
Exceptional service in the national interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

ARIAA Update -- SST

Presented by Clay Hughes, Sandia National Laboratories

PM/PI Meeting AI/Codesign

SAND20xx

ARIAA Teams at SNL, PNNL, and GT
Francisco Munoz-Martinez, Universidad de Murcia

SAND2021-14306PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Hardware and Simulation Thrust

 This thrust will use simulation infrastructure and early hardware prototypes
to design, validate, and evaluate hardware designs

 SST and/or analytical modeling tools will be leveraged to evaluate and adapt
the dataflow and benchmark algorithms

2

Goals
• Create a standard architectural simulation

framework for HPC*
• Ability to evaluate future systems on DOE/DOD

workloads
• Use supercomputers to design supercomputers

Status
• Parallel framework (Core)
• Integrated component libraries (Elements)
• Current Release (11.1.0)
• https://sst-simulator.org
• https://github/sstsimulator

Technical Approach
• Parallel Discrete Event core
• Conservative optimization over MPI/Threads

• Interoperability
• Node and system-scale models

• Multi-scale
• Detailed and simple models that

interoperate
• Open
• Open Core, non-viral, modular

Consortium
• “Best of Breed” simulation suite
• Combine Lab, Academic & Industry

The Structural Simulation Toolkit (SST)

3

SST + MCL (PNNL) - HW/SW Co-design

4

 Quantify performance in a full-workload on a
computing system with heterogeneous devices

 Rapidly integrate specialized accelerators with
yet-to-be-available HW

 Reduce design space for detailed architectural
evaluations, e.g., using SST

 Enables next-generation compute node design
for HPC/AI/Data Analytics

GPU

CPU

CPU GPU

Type 1

SoC

Sea of Accelerators

Type 2 Type 3

SST + MCL (PNNL) - The Proteus Device

5

 Proteus is a data-parallel compute device with a pool
of parallel threads

 Each compute unit (CU) simulates the execution of a
work group

Accelerator (Proteus)

Host/CPU

Offload:
Read/Write

Data transfer@
X data rate

Host side code
running at
native speed

CU CU CU

CU CU CU

CU CU CU
Kernel Launch Overhead

+ Kernel Execution
Latency

P
E

P
E

P
E

P
E

SST + MCL (PNNL) - Application-first Co-design

6

 The couple cluster method CCSD(T) is a tensor
contraction operation inside NWChem

 CCSD(T)’s tensor contraction decomposed as
Transpose-Transpose-GEMM-Transpose

Total MCL Tasks

Sp
ee

du
p

35.8K 91.5K 148.7K 274.4K

CCSD(T)-proxy

0

0.5

1

1.5

2

2.5

3

Original
(DGX-V100)

System under
Study

v/s

Number of Compute Units (in a single Proteus device)

Sp
ee

du
p

0 10020030040050060070080090010001100
0

0.5

1

1.5

2

2.5

3

CCSD(T)-proxy

Co-Design Example: Impact of
System Design Parameters on

Application Performance

SST + STONNE (GT)

7

 STONNE (A Simulation Tool for Neural Network Engines)
◦ Cycle-level microarchitectural simulator for DNN inference accelerators
◦ Written in C++
◦ Open-Sourced under the MIT License: https://github.com/stonne-simulator/stonne

 STONNE is composed of 3 main building blocks:

https://github.com/stonne-simulator/stonne

SST + STONNE (GT)

8

 All STONNE operations have been integrated without the memory system:
◦ CONV (convolution)
◦ GEMM (dense MM)
◦ bitmapSpMSpM (SparseSparse MM with bitmap)
◦ csrSpMM (SparseDense MM with CSR)

 Can run instances of MAERI but they
still assume unlimited SRAM buffer
when accessing memory

 Current integration allows the user to
select the type of operation

SST + STONNE (GT) -- Next Steps

9

 Modify the memory controllers in STONNE to connect them to the
memHierarchy component in SST

 Integrate STONNE with a host CPU via MMIO interface

 SST-STONNE integration will evolve as STONNE evolves:
◦ New sparse dataflows and memory hierarchy implementations are coming up
◦ New operations such as MaxPool2D

General Dataflow Accelerators

10

 Compilers build internal representations of applications that represent the
behavior as a series of graphs -- abstracting the control and data flow

 Traditional processors execute instruction sequentially, destroying an
application’s inherent ILP
◦ Superscalar OoO processors go to great lengths to reconstruct the ILP
◦ Multiple queues and complex logic allows instructions to issue when operands are available rather

than in program order
◦ Results are placed in additional queues and made visible to the system in program order

 Dataflow architectures are able to execute these graphs directly, without the
need to flatten the graph and artificially recover the parallelism
◦ Dedicated or shared PEs
◦ Statically or dynamically scheduled

Dataflow Graph -- multiply_test()

11

LLVM IR
; Function Attrs: norecurse nounwind uwtable
define void @multiply_test(i32* %a, i32* %b, i32* %c) local_unnamed_addr #0 {
entry:
 %0 = load i32, i32* %a, align 4, !tbaa !2
 %mul = mul nsw i32 %0, 3
 %1 = load i32, i32* %b, align 4, !tbaa !2
 %mul1 = shl i32 %1, 1
 %add = add nsw i32 %mul1, %mul
 store i32 %add, i32* %c, align 4, !tbaa !2
 ret void
}

C++ Function
void multiply_test(int* a, int *b, int* const c) {
 int f = 3 * (*a);
 int g = 2 * (*b);
 *c = f + g;
}

Dataflow Graph -- multiply_test()

12

C++ Function
void multiply_test(int* a, int *b, int* const c) {
 int f = 3 * (*a);
 int g = 2 * (*b);
 *c = f + g;
}

Dataflow Graph -- multiply_test()

13

C++ Function
void multiply_test(int* a, int *b, int* const c) {
 int f = 3 * (*a);
 int g = 2 * (*b);
 *c = f + g;
}

Simulating Dataflow Architectures

14

 There are examples of each of the different types of accelerators in the
literature
◦ Dedicated/Static
◦ Softbrain
◦ Dedicated/Dynamic
◦ Plasticine, SPU, MAERI

 Developing dataflow component for Structural Simulation Toolkit (SST) for
dedicated/dynamic designs
◦ Flexible interface to add custom PEs
◦ Arbitrary connectivity (can even be used to model ReRAM-like crossbars)
◦ Mappers that are dynamically loaded, allowing them to be swapped at runtime
◦ Leverage SST component interface to enable scalable simulations

◦ Shared/Static
◦ CGRA

◦ Shared/Dynamic
◦ TRIPS, SGMF

SST Dataflow Component - llyr

15

 Multiple instances that allow different
configurations for each
◦ Arbitrary memory hierarchy
◦ Some limitations on node configurations
◦ Unable to launch from device

 PEs have compute, input buffers, and output buffers
◦ Number of buffers bounded by connectivity
◦ Buffer depth is configurable but is uniform for all PEs

llyr

Mapping Applications to Dataflow Architectures

16

 Mapper modules will handle the embedding of the application graph

Mapper

ASC/AML  Standalone VF3 implementation from the University of Salerno
• Tested on multiple graphs (up to 512 nodes)
• Current problem is that constraints can result in no valid mapping
• Need a way to bypass a node

ARIAA  Exploring MIP-based solver

Notional ARIAA General Purpose Accelerator

17

 ~1024PEs
◦ Clusters of densely-connected PEs in a larger grid

 Study connectivity and composition
◦ Based on needs of algorithms
◦ Target node (7nm? 5nm?)

Summary

18

 PNNL and GT leveraging capabilities of SST
◦ Automatic data partitioning
◦ New SST dataflow components to support

 SST dataflow component, llyr, is being tested as a standalone compute unit
◦ Successfully runs torus and grid hardware graphs with GEMM application graph
◦ Successfully runs RRAM crossbar model with GEMM

 No automatic mapping of application to hardware yet
◦ VF3 shown to work using sample application and hardware graphs -- currently working on

integration with SST as a ‘mapper’ subcomponent

Exceptional Service In The National Interest

Thanks! Questions?

19

Spatial/Dataflow Accelerators

20

 Compilers build internal representations of applications that represent the
behavior as a series of graphs -- abstracting the control and data flow

 Traditional processors execute instruction sequentially, destroying an
application’s inherent instruction-level parallelism (ILP)
◦ Superscalar OoO processors go to great lengths to reconstruct the ILP
◦ Multiple queues and complex logic allow instructions to issue when operands are

available rather than in program order
◦ Results are placed in additional queues and made visible to the system in program

order even if they are completed out-of-order

 Dataflow architectures are able to execute these graphs directly, without the
need to flatten the graph and artificially recover the parallelism

21

 for(uint32_t i = 0; i < M; ++i)

 for(uint32_t j = row_ptr[i]; j < row_ptr[i+1]; ++j)

 for(uint32_t k = 0; k < K; ++k)

 result[i][k] = result[i][k] + values[j] * b[column[j]][k];

values[j]b[col[j]][k] b[col[j]][k]

col[j]

K

22

 for(uint32_t i = 0; i < M; ++i)

 for(uint32_t j = row_ptr[i]; j < row_ptr[i+1]; ++j)

 for(uint32_t k = 0; k < K; ++k)

 result[i][k] = result[i][k] + values[j] * b[column[j]][k];

SST llyr Component

23

 Instantiated like any other SST component
◦ Allows for…
◦ Multiple instances, possibly with different configurations
◦ Arbitrary memory hierarchy
◦ Some limitations on node configurations
◦ Unable to launch from device

 Utilizes new MMIO interface
◦ Address range set aside for control
◦ Doorbell and kernel location
◦ Can send and receive data in global address space
◦ Eventually will be capable of self-hosted memory with TLB

*Currently being tested as a
standalone compute device

SST llyr Component

24

 PEs have a compute unit, input buffers, and output buffers
◦ Number of buffers bounded by connectivity
◦ Buffer depth is configurable but is uniform for all PEs

 Current PE list
◦ LD, ST, LD_ST
◦ SLL, SLR, ROL, ROR
◦ ADD, SUB, MUL, DIV
◦ FPADD, FPSUB, FPMUL, FPDIV, FPMATMUL
◦ BUFFER
◦ ANY, ANYMEM, ANYLOGIC, ANYINT, ANYARITH, ANYFP

SST llyr Component

25

 Address calculation performed by preceding PEs

 Memory operations forced to return in program order via common L/S queue

 Reponses are forwarded directly to output queue of memory PE

SST llyr Component

26

 Constructed using a hardware description file
◦ Describes connectivity between PEs
◦ Describes allowable operations per-PE

0 [pe_type=ANYMEM]
1 [pe_type=ANYMEM]
2 [pe_type=ANYMEM]
3 [pe_type=ANYMEM]
4 [pe_type=ANYARITH]
5 [pe_type=ANYARITH]
6 [pe_type=ANYARITH]
7 [pe_type=ANYARITH]
8 [pe_type=ANYARITH]
9 [pe_type=ANYARITH]
10 [pe_type=ANYARITH]
11 [pe_type=ANYARITH]
12 [pe_type=ANYMEM]
…

0 -- 1
0 -- 4
1 -- 0
1 -- 2
1 -- 5
2 -- 1
2 -- 3
2 -- 6
3 -- 2
3 -- 7
4 -- 1
4 -- 5
4 -- 8
…

LLVM and llyr Parsing

27

 Work in progress…

 Offload targets will be marked in the user application – currently studying how
◦ offload_myFunction()
◦ __attribute__ ((offload (device, 0))) myFunction()
◦ #pragma secret offload directive device(0)
◦ myFunction()

 These functions/loops will be compiled with the user code but the LLVM IR will
be embedded with them in the final executable

SST llyr Component Sample Configuration

28

 Parameters
◦ clock: Operating frequency for entire device
◦ config: Input hardware layout
◦ xxx_lat: Number of cycles to complete the operation
◦ queue_depth: number of buffer entries
◦ ls_entries: number of L/S entries to process each cycle
◦ mapper: app_graph  hw_graph embedding

 Additional parameters for
standalone/testing
◦ application: application in LLVM IR
◦ mem_init: memory initialization file

LLVM IR to AppGraph

29

LLVM IR

Application Graph

Node Attributes Don’t Matter

30

Node Attributes Don’t Matter

31

13720 possible mappings

Node Attributes Matter (Kind’a Sort’a)

32

32 possible mappings

