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Hardware and Simulation Thrust

 This thrust will use simulation infrastructure and early hardware prototypes 
to design, validate, and evaluate hardware designs

 SST and/or analytical modeling tools will be leveraged to evaluate and adapt 
the dataflow and benchmark algorithms
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Goals
• Create a standard architectural simulation 

framework for HPC*
• Ability to evaluate future systems on DOE/DOD 

workloads
• Use supercomputers to design supercomputers

Status
• Parallel framework (Core) 
• Integrated component libraries (Elements)
• Current Release (11.1.0)
• https://sst-simulator.org
• https://github/sstsimulator

Technical Approach
• Parallel Discrete Event core 
• Conservative optimization over MPI/Threads

• Interoperability
• Node and system-scale models

• Multi-scale
• Detailed and simple models that 

interoperate
• Open
• Open Core, non-viral, modular

Consortium
• “Best of Breed” simulation suite
• Combine Lab, Academic & Industry

The Structural Simulation Toolkit (SST)
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SST + MCL (PNNL) - HW/SW Co-design
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 Quantify performance in a full-workload on a 
computing system with heterogeneous devices

 Rapidly integrate specialized accelerators with 
yet-to-be-available HW

 Reduce design space for detailed architectural 
evaluations, e.g., using SST

 Enables next-generation compute node design 
for HPC/AI/Data Analytics
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SST + MCL (PNNL) - The Proteus Device
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 Proteus is a data-parallel compute device with a pool 
of parallel threads

 Each compute unit (CU) simulates the execution of a 
work group
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SST + MCL (PNNL) - Application-first Co-design
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 The couple cluster method CCSD(T) is a tensor 
contraction operation inside NWChem

 CCSD(T)’s tensor contraction decomposed as 
Transpose-Transpose-GEMM-Transpose
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SST + STONNE (GT)
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 STONNE (A Simulation Tool for Neural Network Engines)
◦ Cycle-level microarchitectural simulator for DNN inference accelerators
◦ Written in C++
◦ Open-Sourced under the MIT License: https://github.com/stonne-simulator/stonne

 STONNE is composed of 3 main building blocks:

https://github.com/stonne-simulator/stonne


SST + STONNE (GT)
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 All STONNE operations have been integrated without the memory system: 
◦ CONV (convolution)
◦ GEMM (dense MM)
◦ bitmapSpMSpM (SparseSparse MM with bitmap)
◦ csrSpMM (SparseDense MM with CSR)

 Can run instances of MAERI but they 
still assume unlimited SRAM buffer 
when accessing  memory

 Current integration allows the user to 
select the type of operation



SST + STONNE (GT) -- Next Steps
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 Modify the memory controllers in STONNE to connect them to the 
memHierarchy component in SST

 Integrate STONNE with a host CPU via MMIO interface

 SST-STONNE integration will evolve as STONNE evolves:
◦ New sparse dataflows and memory hierarchy implementations are coming up
◦ New operations such as MaxPool2D



General Dataflow Accelerators
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 Compilers build internal representations of applications that represent the 
behavior as a series of graphs -- abstracting the control and data flow

 Traditional processors execute instruction sequentially, destroying an 
application’s inherent ILP
◦ Superscalar OoO processors go to great lengths to reconstruct the ILP
◦ Multiple queues and complex logic allows instructions to issue when operands are available rather 

than in program order
◦ Results are placed in additional queues and made visible to the system in program order

 Dataflow architectures are able to execute these graphs directly, without the 
need to flatten the graph and artificially recover the parallelism
◦ Dedicated or shared PEs
◦ Statically or dynamically scheduled 



Dataflow Graph -- multiply_test()
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LLVM IR
; Function Attrs: norecurse nounwind uwtable
define void @multiply_test(i32* %a, i32* %b, i32* %c) local_unnamed_addr #0 {
entry:
 %0 = load i32, i32* %a, align 4, !tbaa !2
 %mul = mul nsw i32 %0, 3 
 %1 = load i32, i32* %b, align 4, !tbaa !2
 %mul1 = shl i32 %1, 1
  %add = add nsw i32 %mul1, %mul
  store i32 %add, i32* %c, align 4, !tbaa !2
  ret void
}

C++ Function
void  multiply_test(int* a, int *b, int* const c) {
   int f = 3 * (*a);
   int g = 2 * (*b);
   *c = f + g;
}



Dataflow Graph -- multiply_test()
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C++ Function
void  multiply_test(int* a, int *b, int* const c) {
   int f = 3 * (*a);
   int g = 2 * (*b);
   *c = f + g;
}



Dataflow Graph -- multiply_test()
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C++ Function
void  multiply_test(int* a, int *b, int* const c) {
   int f = 3 * (*a);
   int g = 2 * (*b);
   *c = f + g;
}



Simulating Dataflow Architectures
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 There are examples of each of the different types of accelerators in the 
literature
◦ Dedicated/Static
◦ Softbrain
◦ Dedicated/Dynamic
◦ Plasticine, SPU, MAERI

 Developing dataflow component for Structural Simulation Toolkit (SST) for 
dedicated/dynamic designs
◦ Flexible interface to add custom PEs
◦ Arbitrary connectivity (can even be used to model ReRAM-like crossbars)
◦ Mappers that are dynamically loaded, allowing them to be swapped at runtime
◦ Leverage SST component interface to enable scalable simulations

◦ Shared/Static
◦ CGRA

◦ Shared/Dynamic
◦ TRIPS, SGMF



SST Dataflow Component - llyr
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 Multiple instances that allow different 
configurations for each
◦ Arbitrary memory hierarchy
◦ Some limitations on node configurations
◦ Unable to launch from device

 PEs have compute, input buffers, and output buffers
◦ Number of buffers bounded by connectivity
◦ Buffer depth is configurable but is uniform for all PEs

llyr



Mapping Applications to Dataflow Architectures
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 Mapper modules will handle the embedding of the application graph 

Mapper

ASC/AML  Standalone VF3 implementation from the University of Salerno 
• Tested on multiple graphs (up to 512 nodes) 
• Current problem is that constraints can result in no valid mapping
• Need a way to bypass a node

ARIAA  Exploring MIP-based solver



Notional ARIAA General Purpose Accelerator
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 ~1024PEs
◦ Clusters of densely-connected PEs in a larger grid

 Study connectivity and composition
◦ Based on needs of algorithms
◦ Target node (7nm? 5nm?)



Summary
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 PNNL and GT leveraging capabilities of SST
◦ Automatic data partitioning
◦ New SST dataflow components to support 

 SST dataflow component, llyr, is being tested as a standalone compute unit
◦ Successfully runs torus and grid hardware graphs with GEMM application graph
◦ Successfully runs RRAM crossbar model with GEMM

 No automatic mapping of application to hardware yet
◦ VF3 shown to work using sample application and hardware graphs -- currently working on 

integration with SST as a ‘mapper’ subcomponent



Exceptional Service In The National Interest

Thanks! Questions?
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Spatial/Dataflow Accelerators
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 Compilers build internal representations of applications that represent the 
behavior as a series of graphs -- abstracting the control and data flow

 Traditional processors execute instruction sequentially, destroying an 
application’s inherent instruction-level parallelism (ILP)
◦ Superscalar OoO processors go to great lengths to reconstruct the ILP
◦ Multiple queues and complex logic allow instructions to issue when operands are 

available rather than in program order
◦ Results are placed in additional queues and made visible to the system in program 

order even if they are completed out-of-order

 Dataflow architectures are able to execute these graphs directly, without the 
need to flatten the graph and artificially recover the parallelism
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  for( uint32_t i = 0; i < M; ++i ) 

       for( uint32_t j = row_ptr[i]; j < row_ptr[i+1]; ++j ) 

          for( uint32_t k = 0; k < K; ++k ) 

                 result[i][k] = result[i][k] + values[j] * b[column[j]][k];

values[j]b[col[j]][k] b[col[j]][k]

col[j]

K
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  for( uint32_t i = 0; i < M; ++i ) 

       for( uint32_t j = row_ptr[i]; j < row_ptr[i+1]; ++j ) 

          for( uint32_t k = 0; k < K; ++k ) 

                 result[i][k] = result[i][k] + values[j] * b[column[j]][k];



SST llyr Component
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 Instantiated like any other SST component
◦ Allows for…
◦ Multiple instances, possibly with different configurations
◦ Arbitrary memory hierarchy
◦ Some limitations on node configurations
◦ Unable to launch from device

 Utilizes new MMIO interface
◦ Address range set aside for control
◦ Doorbell and kernel location
◦ Can send and receive data in global address space
◦ Eventually will be capable of self-hosted memory with TLB

*Currently being tested as a 
standalone compute device



SST llyr Component
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 PEs have a compute unit, input buffers, and output buffers
◦ Number of buffers bounded by connectivity
◦ Buffer depth is configurable but is uniform for all PEs

 Current PE list
◦ LD, ST, LD_ST
◦ SLL, SLR, ROL, ROR
◦ ADD, SUB, MUL, DIV
◦ FPADD, FPSUB, FPMUL, FPDIV, FPMATMUL
◦ BUFFER
◦ ANY, ANYMEM, ANYLOGIC, ANYINT, ANYARITH, ANYFP



SST llyr Component
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 Address calculation performed by preceding PEs 

 Memory operations forced to return in program order via common L/S queue

 Reponses are forwarded directly to output queue of memory PE



SST llyr Component
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 Constructed using a hardware description file
◦ Describes connectivity between PEs
◦ Describes allowable operations per-PE 

0 [pe_type=ANYMEM]
1 [pe_type=ANYMEM]
2 [pe_type=ANYMEM]
3 [pe_type=ANYMEM]
4 [pe_type=ANYARITH]
5 [pe_type=ANYARITH]
6 [pe_type=ANYARITH]
7 [pe_type=ANYARITH]
8 [pe_type=ANYARITH]
9 [pe_type=ANYARITH]
10 [pe_type=ANYARITH]
11 [pe_type=ANYARITH]
12 [pe_type=ANYMEM]
…

0 -- 1
0 -- 4
1 -- 0
1 -- 2
1 -- 5
2 -- 1
2 -- 3
2 -- 6
3 -- 2
3 -- 7
4 -- 1
4 -- 5
4 -- 8
…



LLVM and llyr Parsing
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 Work in progress…

 Offload targets will be marked in the user application – currently studying how
◦ offload_myFunction()
◦ __attribute__ ((offload (device, 0))) myFunction()
◦ #pragma secret offload directive device(0)
◦ myFunction()

 These functions/loops will be compiled with the user code but the LLVM IR will 
be embedded with them in the final executable



SST llyr Component Sample Configuration 
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 Parameters
◦ clock: Operating frequency for entire device
◦ config: Input hardware layout
◦ xxx_lat: Number of cycles to complete the operation
◦ queue_depth: number of buffer entries
◦ ls_entries: number of L/S entries to process each cycle
◦ mapper: app_graph  hw_graph embedding

 Additional parameters for 
standalone/testing
◦ application: application in LLVM IR
◦ mem_init: memory initialization file



LLVM IR to AppGraph
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LLVM IR

Application Graph



Node Attributes Don’t Matter
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Node Attributes Don’t Matter

31

13720 possible mappings



Node Attributes Matter (Kind’a Sort’a)
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32 possible mappings


