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Objective UNM HelCat DI Data Future Work
> Reliable delivery of current to magnetically driven loads. > The benefits of the DI over a conventional interferometer are key 1 RF Signal Calibration Sweep > Improve shot by shot variation and noise
= Electron flow can generate electrode plasmas and reduce coupling for its use on Z. RF Signal in the “RF” signal.
efficiency. = Due to the fundamental and second-harmonic waves ol L L = This is key for future experiments
= |ncreased electron flow further reduces coupling efficiency. traversing the same path along the plasma, mechanical G5 o T where shot count is limited.
® SetPoint

vibrations from the firing of the machine impose the same

» Afiber-based Dispersion Interferometer (DI) will enable the first direct relative path length shift on the two waves.

measurements of electron sheath flow on Z. * The design is operated in the optical regime and is to be
mostly fiber-coupled, allowing for access to the tight spaces

around Z's MITL structures, unlike a mm-wave interferometer.
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» Collect HelCat profile density data with a
scanning double Langmuir probe.

= This will detail the normalized electron
density radial profile shape inside the
HelCat chamber.

= Estimate the probe tip area to also get
an absolute electron density
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= This will reduce the current lower limit for electrode plasma density
measurements available by a factor of 100.
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Project Path

» This DI design operates with a Fundamental (F) wavelength at 1550 nm CW,

of the three electron density diagnostics » This can be then compared to equation (3) to plasma density Measurements,” Rev Sci
on UNM'’s HelCat device. solve for the density. = These absolute densities match expected results. Instrum, vol. 77, pp. 10F325, 20086.

DI optical setup on UNM’s HelCat device.

with frequency-doubling to a Second-Harmonic (SH) wavelength at 775 nm. > First, the diagnostic will be set-up on the UNM Helicon-Cathode 04— = : = ; '5 | : diStriblIJ_tiog (ej_Stf[mbat? ”OthSt a
= The design will be fiber-coupled because of spatial limitations. (HelCat) plasma device'. Sweep Time [sec - Ir;or:nHa Ilzg t IStrbu |on.st arfe' t
. i i i i ollect HelCat mm-wave interferometer
SHC #1 Plasma SHC #2 It.WIII be Compare? rafgamSt telectr(;n dens!ty pCrI‘OfI|be|S Teasure.d FIG 3.1: The “RF” signal sweep calibration data. Here we absolute line density data.
Laser %ﬁ Detector Vles T TR I SRS S e e s weheed This will act as a verifying source
probe. . IS Wi verifyi u
TS o 1o fhacic DI dei dofthel P FE , > Second, it will be deployed at Sandia’s Mykonos 1-MA driver. = Variables: A =0.225V DC = 0.655V against the DI diagnostic.

. Ulagram O dS1C esign composea o € 1aSser source, the rirst second-narmonic . . . . _ . - ThlS W|” ive an abSOIUte eleCtron
crystal (SHC), the plasma itself, the second second-harmonic crystal, a fundamental beam » Third, it will be fielded on Sandia’s Z machine. Average of 15 Shots RF Signals densit fagctor with which to multiol
block, and a detector. = For measurements of electron sheath flow on MITL's. 0.602 W - N N . NU— . y g Py

T— ey o] T iInto the scanning double Langmuir
e —cn ool probe normalized distribution profile.
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UNM HelCat Exper|menta| Setup DI Pr|nc|p|es 08 —T T > Move the diagnostic to Sandia’s
0.59 Mykonos pulsed power machine and
with frequency w, will be related to the index 2 0592 | | l moderate pulsed power environment.
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(P2) [ For the DI, the total phase change is: sl
k ‘ Adrotar = (2 * App) — Apgy (3) FIG 3.2: The 15 shot average “RF” signal, with a red _ _ )
r highlighted section representing the plasma operation time SC_aleS (W|th the_ hope ff)r time
! | _ period (220ms), a “higher RF” value (596.0-mV), a “lower resolution) and in noisy environments.
: Note: the first and second SH waves are RF” value (589.5-mV), and an orange mean curve. = The device will shift to primarily fiber-
- — _ perpendicularly polarized. o
| . o coupled, from primarily open-beam on
I u u I . — — , .
! The reason for perpendlcula_r polarlgatlons Variables: AV =6.5mV Vo =059V UNM'’s HelCat device.
: of the 1 and 2" SH waves is to split them » Employ the diagnostic at the Z machine
: into a differential detector while limiting the o uDerived Electron Density Profiles p. y J '
: signal offset value. 7 R — . Dlrec_tlly measure thg elec_tron
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| The information needed for an absolute s =] | . .
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| electron density distribution is: . . I
UNM HelCat Chamber | | . o £ spatial resolution capabilities.
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