in quadrature.

1204 **Walsh, 1970** The data agree partially with ENDF/B-VIII.0. Some of them are outlying but overall
1205 the agreement was fine. The counting gate was open for $40 \mu\text{s}$ which is reasonable. Many uncertainties
1206 were explicitly given. Background uncertainties seems low but that may be ok. The description of
1207 the measurement is very detailed and I do not see any red flags. They were aware of many pertinent
1208 effects.

1209 **Rejected Data** Rejected because measured at lower energy than evaluation:

- 1210 • Apalin (1965) measured at thermal.
- 1211 • Boldeman (1980) measured at thermal.
- 1212 • Frehaut (1980) measured from 22.79 to 28.28 MeV.
- 1213 • Gwin (1984; 1) measured from 0.005 to 60 eV.
- 1214 • Gwin (1984; 2) measured from 0.005 to 10 eV.
- 1215 • Kalashnikova (1955) measured at thermal. Very little information.
- 1216 • Nefedov (1983) measured at thermal.
- 1217 • Nishiko (1988) measured at thermal.
- 1218 • Sanders (1965) measured at thermal.
- 1219 • Vorobyev (2016) measured at thermal.

1220 Rejected data because superseeded:

- 1221 • Gwin (1978): This data set seems superseeded by (Gwin, 1986). The 1978 data set was published
1222 only as an ORNL report in that year, while the NSE publications came out 1986. So, it seems
1223 he spent some time correcting the data. There was an issue in the $^{252}\text{Cf}(\text{sf}) \bar{\nu}_p$ measurement for
1224 1978. However, there is a much bigger variation in the data for 1986. It is not completely clear
1225 to me that one data set is better than another.

- Diven (1961): This data set seems superseeded by (Hopkins, 1963). The 1961 data set was published only as a proceeding in that year, while the Nucl. Phys. publications came out 1963 with essentially the same two authors with switched order. So, it seems he spent some time correcting the data. Also, Diven gave a value at 3.415 and Hopkins at 3.9 MeV. Hopkins gave more data.

Rejected data sets because either clearly outlying, or for physics reasons, too large uncertainties or insufficient uncertainty information provided both in EXFOR or the literature:

- Johnstone (1965): The gate was open too long (500 μ s). Hence, they measured a lot of background. The monitor is also not properly described in the EXFOR entry. It looks like natural uranium, not ^{235}U . The statistical uncertainty is huge (8.8%). The data will likely have no impact at all and are rejected. Not surprisingly, given the problems above, the data are clearly outlying. Missing corrections: attenuation, sample thickness, angular distribution of fission fragments, forward boost (14 MeV), geometry, displacement of sample.
- Huanqiao (1980): While many important corrections were undertaken, the detector efficiency is below 60%. This low detector efficiency makes it very likely that biases happen. Their data are also systematically lower than other data highlighting that indeed there could be an issue. Also, the journal article is in Chinese and cannot be found. Comment: Phil Young doubled the uncertainties.
- Leroy (1960): The gate was open too long (200 μ s). Hence, they possibly measured a lot of background. The monitor is also not properly described in the EXFOR entry. It seems to be natural uranium rather than ^{235}U . The statistical uncertainty is huge (10%). The data point will likely have no impact at all and is rejected. Not surprisingly that data are clearly outlying by up to 5% (even more so than Johnstone). Missing corrections: displacement of sample, neutron flux variation, delayed gammas, sample roughness, foward-boost likely.
- Nesterov (1970): The neutron-detector efficiency is at 20%! The correction necessary is so big that it is very likely to introduce a bias. Not surprisingly, the data are outlying by up to 3% from ENDF/B-VIII.0 and clearly from the bulk of the data. Comment: Phil Young doubled the uncertainties. In the Volodin EXFOR entry 40148.001, they clearly state that these data are superseeded. They wrote: "Previously measured data published in 70HELSINKI are considered as overruled due to strong disagreement with this measurement in energy range $0.4 < \text{En} < 1.3$ MeV caused by high (~ 10 times this one) admixture of ^{240}Pu in the sample used at the previous measurement."
- Smirenkin (1959): Two data points are given. One at 4 MeV, another at 15 MeV. The one at 4 MeV looks reasonable. The one at 15 MeV differs by 6% from the evaluated mean value. I was tempted to reject the second data point given that rather large outlying behavior, especially considering recent CEA experimental data. However, I found several issues in the data: $\bar{\nu}$ is measured by a coincidence of two fission halves in an ionization chamber. One sees the neutron flux by detecting fission fragments which is the start signal. Another counts the neutrons being emitted from the fission event by detecting again fission events. Between the two halves is a Pt foil that could lead to scattering effects thanks to known Coulomb scattering effects on fission fragments (bad choice from todays' perspective). That, however, does not explain why one data point (4 MeV) is fine while the one at 15 MeV has a major issue. The coincidence counting was 3–5 mins which is very long. Background was consequently overwhelmingly large by 30–50%. With a 10% uncertainty that would lead to 3-5% uncertainty which would lead to an overlap between evaluation and experiment, but effectively de-weights the data. Not corrected for angular distribution of FF and forward boost which should be substantial at 15 MeV. Many important effects are not corrected or the necessary corrections are huge!