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FIG 2.1: A 2-D horizontal-plane diagram of the 
DI optical setup on UNM’s HelCat device.

▪ (red) The DI path, traveling 

through plasma once.

▪ (black) Scanning double 

Langmuir probe.

▪ (blue) The mm-wave 

Interferometer path, 

traveling through plasma 

twice.

FIG 2.3: A 2-D axial cross section diagram 
of the three electron density diagnostics 
on UNM’s HelCat device.

FIG 3.1: The “RF” signal sweep calibration data. Here we 
see the amplitude and DC-offset values we need.

FIG 3.2: The 15 shot average “RF” signal, with a red 
highlighted section representing the plasma operation 
period (220ms), a “higher RF” value (596.0-mV), a “lower 
RF” value (589.5-mV), and an orange mean curve.

FIG 3.3: Derived absolute electron density of various 
radial profiles for the UNM HelCat machine, given the 
(above) signal data. 

FIG 1: Diagram of basic DI design composed of the laser source, the first second-harmonic 
crystal (SHC), the plasma itself, the second second-harmonic crystal, a fundamental beam 
block, and a detector.
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FIG 2.2: A 3-D render of UNM’s HelCat device.

➢ Reliable delivery of current to magnetically driven loads. 

▪ Electron flow can generate electrode plasmas and reduce coupling 

efficiency.

▪ Increased electron flow further reduces coupling efficiency. 

➢ A fiber-based Dispersion Interferometer (DI) will enable the first direct 

measurements of electron sheath flow on Z.

▪ This will reduce the current lower limit for electrode plasma density 

measurements available by a factor of 100. 

➢ This DI design operates with a Fundamental (F) wavelength at 1550 nm CW, 

with frequency-doubling to a Second-Harmonic (SH) wavelength at 775 nm.

▪ The design will be fiber-coupled because of spatial limitations.

➢ The benefits of the DI over a conventional interferometer are key 

for its use on Z. 

▪ Due to the fundamental and second-harmonic waves 

traversing the same path along the plasma, mechanical 

vibrations from the firing of the machine impose the same 

relative path length shift on the two waves. 

▪ The design is operated in the optical regime and is to be 

mostly fiber-coupled, allowing for access to the tight spaces 

around Z’s MITL structures, unlike a mm-wave interferometer.

Project Path

➢ First, the diagnostic will be set-up on the UNM Helicon-Cathode 

(HelCat) plasma device1.

▪ It will be compared against electron density profiles measured 

vie a mm-wave interferometer and scanning double Langmuir 

probe.

➢ Second, it will be deployed at Sandia’s Mykonos 1-MA driver.

➢ Third, it will be fielded on Sandia’s Z machine.

▪ For measurements of electron sheath flow on MITL’s.

Laser Detector

SHC #1 SHC #2
Plasma

➢ Improve shot by shot variation and noise 

in the “RF” signal.

▪ This is key for future experiments 

where shot count is limited.

➢ Collect HelCat profile density data with a 

scanning double Langmuir probe.

▪ This will detail the normalized electron 

density radial profile shape inside the 

HelCat chamber.

▪ Estimate the probe tip area to also get 

an absolute electron density 

distribution estimate, not just a 

normalized distribution shape.

➢ Collect HelCat mm-wave interferometer 

absolute line density data.

▪ This will act as a verifying source 

against the DI diagnostic.

▪ This will give an absolute electron 

density factor, with which to multiply 

into the scanning double Langmuir 

probe normalized distribution profile. 

➢ Move the diagnostic to Sandia’s 

Mykonos pulsed power machine and 

measure electron sheath flow in a 

moderate pulsed power environment.

▪ Testing the device capabilities at fast 

time scales (with the hope for time 

resolution) and in noisy environments.

▪ The device will shift to primarily fiber-

coupled, from primarily open-beam on 

UNM’s HelCat device.

➢ Employ the diagnostic at the Z machine.

▪ Directly measure the electron 

densities in magnetically insulated 

flows.

➢ Develop a multi-channel DI design for 

spatial resolution capabilities.

▪ These absolute densities match expected results.

➢ The measured change in phase of a wave 

with frequency 𝜔𝜆 will be related to the index 

of refraction of the plasma as:

Δ𝜙𝜆 = 𝑘0 0׬
𝑙
(𝑁𝜆 − 1) 𝑑𝑥 (1)

▪ Where 𝑙 is the plasma path length and…

𝑁𝜆 = 1 −
𝑝𝑒𝑛𝑒𝑒

2

𝜖0𝑚𝑒𝜔𝜆
2 (2)

➢ For the DI, the total phase change is:

Δ𝜙𝑡𝑜𝑡𝑎𝑙 = 2 ∗ Δ𝜙𝐹 − Δ𝜙𝑆𝐻 (3)

➢ Note: the first and second SH waves are 

perpendicularly polarized.

▪ The reason for perpendicular polarizations 

of the 1st and 2nd SH waves is to split them 

into a differential detector while limiting the 

signal offset value.

➢ The information needed for an absolute 

electron density distribution is:

▪ A pre-calibrated fringe sweep, defining the 

signal amplitude, A, and offset, DC.

▪ A normalized electron density spatial 

profile of the plasma.

▪ A measured phase change, from no 

plasma to plasma, between the two SH 

waves.

➢ With this, the total phase change is related to 

the measured signal as:

Δ𝜙𝑡𝑜𝑡𝑎𝑙 = sin−1
𝑉0+Δ𝑉−𝐷𝐶

𝐴
− sin−1

𝑉0−𝐷𝐶

𝐴
(4)

➢ This can be then compared to equation (3) to 

solve for the density.

(RF)

▪ Variables: Δ𝑉 = 6.5 𝑚𝑉 𝑉0 = 0.59 𝑉

▪ Variables: 𝐴 = 0.225 𝑉 𝐷𝐶 = 0.655 𝑉

𝐷𝐶

𝐴

𝑉0

Δ𝑉

𝑅𝐹 = 𝐺(𝐼𝑛+ − 𝐼𝑛−)
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