SAND2021-14306PE|

Sandia
National
Laboratories

Exceptional service in the national interest

ARIAA Update -- SST

PM/P1 Meeting Al/Codesign

Presented by Clay Hughes, Sandia National Laboratories

ARIAA Teams at SNL, PNNL, and GT
Francisco Munoz-Martinez, Universidad de Murcia

SAND20xx
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

SandialNationalfLaboratoriesfislafmultimission laboratory managed and operated by National-Technology&-EngineeringrSolutions, of Sandia,, LLC +a,whollyiowned, i _
International,Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525." ™™ ation under contract DE-NA0003525.

74

/ Hardware and Simulation Thrust
This thrust will use simulation infrastructure and early hardware prototypes
to design, validate, and evaluate hardware designs

SST and/or analytical modeling tools will be leveraged to evaluate and adapt
the dataflow and benchmark algorithms

Validate Models Using Simulation Explore New Designs

/" The Structural Simulation Toolkit (SST)
74 Goals Status

/ » Create a standard architectural simulation e Parallel framework (Core)
framework for HPC* - Integrated component libraries (Elements)
* Ability to evaluate future systems on DOE/DOD « Cyrrent Release (11.1.0)
workloads * https://sst-simulator.org
« Use supercomputers to design supercomputers « https://github/sstsimulator
Technical Approach Consortium
 Parallel Discrete Event core « “Best of Breed” simulation suite

» Conservative optimization over MPI/Threads « Combine Lab, Academic & Industry
* Interoperability
« Node and system-scale models

« Multi-scale
 Detailed and simple models that =‘;==UL-
interoperate Ribor WiE S —=Is
* Open 24 2
| S
« Open Core, non-viral, modular Vellanox =mas ficron Q_, AVIDIA

uuuuuuu

/-
7 Quantify performance in a full-workload on a

computing system with heterogeneous devices

Rapidly integrate specialized accelerators with
yet-to-be-available HW

Reduce design space for detailed architectural
evaluations, e.g., using SST

Enables next-generation compute node design
for HPC/Al/Data Analytics

/7 SST + MCL (PNNL) - HW/SW Co-design

(SoC
00000
o000 00
O00000
O00000
00006
GPU 00886
I 1 111
Seeeee
\ Sea of Accelerators J

Owcu @ cru
. Type 1 - Type 2 . Type 3

App1 App2 App3 Applications
Domain-Specific
[‘ ‘ } COMET TACO Language

Intel NVIDIA ilinx POCL POCL
AMD Intel era NVDLA Proteus
ARM AMD
ARM
, s

|
1
]
N I
Real Devices Emulated/Simulated Devices ‘

_—— e —

A

7 SST + MCL (PNNL) - The Proteus Device

y [Kernel A, [Kernel X,

/ Proteus is a data-parallel compute device with a pool e i
of parallel threads I

App 2
[Kernel Z,
Kernel C,

Kernel X]

Each compute unit (CU) simulates the execution of a e STyt detemire

custom kernels.

SST::Llyr or any other .
. Explore design space
Accelerator Simulator
of accelerators
Refine system design
until desired metrics
achieved for the Kernel X: 10 ns,
workload 0.5W, 0.1 mm"2

Offload:

Host side code Read/Write

running at
native speed

Data transfer@
X data rate

Kernel Launch Overhead
- + Kernel Execution
- Latency

/

contraction operation inside NWChem

/" The couple cluster method CCSD(T) is a tensor

CCSD(T)'s tensor contraction decomposed as
Transpose-Transpose-GEMM-Transpose

3
-o-CCSD(T)-proxy
2.5
2
Co-Design Example: Impact of
a System Design Parameters on
> 1.5 Application Performance
O
¥
G) EE N I S S g IS S S S S S S S - .-
o 1
a
0.5
0

0 100200300400500600/7008009001000100

Number of Compute Units (in a single Proteus device)

3

35.8K
Total MCL Tasks

/ SST + MCL (PNNL) - Application-first Co-design

Original
(DGX-V100)

V/S

é Y
System under
Study

91.5K 148.7K
CCSD(T)-proxy

/" SST + STONNE (GT)
z

7 " STONNE (A Simulation Tool for Neural Network Engines)

> Cycle-level microarchitectural simulator for DNN inference accelerators

o Written in C++
- Open-Sourced under the MIT License: https://github.com/stonne-simulator/stonne

STONNE is composed of 3 main building blocks:

Input Module Simulation Platform Output Module
| 1l (]
STONNE User__} _ > _,Sﬁ?tﬁguration © perfommance
o)
Interface L | & HP
J w a
O o+ Inference
........) = —>» c u
e [PyTorch Y IHZPLS] | =1 "o
F K ®) s Simulation B
- stonne E‘ G E: =S
“.. config QI Lo |;E‘m - —> ')
" ‘ / J N\ ~ J Are_a

https://github.com/stonne-simulator/stonne

~ SST + STONNE (GT)

/4
" All STONNE operations have been integrated without the memory system:

CONV (convolution)

GEMM (dense MM)

bitmapSpMSpM (SparseSparse MM with bitmap)
csrSpMM (SparseDense MM with CSR)

Can run instances of MAERI but they | .
St/// assuyme Un/imited SRAM bUffer # Define the simulation compﬂr_jenm

import ssp

comp_stonne = sst.Component(“stonnel”, "sstStonne.MAERI'

when accessing memory comp_stonne. addParams({ .
hardware_configuration” : "maeri_l128mses_
. . "kernelOperation” : "GEMM",
Current integration allows the user to 'GEMM K 20,
select the type of operation GEMM_M" : 3,
"GEMM_T_K"
"GEMM T M"Y
GEMM_T_N"
nem ati

“mem

_matrix_z
I ||—|" ..I.II_..t = .l W ..: .1| G
_matrix

/" SST + STONNE (GT) -- Next Steps

4
/" Modify the memory controllers in STONNE to connect them to the

memHierarchy component in SST
Integrate STONNE with a host CPU via MMIO interface
SST-STONNE integration will evolve as STONNE evolves:

> New sparse dataflows and memory hierarchy implementations are coming up
> New operations such as MaxPool2D

/" @General Dataflow Accelerators

4
" Compilers build internal representations of applications that represent the

behavior as a series of graphs -- abstracting the control and data flow

Traditional processors execute instruction sequentially, destroying an
application’s inherent ILP
o Superscalar OoO processors go to great lengths to reconstruct the ILP

o Multiple queues and complex logic allows instructions to issue when operands are available rather
than in program order

o Results are placed in additional queues and made visible to the system in program order

Dataflow architectures are able to execute these graphs directly, without the
need to flatten the graph and artificially recover the parallelism

o Dedicated or shared PEs

o Statically or dynamically scheduled

Dataflow Graph -- multiply_test()

C++ Function
void multiply_test(int* a, int *b, int* const c) {
int f =3 * (*a);

LLVM IR

; Function Attrs: norecurse nounwind uwtable

define void @multiply_test(i32* %a, 132* %b, 132* %c) local_unnamed_addr #0 {
entry:

%0 = load 132, i32* %a, align 4, !tbaa 2

%mul = mul nsw 132 %0, 3

ret void
} 11

F4

Dataflow Graph -- multiply_test()

C++ Function
void multiply_test(int* a, int *b, int* const c) {
int f =3 * (*a);

%radd = add nsw i32 Zemull, %emul

F4

Dataflow Graph -- multiply_test()

C++ Function
void multiply_test(int* a, int *b, int* const c) {
int f =3 * (*a);

%1 = load i32, 132* %b, align 4, !tbaa 12 @ % = load i32, i32* %ra. align 4, !tbaa !2

store 132 Fradd. i32* e, align 4, lthaa 12

%radd = add nsw i32 Zemull, %emul

7/ Simulating Dataflow Architectures
74

There are examples of each of the different types of accelerators in the
literature
> Dedicated/Static > Shared/Static
> Softbrain > CGRA
> Dedicated/Dynamic > Shared/Dynamic
o Plasticine, SPU, MAERI o TRIPS, SGMF

Developing dataflow component for Structural Simulation Toolkit (SST) for
dedicated/dynamic designs

o Flexible interface to add custom PEs

o Arbitrary connectivity (can even be used to model ReRAM-like crossbars)

o Mappers that are dynamically loaded, allowing them to be swapped at runtime

o Leverage SST component interface to enable scalable simulations

/ SST Dataflow Component - llyr

g
" Multiple instances that allow different
configurations for each

o Arbitrary memory hierarchy

> Some limitations on node configurations
- Unable to launch from device

PEs have compute, input buffers, and output buffers
- Number of buffers bounded by connectivity

o Buffer depth is configurable but is uniform for all PEs

llyr

Input
Queue01

Input
Queue00

/" Mapping Applications to Dataflow Architectures
4
" Mapper modules will handle the embedding of the application graph

ASC/AML - Standalone VF3 implementation from the University of Salerno
« Tested on multiple graphs (up to 512 nodes)
» Current problem is that constraints can result in no valid mapping
* Need a way to bypass a node
ARIAA - Exploring MIP-based solver

/" Notional ARIAA General Purpose Accelerator

/

/" ~1024PEs — MEM|—MEM|— MEM — MEM
o Clusters of densely-connected PEs in a larger grid

Study connectivity and composition INT | INT INT — INT
- Based on needs of algorithms
o Target node (7nm? 5nm?)

INT INT INT INT

FP64 INT INT FP64

/7 Summary

/
" PNNL and GT leveraging capabilities of SST

o Automatic data partitioning
> New SST dataflow components to support

SST dataflow component, llyr, is being tested as a standalone compute unit
o Successfully runs torus and grid hardware graphs with GEMM application graph
o Successfully runs RRAM crossbar model with GEMM

No automatic mapping of application to hardware yet

> VF3 shown to work using sample application and hardware graphs -- currently working on
integration with SST as a ‘mapper’ subcomponent

()

Sandia
National
Laboratories

19

/" Spatial/Dataflow Accelerators
7z

Compilers build internal representations of applications that represent the
behavior as a series of graphs -- abstracting the control and data flow

Traditional processors execute instruction sequentially, destroying an
application’s inherent instruction-level parallelism (ILP)
o Superscalar OoO processors go to great lengths to reconstruct the ILP

o Multiple queues and complex logic allow instructions to issue when operands are
available rather than in program order

o Results are placed in additional queues and made visible to the system in program
order even if they are completed out-of-order

Dataflow architectures are able to execute these graphs directly, without the
need to flatten the graph and artificially recover the parallelism

7/ SpPMM -CSR (1 x3-3 X 2)

S |

/ © for(uint32_ti=0;i<M; ++)

for(uint32_t j = row_ptr[i]; j < row_ptr[i+1]; ++j)
for(uint32_t k=0; k <K; ++k)

result[i][k] = result[i][k] + values[j] * b[columnl[j]][k];

/7 SPMM -CSR (1 X 3-3 X 2)

S |

/ © for(uint32_ti=0;i<M; ++)

for(uint32_t j = row_ptr[i]; j < row_ptr[i+1]; ++j)
for(uint32_t k=0; k <K; ++k)

result[i][k] = result[i][k] + values[j] * b[columnl[j]][k];

7/ SST llyr Component

/
~~Instantiated like any other SST component
> Allows for...
o Multiple instances, possibly with different configurations
o Arbitrary memory hierarchy
> Some limitations on node configurations
o Unable to launch from device

Utilizes new MMIO interface
- Address range set aside for control
> Doorbell and kernel location

o Can send and receive data in global address space
- Eventually will be capable of self-hosted memory with TLB

HBM HBM

. — e

*Currently being tested as a

standalone compute device ﬂ

/,

/

7/ SST llyr Component

PEs have a compute unit, input buffers, and output buffers
> Number of buffers bounded by connectivity
o Buffer depth is configurable but is uniform for all PEs

Current PE list
o LD, ST, LD_ST
> SLL, SLR, ROL, ROR
> ADD, SUB, MUL, DIV
> FPADD, FPSUB, FPMUL, FPDIV, FPMATMUL
> BUFFER
> ANY, ANYMEM, ANYLOGIC, ANYINT, ANYARITH, ANYFP

Input Input
Queuel0 Queuel1

Output
Queue

/7 SST llyr Component

‘4
" Address calculation performed by preceding PEs

Memory operations forced to return in program order via common L/S queue

Reponses are forwarded directly to output queue of memory PE

Memory

L/S Queue

Address
Queue

/7 SST llyr Component

4
" Constructed using a hardware description file

o Describes connectivity between PEs
> Describes allowable operations per-PE

0 [pe_type=ANYMEM] 0--1
—— MEM MEM MEM MEM —— 1 [pe_type=ANYMEM] 01
2 [pe_type=ANYMEM] 1--0
3 [pe_type=ANYMEM] 1--2
——— ARITH ARITH ARITH ARITH |—— 4 [pe_type=ANYARITH] 15
5 [pe_type=ANYARITH] 2--1
6 [pe_type=ANYARITH] 2--3
7 [pe_type=ANYARITH] 2--6
— | ARITH ARITH ARITH ARITH —— 8 [pe_type=ANYARITH] 3--2
9 [pe_type=ANYARITH] 3--7
10 [pe_type=ANYARITH] 4--1
11 [pe_type=ANYARITH] 4--5
——— MEM MEM MEM MEM | 12 [pe_type=ANYMEM] 4--8

/7 LLVM and llyr Parsing

74 User

@ —»

[LVM IR for ELF
Offload Executable
Other Code

Offload targets will be marked in the user application - currently studying how
o offload_myFunction()
__attribute__ ((offload (device, 0))) myFunction()
o #pragma secret offload directive device(0)
o myFunction()

Work in progress...

These functions/loops will be compiled with the user code but the LLVM IR will
be embedded with them in the final executable

/ SST llyr Component Sample Configuration

,// Llyr = sst.Component("dataflow®"”, "llyr.llyr")
> Llyr.addParams ({

"verbose": "1",

"clock" : "1GHz",

"config" : "maeri layout.cfg",

"“fp_lat" : "4",

"int lat": "1",

"div_lat": "3",

"mul_lat": "2",

)}
Parameters Additional parameters for
o clock: Operating frequency for entire device standalone/testing
o config: Input hardware layout o application: application in LLVM IR

o xxX_lat: Number of cycles to complete the operation > mem_init: memory initialization file
o queue_depth: number of buffer entries

o |s_entries: number of L/S entries to process each cycle

o mapper: app_graph - hw_graph embedding

7 LLVM IR to AppGraph

Application Graph

LD
%1 = load 132, i32* %b, align 4@ %0 = load 32, i32* %a, align @ I
%mull = shl i32 %1, 1 %mul = mul nsw i32 %0, 3
MUL

%add = add nsw i32 %mull, %mul

store 132 %add, i32* %c, align 4, !tbaa 12
ADD

LLVM IR

ST

Node Attributes Don’'t Matter

LD

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

Node Attributes Don’'t Matter

LD ANY ANY ANY ——

MUL _ ANY ANY ANY ——

—— ANY ANY ANY ANY | ——

ST

— ANY ANY ANY ANY |[——

13720 possible mappings

Node Attributes Matter (Kind'a Sort’'a)

LD MEM MEM MEM |——
MUL _ ARITH ARITH ARITH ————

ADD
— ARITH ARITH ARITH ARITH ——

ST
— MEM MEM MEM MEM |—

32 possible mappings

