

Sandia
National
Laboratories

Exceptional service in the national interest

Empirical Sensitivity Analysis: Extensions and Open Questions

Justin Winokur, PhD
jgwinok@sandia.gov

Sandia National Laboratories

Verification & Validation, Uncertainty
Quantification, and Credibility Processes
Department

Albuquerque, NM

UC Davis/Sandia 2021 Sandia Fall Symposium
November 3, 2021

Background & Motivation

Sensitivity Analysis is the process of identifying dominant parameters; usually with the goal of excluding some from future analysis or to prioritize additional analysis activities.

- Precision is *not* of paramount importance!

Global Sensitivity Analysis (GSA) is powerful and robust but can be very expensive!

- Surrogate-Driven GSA requires more complete knowledge of the model and relies on a potentially inaccurate surrogate.
 - More complex
 - Hard to trace sources of error including surrogate model form error
 - Can be slow or difficult to fit

Empirical Sensitivity Analysis:

- Based solely on data with *minimal* assumptions
- Based on *observation*, not *interrogation*
 - Can use existing data without ability to add more.
- No need for prior knowledge of probability spaces
 - Assume the data *describes* the input probability
- Intended to be fast and robust, even at the cost of accuracy
- Use Sobol Sensitivity Indices: i.e. percent of the variance is due to each parameter

Sobol' Sensitivity Analysis

Sobol' Decomposition: Decompose \mathcal{L}^2 function $f(x_1, \dots, x_n)$ into 2^n functionals orthogonal with respect to covariance such that $\text{Cov}[f_i f_j] = \mathbb{V}[f_i] \delta_{ij}$

$$f(x_1, \dots, x_n) = f_\emptyset + \sum_{1 \leq i \leq n} f_i(x_i) + \sum_{1 \leq i < j \leq n} f_{ij}(x_{ij}) + \dots = \sum_{\mathbf{d} \in \mathcal{P}(\{x_1, \dots, x_n\})} f_{\mathbf{d}}(\mathbf{x}_{\mathbf{d}})$$

\mathcal{P} : Powerset. Set of all subsets including itself and the empty set

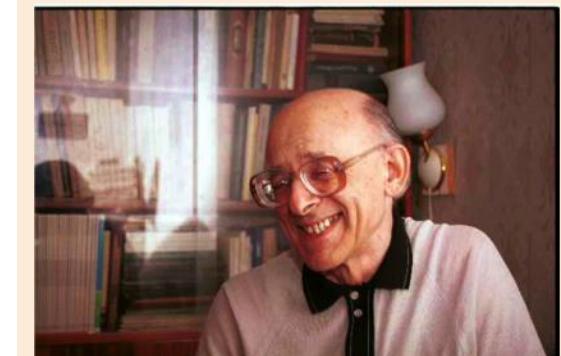
Where $f_{\mathbf{d}}(\mathbf{x}_{\mathbf{d}}) = \mathbb{E}[f | \mathbf{x}_{\mathbf{d}}] - \sum_{\mathbf{k} \in \mathcal{P}(\mathbf{d}) \setminus \mathbf{d}} f_{\mathbf{k}}(\mathbf{x}_{\mathbf{k}})$

Variance of Sobol' Decomposition: Due to orthogonality, variance operator can move into the summation:

$$\mathbb{V}[f(x_1, \dots, x_n)] = \mathbb{V} \left[\sum_{\mathbf{d} \in \mathcal{P}(\{x_1, \dots, x_n\})} f_{\mathbf{d}}(\mathbf{x}_{\mathbf{d}}) \right] = \sum_{\mathbf{d} \in \mathcal{P}(\{x_1, \dots, x_n\})} \mathbb{V}[f_{\mathbf{d}}(\mathbf{x}_{\mathbf{d}})]$$

Example: Simplify Notation: $\mathbb{V}[f_{\mathbf{d}}(\mathbf{x}_{\mathbf{d}})] = \mathbb{V}_{\mathbf{d}}$ and note $\mathbb{V}_{\emptyset} = \mathbb{V}[\text{constant}] = 0$

$$\mathbb{V}[f(x, y, z)] = \mathbb{V}_x + \mathbb{V}_y + \mathbb{V}_z + \mathbb{V}_{xy} + \mathbb{V}_{xz} + \mathbb{V}_{yz} + \mathbb{V}_{xyz}$$



Illya M. Sobol' (with an apostrophe)

Sobol' Indices

Recall there are 2^n function in a Sobol' Decomposition.

Simplify into **Main (S)** and **Total (T)** contributions. Main is sometimes known as "First-Order" or "Primary"

Recall

$$V = V_x + V_y + V_z + V_{xy} + V_{xz} + V_{yz} + V_{xyz}$$

Define:

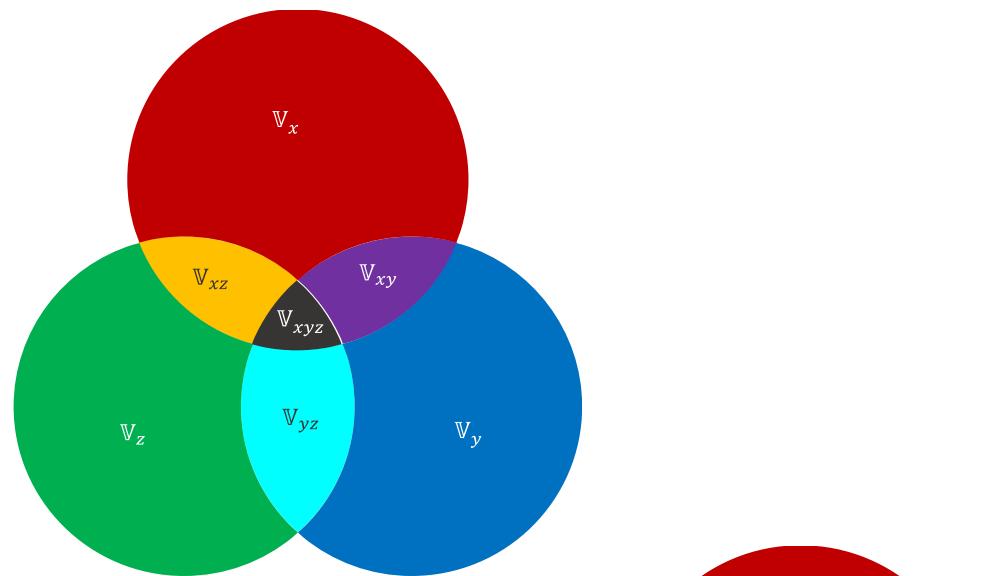
$$S_d = \frac{\text{Variance due exclusively to dimension(s) in } d}{\text{total variance}} = \frac{V[\mathbb{E}[f|d]]}{V}$$

$$T_d = \frac{\text{Variance due to dimension(s) in } d \text{ and any interactions}}{\text{total variance}}$$

Takeaway:

The "Main Sobol' Index" is the fraction of the variance due *only* to a parameter. The "Total Sobol' Index" includes interactions.

The numerator of the Main Index is the *variance of the conditional expectation*



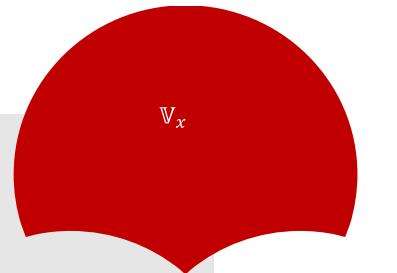
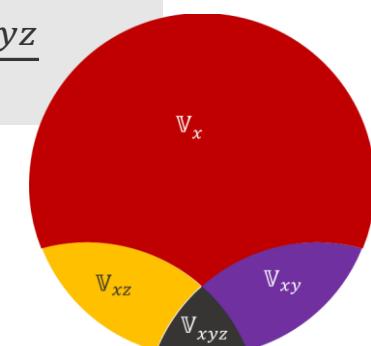
Example:

$$S_x = \frac{V_x}{V} = \frac{V[\mathbb{E}[f|x]]}{V}$$

$$T_x = \frac{V_x + V_{xy} + V_{xz} + V_{xyz}}{V}$$

Interaction:

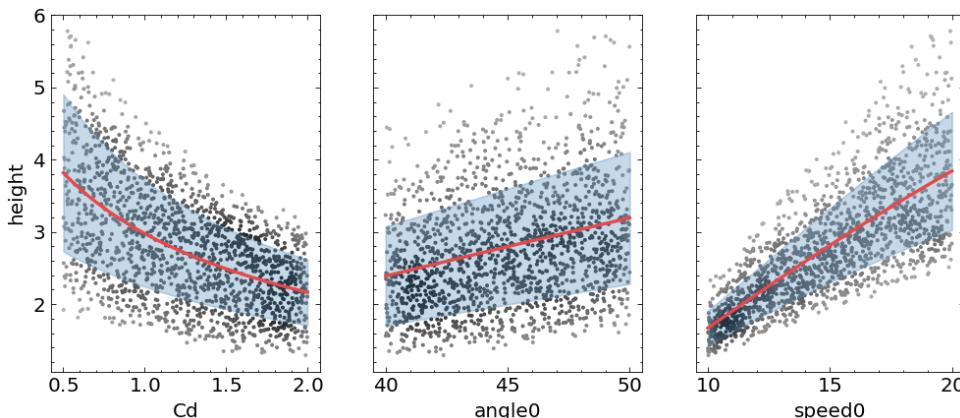
$$T_x - S_x$$



Main Effects: Connection to Model Response & Scatterplots

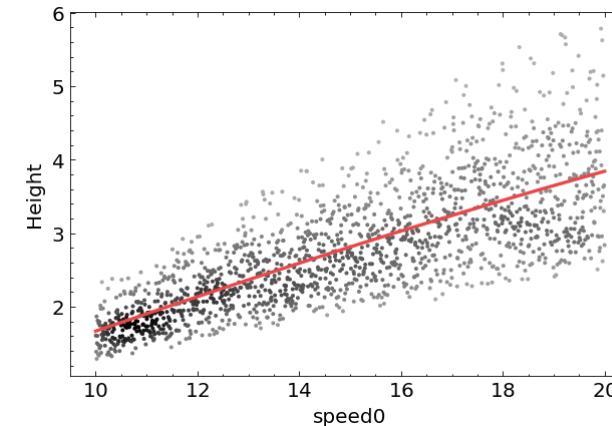
Qualitative visualization of the model behavior over its parameter domain

- Identify **trend** and **spread**.
 - *Changes in trend* suggest sensitivity
 - *Changes in spread* suggest interaction



Abscissa may need to be rank scaled. See [later slides](#).

The **trend** is the conditional expectation



Directly related to Sobol' Index

$$S_{speed0} = \frac{\mathbb{V}[\mathbb{E}[Height|x_{speed0}]]}{\mathbb{V}[f]}$$

Empirical Sensitivity Analysis

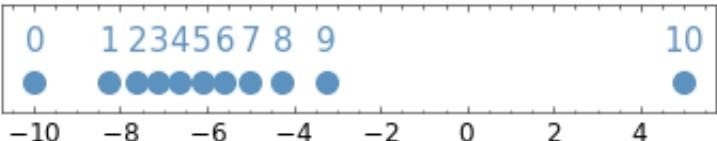
Estimate Sobol' Main Effect Index without a surrogate or resampling. Use the data itself!

Based on [1] with some minor changes

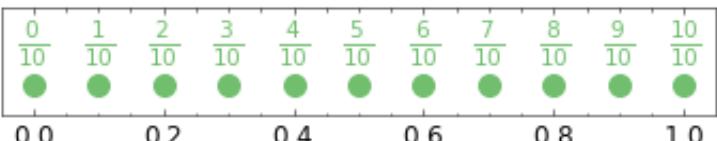
[1] C. Li and S. Mahadevan. An efficient modularized sample-based method to estimate the first-order Sobol' index. Reliability Engineering & System Safety, 153:110–121, 2016.

Step 1: Scale the data by its *rank* into $[0,1]$

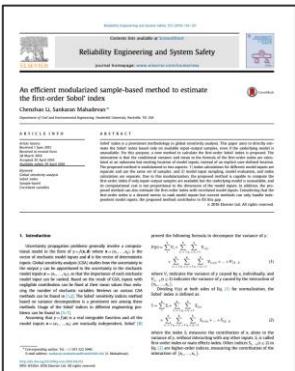
1. Ranked from $r_i = 0, \dots, N - 1$:



2. Scaled to $u_i = r_i / (N - 1)$:



This is a simple, self-consistent, automatic, and fast scaling of the data into $\mathcal{U}[0,1]$

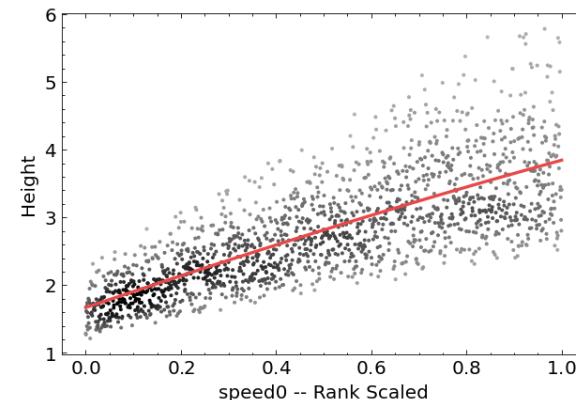


Step 2: Bin N samples into $n = \lfloor \sqrt{N} \rfloor$ bins

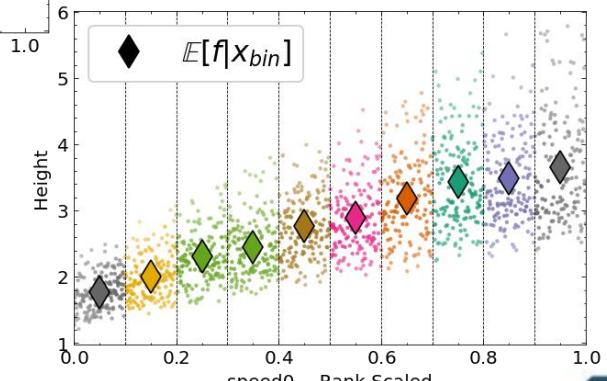
Step 3: $\mathbb{V}[\mathbb{E}[f|\alpha]] \approx \mathbb{V}[\mathbb{E}[f_i|i \in \alpha_{bin}]]$

Alternative: (better numerical performance)

$$\begin{aligned}\mathbb{V}[\mathbb{E}[f|\alpha]] &= \mathbb{V}[f] - \mathbb{E}[\mathbb{V}[f|\alpha]] \\ &\approx \mathbb{V}[f] - \mathbb{E}[\mathbb{V}[f_i|i \in \alpha_{bin}]]\end{aligned}$$



Can also handle dependent data*



*Dependence breaks some fundamental assumptions of Sobol' Decomposition but still can provide useful results.

Example: Ocean Circulation Model Sensitivity with Time. Hurricane Ivan, 2004

Sensitivity with time. Note that it is normalized *at each time*. Can also look at variance contribution without normalizing:

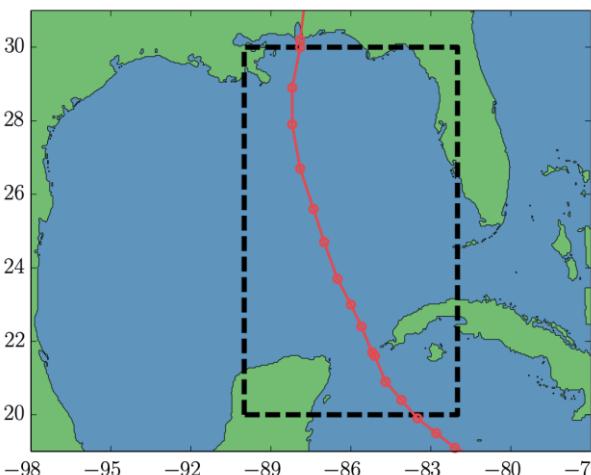
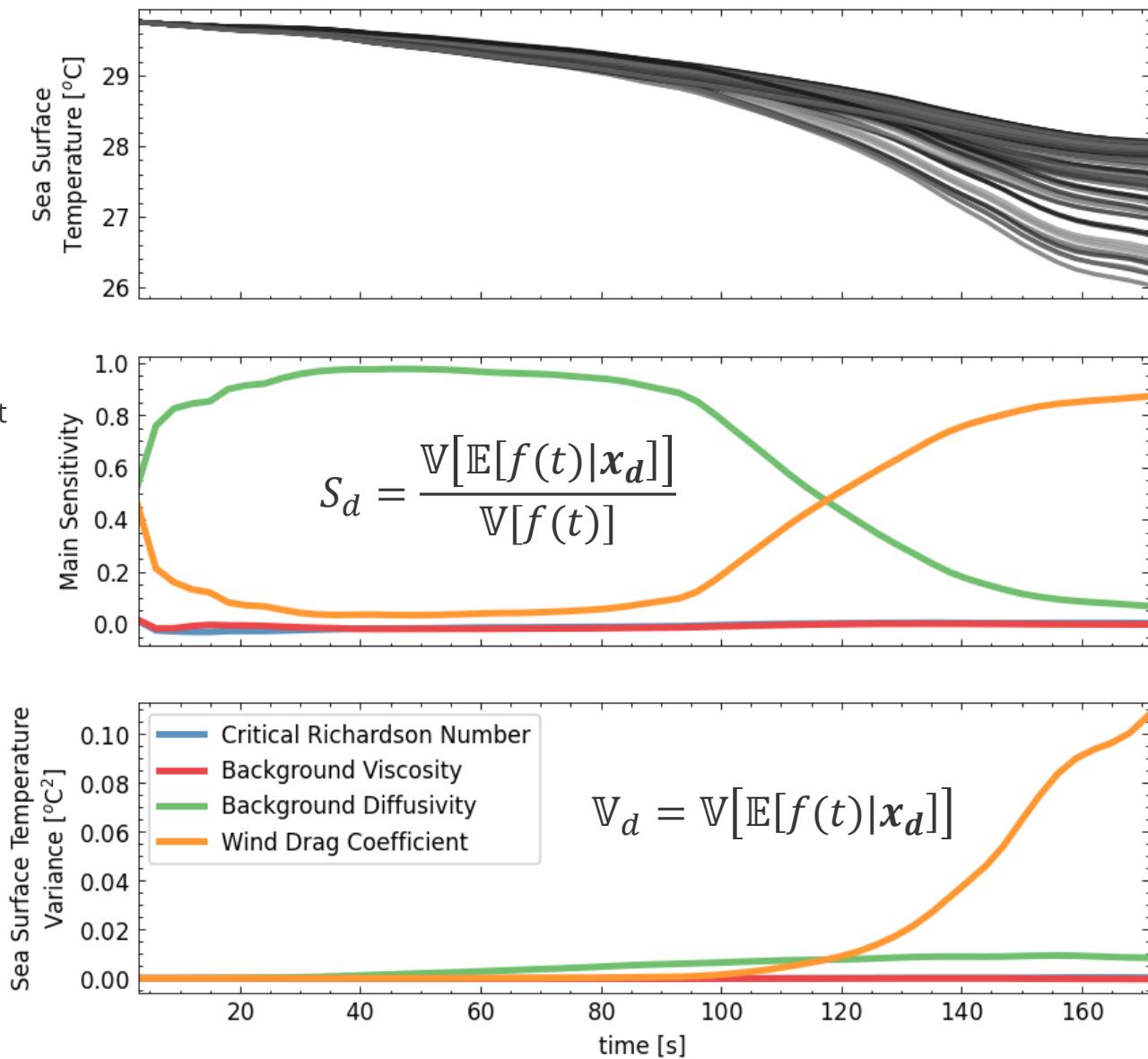
$$S_d(t) = \frac{\mathbb{V}[\mathbb{E}[f(t)|d]]}{\mathbb{V}[f(t)]} \quad \text{OR} \quad \mathbb{V}_d(t) = \mathbb{V}[\mathbb{E}[f(t)|d]]$$

Looking *only* at Main Sensitivity (middle) tells a very different story than looking at variance (bottom).

- Variance due to Background Diffusivity remained relatively constant at later times even though Main Effect went down.
- Variance from Wind Drag Coefficient (and total variance) grew in later times.

Sensitivity change corresponds to Hurricane Ivan entering the simulation domain.

Be careful of units!
Do *not* take root of each variance contribution.



Legacy Data: Marthe Dataset (Strontium-90 transport in aquifer)

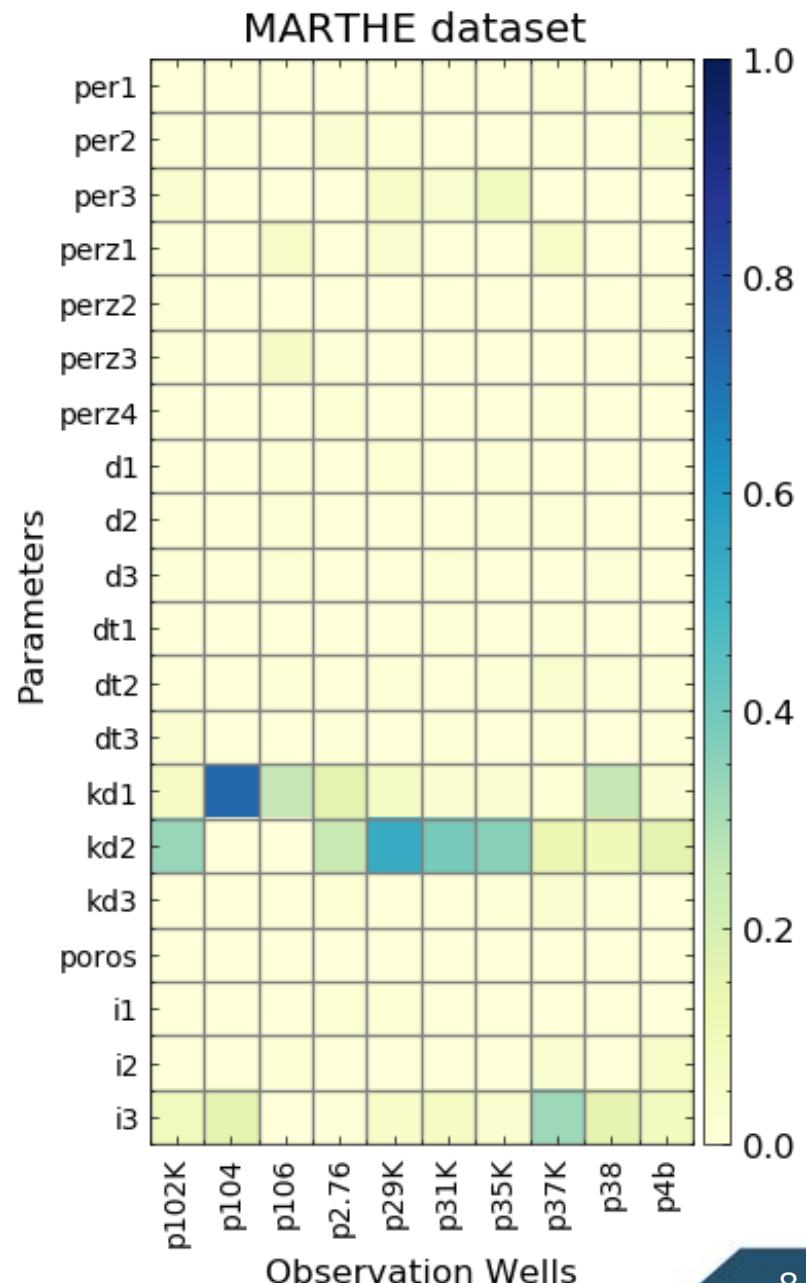
Quickly visualize sensitivity across multiple responses

Legacy Data:

- 20 input parameters
 - 5 dependent ones
- Responses at 10 wells.
- 300 simulations

Parameter	Distribution	Description
per1	U[1, 15]	hydraulic conductivity layer 1
per2	U[5, 20]	hydraulic conductivity layer 2
per3	U[1, 15]	hydraulic conductivity layer 3
perz1	U[1, 15]	hydraulic conductivity zone 1
perz2	U[1, 15]	hydraulic conductivity zone 2
perz3	U[1, 15]	hydraulic conductivity zone 3
perz4	U[1, 15]	hydraulic conductivity zone 4
d1	U[0.05, 2]	longitudinal dispersivity layer 1
d2	U[0.05, 2]	longitudinal dispersivity layer 2
d3	U[0.05, 2]	longitudinal dispersivity layer 3
dt1	U[0.01d1, 0.1d1]	transversal dispersivity layer 1
dt2	U[0.01d2, 0.1d2]	transversal dispersivity layer 2
dt3	U[0.01d3, 0.1d3]	transversal dispersivity layer 3
kd1	W($\alpha=1.1597$, $\beta=19.9875$)	volumetric distribution coefficient 1.1
kd2	W($\alpha=0.891597$, $\beta=24.4455$)	volumetric distribution coefficient 1.2
kd3	W($\alpha=1.27363$, $\beta=22.4986$)	volumetric distribution coefficient 1.3
poros	U[0.3, 0.37]	porosity
i1	U[0, 0.0001]	infiltration type 1
i2	U[i1, 0.01]	infiltration type 2
i3	U[i2, 0.1]	infiltration type 3

$$\text{Weibull: } W \sim \alpha \beta^{-\alpha} x^{\alpha-1} \exp\left(-\left(\frac{x}{\beta}\right)^\alpha\right)$$



1. Benchmark Proposals of GdR MASCOT-NUM. Retrieved April 2014, from <http://www.gdr-mascotnum.fr/benchmarks.html>.
2. Marrel, A., Iooss, B., Van Dorpe, F., & Volkova, E. (2008). An efficient methodology for modeling complex computer codes with Gaussian processes. *Computational Statistics and Data Analysis*, 52, 4731-4744.
3. Volkova, E., Iooss, B., & Van Dorpe, F. (2008). Global sensitivity analysis for a numerical model of radionuclide migration from the "RRC" Kurchatov Institute radwaste disposal site. *Stochastic Environmental Research and Risk Assessment*, 22, 17-31.
4. S. Surjanovic and D. Bingham. Virtual Library of Simulation Experiments: Test Functions and Datasets. <https://www.sfu.ca/~ssurjano/marthe.html>

Extensions: Higher Order Sensitivity via Modified K-Means Clustering

Higher order (second order, total order) require higher-dimensional binning.

Curse of Dimensionality quickly limits utility. Even worse for dependent samples.

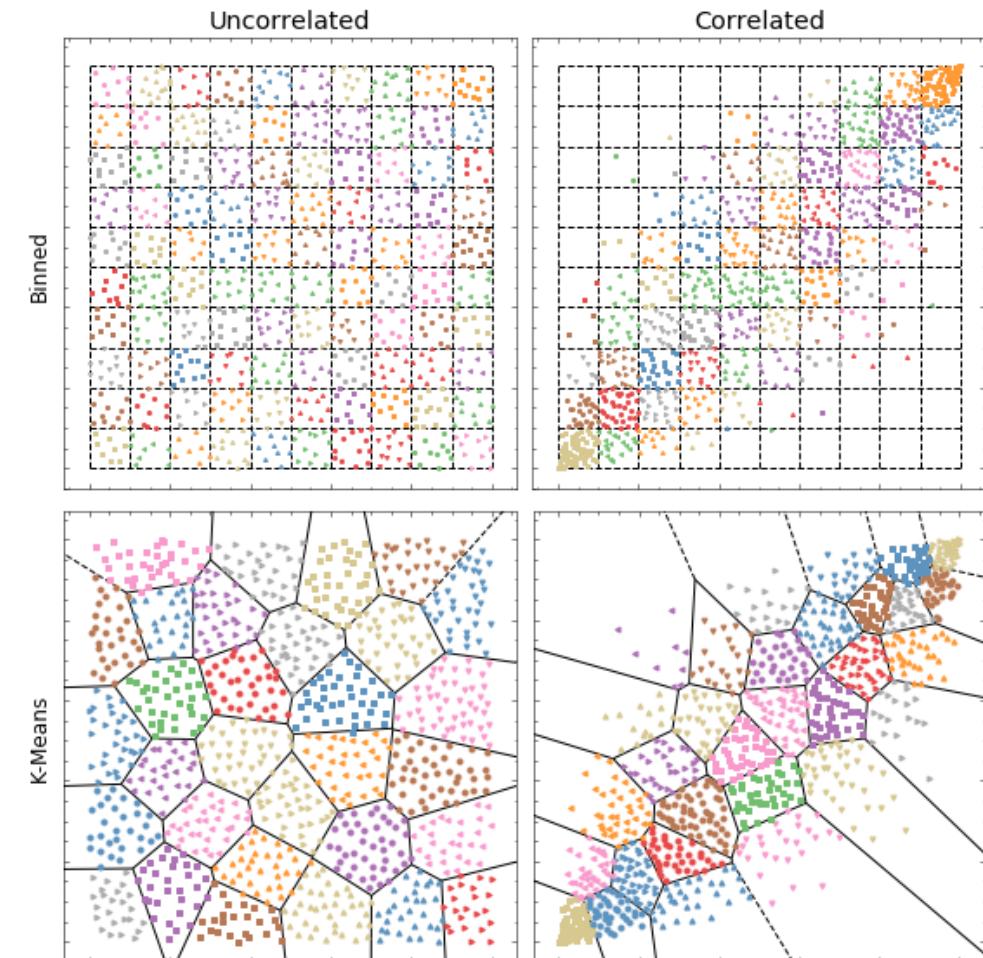
Use K-Means Clustering to *fix* the number of “bins”: $n_b \approx \lfloor \sqrt[2]{N} \rfloor$

- Rescale by EDF into $U[0,1]$ unit hypercube
- Apply K-Means clustering with $K = \lfloor \sqrt[2]{N} \rfloor$
 - Extension: Remove outliers and/or equal size K-Means
- Compute: $\mathbb{E}[f|\alpha] \approx \mathbb{E}[f_i|i \in \alpha_{cluster}]$

Samples per bin are large but this reduces curse of dimensionality

Large number of conditional dimensions still impedes accuracy.

Can (still) handle dependent samples.



Extension: Error Estimation

For each N , do 1000 random trials and examine the distribution of S_d

$$S_d = \frac{\mathbb{V}[\mathbb{E}[f|x_d]]}{\mathbb{V}[f]} = 1 - \frac{\mathbb{E}[\mathbb{V}[f|x_d]]}{\mathbb{V}[f]}$$

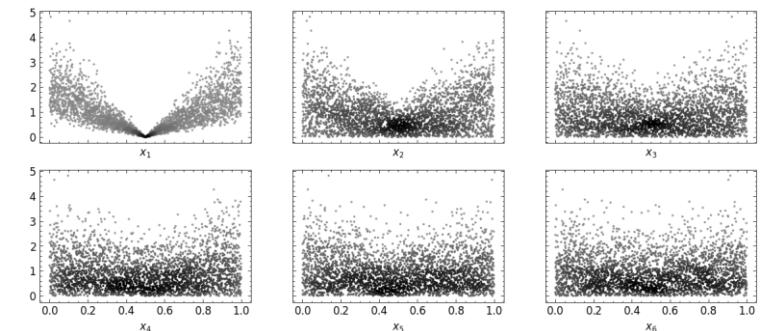
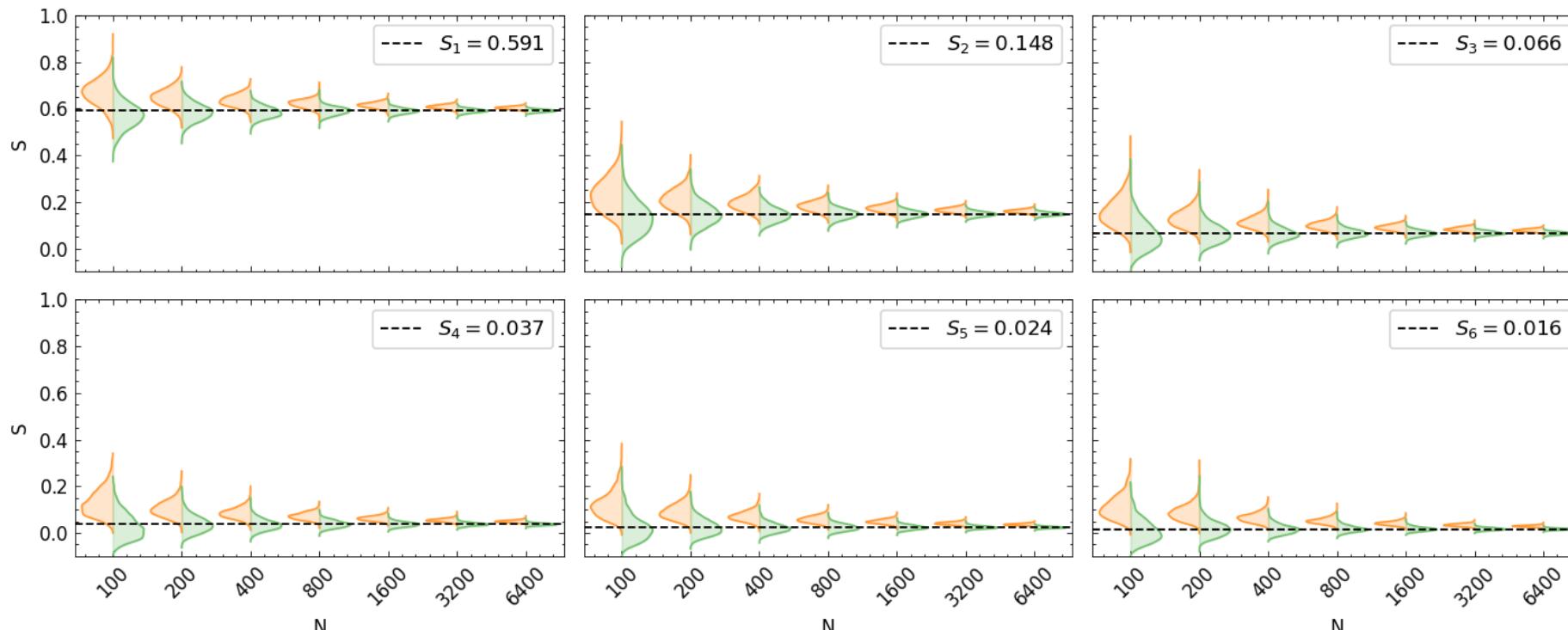
How can we estimate this uncertainty without resampling?

Examine statistical techniques like **bootstrap** and **jackknife**

- Construction form adds complexity and difficulty

Sobol G Function with $a_i = i - 1$ and $n = 6$

$$f(x) = \prod_{i=1}^n \frac{|4x_i - 2| + a_i}{a_i + 1}$$



Extension: Greedy Sensitivity Accumulation

Total Sensitivity Indices provide an idea of sensitivity but are (a) more difficult to compute empirically, and (b) do not specify *which* parameters are interacting.

Adaptively add groups until most variance is captured. Usually $\ll 2^n$. Example: $V_{TOL} = 0.9$

#	Parameters				Variance Fraction
	x1	x2	x3	x4	
1	1	0	0	0	0.039
	0	1	0	0	0.281
	0	0	1	0	0.056
	0	0	0	1	0.055
	Accumulated		0.431		
Remaining		0.569			

#	Parameters				Variance Fraction
	x1	x2	x3	x4	
1	1	0	0	0	0.039
	0	1	0	0	0.281
	0	0	1	0	0.056
	0	0	0	1	0.055
	Accumulated		0.003		
2	1	1	0	0	0.093
	0	1	1	0	0.043
	Accumulated		0.570		
Remaining		0.430			

Algorithm:

- Active Set \mathcal{A} and Old Set \mathcal{O}
- Compute $V_{\{x_i\}}$ for all $i \in \{1, \dots, n_d\}$. Add all $\{x_i\}$ to \mathcal{A}
- While exit criteria not met:
 - Choose $\{\alpha^*\}$ from \mathcal{A} with **largest** $V_{\{\alpha\}}$
 - Move $\{\alpha^*\}$ from \mathcal{A} to \mathcal{O}
 - Add $\{\alpha'\}$ to \mathcal{A} for one additional interactions with $\{\alpha^*\}$ not in $\mathcal{A} \cup \mathcal{O}$ and compute $V_{\{\alpha'\}}$
- Stopping Criteria:
 - Capture: $\sum_{\{\alpha\} \in \mathcal{A} \cup \mathcal{O}} V_{\{\alpha\}} \geq V_{TOL}$
 - Contribution: $V_{\{\alpha^*\}} \leq V_{\{\alpha^*\}, TOL}$

#	Parameters				Variance Fraction
	x1	x2	x3	x4	
1	1	0	0	0	0.039
	0	1	0	0	0.281
	0	0	1	0	0.056
	0	0	0	1	0.055
	Accumulated		0.003		
2	1	1	0	0	0.093
	0	1	1	0	0.043
	Accumulated		0.049		
3	0	1	1	1	0.012
	Accumulated		0.061		
Remaining		0.369			

#	Parameters				Variance Fraction
	x1	x2	x3	x4	
1	1	0	0	0	0.039
	0	1	0	0	0.281
	0	0	1	0	0.056
	0	0	0	1	0.055
	Accumulated		0.003		
2	1	1	0	0	0.093
	0	1	1	0	0.043
	Accumulated		0.049		
3	0	1	1	1	0.012
	Accumulated		0.061		
4	1	0	1	0	0.125
	0	0	1	1	0.059
Accumulated		0.815			
Remaining		0.185			

#	Parameters				Variance Fraction
	x1	x2	x3	x4	
1	1	0	0	0	0.039
	0	1	0	0	0.281
	0	0	1	0	0.056
	0	0	0	1	0.055
	Accumulated		0.003		
2	1	1	0	0	0.093
	0	1	1	0	0.043
	Accumulated		0.049		
3	0	1	1	1	0.012
	Accumulated		0.061		
4	1	0	1	0	0.125
	0	0	1	1	0.059
Accumulated		0.902			
Remaining		0.098			

Provides detailed, specific, information on *which* parameters are interacting. Usually does not require high-order groups

Conclusion & Summary

Assess global sensitivity through Sobol' Main Effect, i.e. fraction of the variance due *solely* to a given parameter

Use Empirical Sobol' Sensitivity to compute indices with existing and/or limited data. Minimal assumptions needed

Extensions and Open Questions

- Error estimation
- Higher order indices
- Identification of important interactions