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Refresher on our atomistic model N .
o « Utilized an all-atom material

representation of crosslinked EPDM.

« Performed classical molecular dynamics
with pair-wise interactions defined
according to the Jorgensen OPLS
interatomic potential A

* Entangled configurations at crosslinked
consistent to a sulfur vulcanization B

~25K atoms
~350 monomers per chain
~6 nm cube

Constructed at 1.0 g/cc

 Add hydrogen at various concentrations
 FY21 direction: Study role of

NPT ensemble to 1 atm pressure norbornene temperature and crosslink density on gas
propylene . dynamjGs bkemstn? Wh. chem. soc. (199)
" o ethylene 8 M. Van Duin, Kautschuk Gummi Kunststoffe 55. (2002)

¢ Nishimura, Takaishi Model Compound Series Review (2018)
b'S.S. Kulkarni, Int. J. Hydrogen Energy (2021)

Simulation label ______
Number of crosslinked 0
ENB/chain

wt.% ENB 9.76 2.45 11.1 20.1 33.4 | 10.0¢0
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Specific volume (cm?®/g)

‘ Crosslinks increase glass transition temperature and E
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Simulation label
2809 +1.1 2643+ 11.5 267.8+10.6 259.7+10.0 271.8+ 14.4 231.54
PRCIL R GBS 0.841 + 0.003 0.833 + 0.001 0.849 + 0.002 0.867 + 0.002 0.889 + 0.002 0.921 8¢ !




+ I Hydrogen solubility

calculated by thermodynamic integration
averaged over 3 configs for each system

HZ2 solvation energy solubility
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previous sims for H2 in EPDM: S = 0.68e-6 cm3/(cm?3 Pa)
experiment for H2 in EPDM: S = 0.394e-6 cm3/(cm?3 Pa)



s | Implications of H, solubility

If Henry’s law holds: p = ¢/$S
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lower crosslink systems are at higher
pressure for same H2 concentration

at high pressure:

indications that Henry’s law does not hold
free energy to insert H, goes up
extracting pressure vs concentration
requires different simulations



« | Mean squared displacement highlights anomalous gas diffusion

6
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-+ 1000 H2 molecules ~ Al . * Mean squared displacement (MSD) shows
E C5 configuration / = . .
- 3 pressurized gas dynamics in the polymer
10* -
MSD = (Ar?(t)) = (Ir(ty + t) — r(to)|?)
= § * Ensemble average behavior
o F §
10 3 E * Observations:
L — 200K * Multiple regimes: ballistic (~At*) diffusive
- — 250K 3 (~At') and sub-diffusive (~At°*)
100 - — 300K =
- 350K 1 * Intermediate timescales show anomalous
E — 400K 3= sub-diffusive diffusional properties
10-2 e e o 1 : exaggerated at low-temperatures
10~4 1072 10° 10°



7 ‘ Diffusion coefficient invariant with gas concentration

Diffusion coefficient (cm?/s)
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Calculate the diffusion coefficient from the slope
of the MSD in the diffusive regime

= L /A2
Ensemble average behavior

Observations:
* Lower temperatures result in slower gas
dynamics

* Increased gas concentrations have consistent
values, suggesting steric effects are not
important in gas diffusion



s I Crosslinks promote low-temperature gas diffusion

7””|\||w|‘||||‘||‘|u|f'Observatiuns:
* Decreases in diffusion with decreased temperature

Diffusion coefficient (cm?/s)

1074 - O Co

- oclo = * Low-temperature values overestimate Arrhenius

I ?} gi’o i behavior D = D, exp(— E4/RT)

- N & v/ C20 ] * Suggests mobility-limited polymer improved diffusional

- N _ properties of dissolved gas
1076 |- IR ~ . o L

- SRy & Ve E * High-temperature diffusivity decreases with increased

- RGN g j crosslinks

~ O3

= N E * Indicative of a more dense material impeding diffusion

= ~ -

500 molecules i * Increased crosslinks result in greater low-temperature
1 0—8 T U T T A T O O A B N dl ffu S 1 on

2 3 1 5 6 7

1 /Temp erature (K—l) w1073 A S.W. Rutherford, Polymer (2007)

B J.Tan, RSC Adv. (2020)
¢ G.J. Van Ameronge, J. Appl. Phys., (1946)

17.9+1.8 193422 17.0402 15.6+1.1 14.7+3.4 8.04,87.4°
59+08 46+15 45+20 3.1+09  26+0.2

E, (kJ/mol) 143403 135409 13.7+11 13.0+09 129+0.5 -20.0€, -
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300K Displacement, (A)

C5 configuration
500 molecules

Calculate average displacement from simulation
trajectories

9 ‘ Atomistic detail shows origin of sub-diffusive E
i

N
1
() = | ) 8 = In(®) — (eo)])
i=1

Bimodal distribution is suggestive of two groups of
gas in polymer
G(r,t) ~ 4mr? (51 (r,t) + G,(r, t))

Two groups with differing diffusional dynamics has
been characterized in NBR via '"H NMR 4B

We curve fit the distributions

Observations:
* Low-displacement peak remains at constant value
with time
* Higher-displacement tail increases with time

A S. Nishimura, Chem. Phys. Lett. (2012)
B H. Fujiwara, Polym. J. (2012)
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Average displacement (A
tom ]

0 ‘ Statistical analysis of curve fits show behavior of both groups

Temperature Concentration Crosslmk Incr
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» Calculate expectation value of displacement from the fit distributions

* Observations:
* Increased temperatures results in increased displacements for both groups

* Increased concentrations decrease displacements. Suggestive of steric effects
impacting diffusional properties. Counter to bulk response

* Increased crosslinks increases diffusion in mobile group. Displacement of caged
group is consistent, suggestive that caging structure is the same from one

~Arncclinl, AAanmecifv, A AAvE
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Iraction caged (-)

‘ Statistical analysis of curve fits show behavior of both
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* (alculate population of caged group from fits as f.(t) =

* Observations:
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* Caged classification is finite in time

* Increased temperatures results in decrease in caged fraction

r=0 Co(r )+ Gp(rt)
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* Increased concentrations decrease caged fraction. Suggestive of finite number of caged sites

* Increased crosslinks decrease caged fraction. Indicative that higher-mobility gas accompanies crosslinks



‘ Cage-to- cage hopping from simulation trajectories

? — ’ * A caged molecule does not necessarily remain caged
v—ml ot ﬂ

- (f" L &
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Trajectories identify that hydrogen often remains localized
(caged), and then switches to mobile. “Cage-to-cage

hopping”

* Steady-state simulations on average show behavior
presented in earlier slides

* Example of where bulk ensemble average behavior does
not tell the entire story
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13 ‘ Caged hydrogen tends to localize

» C5 configuration

* 500 molecules Temperature
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Use a partial radial distribution function (RDF) to identify proximity likelihood
« Compare to “baseline” values of RDFs between all hydrogen

 Observations:

* Increased temperatures results in localization of caged hydrogen. Width of caged sites

iIncreases

* Increased concentrations have consistent RDFs with greater width

* Increased crosslinks increase caged site size



14 ‘ Location of the caged group

. i i . . * 300K .
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 Where is caged hydrogen located?

* Observations:
« Caged is less likely to be located near sulfur atoms (crosslinks), as compared to

baseline values
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s | Quantifying transitions between groups

Kem

Caged 2 Mobile

kmc

=
3 B4
5 f
EGTL
Caged Mobile

Use a two-state kinetic model to quantify energetics
association with changes in mobility

Caged atoms are low on the energy scale

Mobile atoms have any energy greater than the caged-to-
mobile barrier height

Calculate transition frequency, defined as a success

probability

From temperature dependent rates, we can calculate
energetic barriers as k = koexp(— E /RT)

I I Em B



16 ‘ Transition rates show Tg and crosslink
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General trends:
* caged-to-mobile increases with
temperature

* mobile-to-caged decreases
Two regimes exist T > Ty and T < Ty

Low-temperature values overestimate
Arrhenius behavior

Increased crosslinks increases caged-
to-mobile and decreases mobile-to-
caged

From temperature dependent rates,
we can calculate energetic barriers as

k = kyexp(— E/RT)



y | Crosslinks lower energetic barriers ¢
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1431403 13.54£09 13.7+11 13.0£09 12.9+05
4.14+0.02 3.92+0.02 3.23+0.01 3.08+0.02 2.56 + 0.02 _
Emc (kJ/mol) -3.36 +£0.50 -3.29+0.49 -2.56+0.26 -2.93+0.34 -2.51+0.22 = -




s | Summary and interpretation AT T A
Bt L g ——4???‘2(?,”_ fit, | I
B @ dxrdQl, fit
. . . - . . . = O-Z_I
* Two groups of hydrogen with differing mobility are seen in simulation =5 | |
of hydrogen exposed EPDM (a) N Vi e
0 2 4 6 &
* Sub-diffusive is a combination of the mobility of the two groups (b) Displacement (A)
EG;H‘”‘H“H“;zoo‘K”;
. e L e 25 ook |
* Provided cavitation is the onset of gas localization due to diffusion— £ — 30K
. . . . g S4r — ]
limited oversaturation, the caged group is identified as = — Bascline ]
. T 3L
undesirable: - ]
* Slower diffusional properties -3
« Localization of gas creating larger caged sites (b) away from 0 0 1
crosslinks
E I T I é",* e
O e
* We identify an increase in crosslinks to improve ,.;;I.m e 1% i
. . . ERR Y aci 150 N
« Mobile group diffusion (c) j,t‘ SR |
: . . . ok gessE 15 | ™
* Increased low-temperature diffusion coefficients where .;q.v?g???ff?‘.’?f“;“ii. S PR N

dynamics is slowed (d)

* Lower energetic barrier to mobile state. Increase frequency of



‘ Where are we heading for FY227?

* (5 configuration « (5 configuration
* 500 molecules * 500 molecules
—If\_t pressurc — bﬂ ® At Prosre .
0.06 — — After decompression A _ﬁ% = After Decompression
505 09 ﬂ _
oos Zod %0 m ]
b= o]
3 0.04 £ QO
a2 7 = 0.3 _
fan] = b n
=2 o
o 0.03 2 0
A 0.2 ]
0.02 i o
O
0.01 o
0 - — 1 | | | | | | | | | | | | |O
5 10 15 2 3 4 9 6 37’
Displacement (A) 1/Temperature (K=) x10™

« Two-state model analysis following decompression

* Assess movement of free volume (FV) that occurs during the restructuring associated with
decompression, as pressurized FV has been located near crosslinks and decompressed FV

necessarily resides away from crosslinks.

« Relate transitions in mobility to spatial-temporal variations in free volume.



