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ABSTRACT

Design of vessels for external pressure currently requires a
chart-based solution or analytical approaches which are not nec-
essarily intuitive. In this paper, we propose simple formulas for
the external pressure evaluation of pipes and other cylindrical
pressure vessels. We present a conceptual comparison between
the elastic and elastic-plastic stability of structural columns and
that of cylindrical vessels of long, intermediate, and short length.
Their common features allow an accurate and straightforward
approach for external pressure design. The approach is also ex-
tended to spherical caps, conical vessels, and formed heads.

We compare the method presented to the current acceptance
criteria from various design codes, including the ASME Boiler
and Pressure Vessel Code Section VIII, Code Case 2286, and EN
13445-3, as well as codes for steel and aluminum structures. In
further discussion, the simplified method is compared against the
results of more than 500 experiments on the buckling of cylindri-
cal and spherical vessels published over the past two centuries.

This simple but accurate approximation is conceptually
intuitive, analytically straightforward, and shows potential
utility in pressure vessel design codes, as well as piping design
codes such as B31 that currently reference ASME VIII for
external pressure design."
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ASME code factor

Area

ASME code factor

Critical slenderness ratio

Outer diameter

Young’s modulus

Tangent modulus

Critical buckling force on a column
Second moment of area

Axial length

Pressure

Allowable external pressure
Critical buckling pressure on a vessel
Outer radius

Buckling end condition constant
Buckling lobe number

Radius of gyration, = /I/A

Wall thickness

Interpolation parameter

Slenderness ratio, = kL /r for a structural column

Poisson’s ratio

Stress

Allowable stress
Critical buckling stress
Yield stress

Copyright (© 2022 by ASME



INTRODUCTION

The ASME Boiler and Pressure Vessel Code [1], in its
Design-by-Rule sections (including Section VIII, Division 1;
Section VIII, Division 2, Part 4; and various subsections of Sec-
tion III, Division 1), provides two techniques for the external
pressure design of pipes, vessels, and heads. The first option is
to apply the external pressure charts in Section II-D of the Code.
Those charts, developed from the works of Sturm [2], Winden-
burg and Trilling [3], and others in the 1930s through 50s [4], are
based on classic elastic stability theory and confirmed by tests
on cylinders of various material. The second method, originally
presented in Code Case 2286 [5] and since incorporated into Sec-
tion VIII, Division 2 of the Code, is based on work carried out
by Miller and others in the 1980s and 90s [6-9]. This method
is a best-fit approach, informed by elastic theory and based on
extensive testing of carbon steel vessels.

This paper shows that the collapse of cylinders and spheres
under external pressure is analogous to the buckling of an
axially-loaded column. The column-equivalent slenderness ratio
A produces the following simple formulas for external pressure
design of cylindrical vessels:

0.75 0.5
remn (2 2ns 2]V H) o

C.= (2)

0.20,(A/C.) 2, if A/C.>0.833
ou1 =3 (0.888—0.721/C.) 0,, if 0.4<A/C.<0.833 (3)
0.60,, if A/C.<0.4

2t Oy
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This method is derived in the following paragraphs. It is
intuitively straightforward for the designer, closely aligns with
the Code Case 2286 allowables, and compares favorably with the
significant experimental work performed by others on this topic,
dating back nearly 200 years.

OVERVIEW OF COLUMN BUCKLING
In 1744, Leonhard Euler developed the well-known formula
expressing the critical load that will induce buckling in an elastic

column [10,11]:

Fop= "1 5)

The average stress in the column at the critical load defines the
critical buckling stress,

_ mEl  mE  m’E 6
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where r =/ ﬁ is the column’s radius of gyration, and A = % is

the column’s slenderness ratio. The boundary conditions (e.g.,
fixed ends, pinned ends) at each end of the column determine
the buckling mode shape. For engineering design purposes,
the mode shape is often accounted for by incorporating an end-
condition constant, k, into the slenderness ratio, such that A = k71‘
[12].

Though Euler’s column formula is accurate for very long
columns, the formula predicts buckling loads for shorter columns
greatly in excess of those seen in experiment [13, 14]. Sub-
sequent generations of engineers developed two parallel ap-
proaches to address this problem. Engesser [15], Considere [16],
Kérman [17], Southwell [18], and Shanley [19,20] developed the
approach of modifying the elastic modulus to account for elastic-
plastic material behavior, culminating in Shanley’s tangent mod-
ulus theory.

n2E,

Oor = 33 where E; = f(A) for a given material ~ (7)

Meanwhile, Hodgkinson [21], Rankine [22], and Johnson
[23] developed empirical equations that described column be-
havior in the plastic region, resulting in the well known Rankine-
Gordon formula,

R SR ®)
Gy 1+% 1+2(2./Cc)2

as well as the J.B. Johnson parabolic formula that for years
formed the basis of the AISC allowable stress design criteria
[12,24], and that also sees widespread use in mechanical de-
sign [25].

0w [ 1-2E —105(A/C2, if A/C <1 o
o | Z5=05(1/C) if 2/C.>1
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Osgood [26] unified the two approaches by showing that the
Rankine-Gordon, J.B. Johnson, and similar empirical formulas
were equivalent to assuming particular shapes of a material’s
stress-strain curve.

An examination of the foregoing equations shows the key
role played by the slenderness ratio parameter A. Effectively, the
slenderness ratio provides a way to combine the various geomet-
ric properties of the structure (including length, moment of iner-
tia, cross-sectional area, and buckling mode shape) into a single
dimensionless value. This allows the calculation of the critical
buckling load to be divided into two steps. First, the geometry
and buckling mode shape determine the slenderness ratio. Sec-
ond, the slenderness ratio and the material’s stress-strain proper-
ties are compared to determine the critical stress and load. These
two steps, geometric and material, are considered below for ge-
ometries and materials applicable to piping and pressure vessel
design.

GEOMETRIC CONSIDERATIONS; SLENDERNESS
A Column Analogy for Vessels under External Pres-
sure

The similarity between the buckling of axially-loaded struc-
tural columns or struts and the collapse of vessels and pipes un-
der external pressure has long been recognized. In 1875, Unwin
stated, “The metal of the flue [a boiler tube under external pres-
sure] is in the same condition as a straight column of length 7D
subjected to a compression of the same intensity ¢. In investi-
gating the strength of flues, the well-known laws of resistance
of long columns may be applied” [27]. In the same manner, in
proposing formulas for the plastic buckling of tubes, Southwell
noted, “... An infinitely long tube collapses under external pres-
sure in a manner which has many points of resemblance to strut
failure. ... The two problems, in fact, are almost identical.” [18]

Though Unwin and Southwell used this analogy primarily as
a conceptual stepping stone in the development of their expres-
sions for external pressure buckling, the analogy can also be ap-
plied in a more quantitative manner. The equations of elastic sta-
bility for more complex geometries and buckling modes can be
arranged into the form of Eq. (6). This permits a slenderness ra-
tio to be defined for other geometries. This slenderness ratio can
then be used to apply the equations of elastic or elastic-plastic
column buckling to these additional geometries. This method is
used in the following sections to define slenderness ratios for a
variety of shells under external pressure.

Buckling of Thin Rings under External Pressure

The first and simplest case to be examined is the buckling of
a thin circular ring under uniform external pressure. Timoshenko
and Gere [28] provide an expression for the critical pressure in

this case:

3EI  2EP

For =" =3

(10)

For a column, the compressive stress was simply 6 = F/A.
For a ring, the analogous compressive stress is the hoop stress,
o = F/A = PD/2t. At the critical buckling pressure,

P.,.D Ef?
O =" = pr an

Comparing Eq. (11) to Eq. (6) reveals the analogous slenderness
ratio for a thin ring.

Er?  mlE

Cor=Tpr T

12)

A=== (13)

This expression allows for a better intuitive grasp of the ef-
fect of geometry on the external pressure capacity of a ring. As
Unwin observed, a thin ring can be loosely thought of as buckling
under external pressure at the same average stress as an equiva-
lent axially-loaded column, which has a length equal to the ring’s
circumference and a radius of gyration equal to the ring’s thick-
ness. Just as for a column, the slenderness ratio brings together
the ring’s geometry and buckling mode shape into a single value.

Long Cylindrical Vessels and Pipes

The same process can be used to define the slenderness of a
long cylindrical pipe or vessel. A cylindrical vessel of significant
length (roughly L/D > 10) is the plane strain analog of the thin
ring, with the effective Young’s modulus reduced by a factor of
1 — v2. The result is the Bryan-Bresse equation [3]:

2Ef3

P = —
T (1—-v2)D3

(14)

Again, the critical buckling stress is the average compressive
hoop stress at the critical pressure:

P..D Ei?
%= o T U vD? 1)
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Py 1_v2? (16)

Conveniently, when v = 0.3, as for many metals, this can be
closely approximated as

A= - A7)

For a given D/t ratio, Eq. (17) is equivalent to the vertical section
of the curve in the upper portion of Figure G of the ASME Boiler
and Pressure Vessel Code, Section II-D, used to determine the
factor A.

Short Cylindrical Vessels

If the axial length of a cylindrical vessel or pipe is less than
around ten diameters, the length plays a role, in addition to the
diameter and wall thickness, in determining the buckling pres-
sure. Richard von Mises [29-31] determined the critical buckling
pressure for these vessels.

2
p 1 2, mD\* 2E (t)2
r = —|n —_— - | —
¢ 3 2L 1—-v2\D
(18)
2E(t/D) 1
n2(%)2+1 n2+%(%)2

The Mises formula was used as the basis for the external
pressure requirements of BS5500 [32], and from there incor-
porated into EN 13445-3 [33]. However, this formula requires
knowledge of the lobe number 7, and therefore iteration, charts,
or tables. Such charts were developed for BS5500 based on the
Mises formula; the ASME Section II-D charts are instead based
on an enveloping expression independent of the lobe number,
first proposed by Windenburg and Trilling at the US Experimen-
tal Model Basin [3]:

457 E (L)5/2
10.53/4 (1—v2)3/4 \D

_ w+\/t/D

L ™WUZ
D 410.5(1—v2))1/4

Pcr:

(19)

Following the same approach as for a long pipe, a slender-
ness ratio for short pipes can be defined based on the formula of
Windenburg and Trilling:

L J105¥m(1—v2)34 (D oL =i
B 2.25 t D 4[10.5(1 —v2)]1/4

(20)

In the case that v = 0.3, this expression simplifies to

D\** |L \/T
A =275 <t) 50447/ 1)

Most often, % > \/% and the expression can be further simpli-

fied to
3/4 1/2
A =275 <lt)) (g) 22)

Eq. (22) is always more conservative than Eq. (21), but
the two equations differ little except for especially short or thick
vessels. For example, with % =1.0 and LT) = 20, the difference
is 5.3%.

The enveloping Windenburg-Trilling formula, as captured in
Eq. (21) or Eq. (22), traces out the diagonal curves in the lower
and rightmost portions of ASME Section II-D, Figure G.

Intermediate Length Cylindrical Vessels

When the values for A obtained with Eq. (17) and Egs. (21)
or (22) are of the same order of magnitude, it will always be con-
servative to take the lower value of the slenderness ratio. When
less conservatism is needed, the slenderness ratio may be deter-
mined by interpolation. With ll(,ng determined by Eq. (17) and
Ashors BY Eq. (21) or Eq. (22),

o = min (?,15) (23)
_1
A= (Ao +25%) 24)

This duplicates with reasonable accuracy the rounded transition
range of the curves in ASME Section II-D, Figure G as well as
Figure 8.5.3 from EN 13445-3. Figure 1 compares the slender-

ness ratios as calculted in this paper to those obtained from the
figures in the design codes, using the relationship A = Z—; The
excellent agreement is unsurprising, since the design code fig-
ures are based on the same sources used in this paper to define

the slenderness ratio.

Spheres and Spherical Caps
The classical solution of the elastic buckling stress of a
spherical shell was first determined by Zoelly [34], who found
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----- ASME II-D, Fig. G
—--- EN13445-3, Fig. 8.5.3
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FIGURE 1. CALCULATED SLENDERNESS RATIOS COM-
PARED WITH BPVC AND EN 13445-3

the critical pressure to be

2
Py = 35E_v2) (£) 25)

Since the biaxial stress in a pressurized spherical shell is

PR
= 2
o= (26)

the slenderness ratio of a sphere would be expected to be

/’Lm“/3(1v2)\/fz4.038\/? 27

However, a discrepancy between the theoretical and practical
buckling strength of spherical shells has long been recognized
[35], and a visual comparison with published experimental data
(see Figure 4 and related discussion) seems to indicate that this
value of A should be larger by a factor of approximately /2,
which gives

7L7r{‘/12(1v2)\/?z5.711\/? (28)

This expression for the slenderness ratio of a sphere or spherical
cap is very similar to the geometric parameter introduced by Ka-
plan and Fung [36]; in fact, their parameter matches Eq. (28) for

a hemisphere. Unlike their parameter, though, Eq. (28) depends
entirely on the radius of curvature with no dependence on the
height of the spherical head, even for very shallow caps or com-
plete spheres. This approach, without including a dependence
on cap height, has so far produced the best agreement with the
published experimental data.

Conical Vessels and Formed Heads

The Code provides a method for analyzing conical vessel
sections as equivalent cylinders, as well as methods for analyzing
formed ellipsoidal and torispherical heads as equivalent spherical
caps. Through the use of those existing procedures, the methods
of this paper can be extended to these geometries

MATERIAL CONSIDERATIONS; DETERMINATION OF
ALLOWABLE STRESS

Through the use of the slenderness A, a comparison can be
made between pressure vessel code requirements and the col-
umn buckling theories discussed above, as well as between pres-
sure vessel and structural codes. ASME Section II-D contains
a collection of charts for a variety of materials at several tem-
peratures, which are used to determine the ASME factor B and
the allowable external pressure in ASME Section VIII, Division
1. As described in Appendix 3 of Section II-D, these plots are
pseudo-stress-strain curves for each material from which the fac-
tor B, correctly incorporating the Young’s modulus (in the elas-
tic range) or tangent modulus (in the plastic range), can be di-
rectly read [37,38]. In effect, these charts implement the tangent
modulus column buckling theory of Engesser and Shanley for
externally-pressurized vessels. The charts can be re-plotted in
terms of A by using the relationship A = %Z

ASME Code Case 2286 [5], since incorporated with refine-
ments into Section VIII, Division 2 of the Code, provides explicit
formulas as an alternative to the graphical method. These formu-
las are again equivalent to applying the tangent modulus buckling
theory, in this case using a generalized stress-strain curve. The
Code Case 2286 equations for cylinders under external pressure
cannot formally be expressed as a function of A as derived above;
however, they can be closely approximated by

0.20,(A/C.)"%, if A/C.>0.833
our =4 0.240,(A/C.)"", if 04<A/C. <0833 (29)
0.60,, if A/C.<0.4

Figure 2 shows a comparison of both the external pressure
charts and Code Case 2286 with the allowable stress in compres-
sion per the 1989 AISC Manual of Steel Construction [12] and
the 2015 AA Aluminum Design Manual [39]. In the plastic buck-
ling region (A/C, < 1), the Code Case 2286 allowable stresses
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—— ASME CC 2286 (Eq. 23)

0.7 —— AISC 1989 [9]

—— ADM 2015 [19]

—— ASME II-D Fig. CS-1, 300°F
----- ASME II-D Fig. HA-1, 100°F
-—- ASME II-D Fig. NFA-12, 200°F

0.1 1

0.0 T T T
0.0 0.5 1.0 15 2.0 2.5 3.0

AlC:

FIGURE 2. COMPARISON OF ALLOWABLE STRESSES BE-
TWEEN CODES

are quite similar to those from structural design codes and sig-
nificantly higher than those using the external pressure charts.
In the elastic region, the Code Case 2286 and external pressure
charts give similar allowable stresses, which are somewhat lower
than those allowed by the structural codes.

It is worth noting that both the 1989 AISC and 2015 ADM
codes appear to be based on empirical buckling relations (J.B.
Johnson in the case of AISC, and a straight-line formula for the
ADM) rather than tangent modulus buckling theory, likely be-
cause these empirical formulas are more straightforward to apply
while still being acceptably accurate. This suggests that applying
such empirical formulas to pressure vessel design may produce
simplified design formulas that nonetheless produce designs with
acceptable margins of safety.

COMPARISON WITH EXPERIMENT AND DISCUSSION

The value of any engineering design approach is ultimately
its ability to provide an adequate design margin against fail-
ure. To that end, a number of published experimental studies
on the collapse of cylinders due to external pressure were re-
viewed [2,3,6,40-52], dating from the 1850s to the present. This
set of data [53] covered a wide range of dimensions, pressures,
slenderness ratios, and materials of construction. The experi-
mental data is plotted in Fig. 3, along with the estimated critical
stress using the method of Code Case 2286 (including the geo-
metric factor, but with the factor of safety removed). Empirical
column formulas Eq. (8) (Rankine-Gordon formula) and Eq. (9)
(J.B. Johnson formula) are also shown. Using A, these plots cor-
respond to the column curve diagrams often shown in structural
design textbooks [24-26].

1.6 -
—— Eq. (30)
1.4 4 Eq. (29), CC2286 Critical Stress
: o« e Eq. (8), Rankine-Gordon formula
1.2 - .o Eq. (9), J.B. Johnson formula
. o o e Cylinders - Steel
1.0 doree 2. . e  Cylinders - Aluminum
.:: Cylinders - Stainless
2? 0.8 e e Cylinders - Other
S E
0.6
0.4 1
0.2 1
0.0
0.0

AlC,

FIGURE 3. COLLAPSE PRESSURE OF EXTERNALLY-
PRESSURIZED CYLINDERS — EXPERIMENTAL DATA

In Fig. 3, it is readily apparent that the data points fall into
a narrow band that is well-approximated by both the Code Case
2286 and by the Rankine-Gordon and J.B. Johnson formulas.

Though the code case method was developed specifically
for carbon steel, it is clearly also applicable for other materials,
if slightly conservative for some (e.g., certain copper and alu-
minum alloys). The approach of having different charts for each
material, though sound from a theoretical standpoint, seems un-
necessary since the differences between materials do not appear
to greatly exceed the experimental scatter within each material
type.

For brittle materials, materials at very high temperature, or
other cases where a material’s stress-strain curve differs greatly
from that of cold carbon steel, the use of established column de-
sign formulas appropriate for the application could be considered
as a simpler alternative to graphically or analytically duplicating
the stress-strain curve of the material.

It is not immediately apparent that the “cusp” in the Code
Case 2286 curve at A = 0.833 is reflected in the experimental
data; it is likely this cusp is an artifact of the curve fitting process
used to develop the equation. Therefore the following slightly
less conservative equation is proposed for the critical stress:

0.40,(A/C.) "2, if A/C.>0.833
O.r = 4 (1.3914—0.97851/C;) oy, if 0.4<A/C.<0.833
oy, if A/C.<0.4
(30)
Applying the same variable factor of safety included in
Code Case 2286 produces the following expression for allowable
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1.6

—— Eq. (30)
1.4 1 CC2286 Critical Stress
----- Eq. (8), Rankine-Gordon formula
1.2 1 —— Eq. (9), ).B. Johnson formula
° e Spheres - Steel
1.0 4 s . e Spheres - Aluminum
W\ Spheres - Stainless
E; 0.8 - 'E ¢ e Spheres - Other
S
0.6
0.4 1
0.2 1
0.0
0.0

AlC.

FIGURE 4. COLLAPSE PRESSURE OF EXTERNALLY-
PRESSURIZED SPHERES - EXPERIMENTAL DATA

stress, as an alternative to Eq. (29).

0.20,(A/C.) 2, if A/C.>0.833
(0.888 —0.721/C.) 6,, if 0.4<A/C.<0.833
0.60;,, it A/C.<0.4

Oull =

(€29)

Similarly, from the 1950s to the present, a number of ex-
perimental studies have been published [36, 54—65] covering the
external pressure buckling of spheres, hemispheres, and spher-
ical caps . These studies were reviewed [53], and the data is
plotted in Figure 4 using the slenderness ratio as calculated per
Eq. (28). The data for spheres and spherical caps, as for cylin-
ders, is broadly in agreement with the J.B. Johnson formula, and
considerably above the Code Case 2286 curve. However, there
is a much larger variance in the data than for cylinder tests. This
wider scatter has long been recognized and represents the high
imperfection sensitivity of spherical shell buckling [66].

For values of A below 0.4, the critical stresses continue to
increase, though the code allowable stress is limited to 0.60;.
Consideration should be given to whether the variable factor of
safety can be reduced further in this region (for a similar discus-
sion, see [67]).

CONCLUSIONS
The slenderness ratio method to calculate pipe and vessel
buckling pressure is useful in several ways:

1. The basic design process, Eqs. (1-4), is simple enough for
a back-of-the-envelope calculation, with more exact refine-

1.6 7
— Eq. (31)
144 e Cylinders - Steel
. + Spheres - Steel
1.2 4 o e Cylinders - Aluminum
e T + Spheres - Aluminum
1.0 :f-: ‘ot s Cylinders - Stainless
oot o4 _ .
> ::.;: ® Spheres - Stainless
< 0.8 1 Fie - e Cylinders - Other
© e, “o'r" + Spheres - Other

FIGURE 5. PROPOSED DESIGN CURVE

ments such as Eq. (24) optional for additional precision. The
simplified process always errs conservatively.

2. The slenderness ratio and column curve diagram are famil-
iar to engineers and provide an intuitive understanding of
the stability of the system in relation to pressure, geometry,
and material properties. The well-known J.B. Johnson for-
mula can be used to provide a good estimate of the critical
pressure.

3. Strengths, curves, and design factors can be compared be-
tween geometries and among codes and standards for pres-
sure vessel, civil/structural design, and aerospace structures.

4. The slight excess conservatism apparent in Code Case 2286
in the range 0.4 < A /C,. < 0.833 can be reduced.

The proposed design curve, Eq. (4), is shown in Figure
5. For pipes and vessels, this represents a modest evolution
from the Code Case 2286 allowable stresses, with only the range
0.4 < A/C, < 0.833 substantially affected. For spheres, the al-
lowable stresses would be greatly increased, and this should be
approached with caution. The greater scatter of the test data for
spheres may warrant a larger design factor.

The slenderness ratio method compares well against the ex-
isting design-by-rule methods, which require either chart-based
solutions or the use of formulas which are, by comparison, more
complex and less intuitive. This method should be considered
for incorporation into the Boiler and Pressure Vessel Code as an
allowable method of calculating external pressure. A simplified
method based on Eq. (17) may be particularly well-suited to
applications in the B31 codes where long cylinders are predomi-
nant.
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EXAMPLE

Using the methods of this paper, predict the collapse pres-
sure and allowable stress for a steel pipe (o, = 31 ksi, E =
28,000 ksi) with an outside diameter of 16 in., a length of 6 in.,
and a wall thickness of 0.051 in. (Model #32, Windenburg &
Trilling [3])

SOLUTION:

For this material,

2m2E
C.= =133.5
oy

This is a short pipe with an L/D ratio of 0.375. Using Eq.

(22),
0.75 0.5
r=2s(2) 0 (5) -3
t D

A/C. = 0.940

The collapse pressure can be predicted using the J.B. John-
son formula, Eq. (9):

0o =0y (1-05(2/C.)") =173 ksi

20t

P. =110 psi

Using Eq. (31), the allowable stress and allowable external
pressure are:

61 =020, (A/C.) > =7.02 ksi

20t

Pa” = =447 pSi

For comparison, the allowable pressures using paragraph
UG-28 and Code Case 2286 would be 44.4 psi and 47.5 psi, re-
spectively. This model failed experimentally at an external pres-
sure of 107 psi.
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