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DSMC

Basic ideas:
® Model gas by simulating motion of large number of particles

® Each particle represents I, .. = const real-life molecules

® Separate convection, collision and acceleration steps

® Collisions performed stochastically

® NTC/MF/Bernoulli trial collision schemes: cost linear in number of

particles

(e.g., F*, =F, [10=10x more particles—10x increase in cost)

References:
® G. A Bird, Molecular gas dynamics and the direct simulation of gas flows, 1994
® M.S. Ivanoy, S. V. Rogasinsky, Russian Journal of numerical analysis, 1988

® S K. Stefanov, SIAM Journ. Sci. Comp., 2011




Standard DSMC issues

Issues:

e Stochasticity-related (noise o 1/, /N, ):

® | ow-speed flows

® Transient flows

® Coupling with CFD
® Fixed I

num
® Trace chemical species

® Excited internal states
® High-velocity distribution function tails

-related (hard to resolve trace populations):
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Variable weight DSMC

What happens if each particle can represent a different number of
molecules/atoms/electrons?

Pros:

® Alleviates the issue of capturing trace species

® |Improves resolution of the tails (particles have lower computational
weights)

Cons:

® Either we forego exact conservation (conservation “on average” instead)
or we have to split particles during collisions

® Particle splitting—growth of the number of particles?need to merge
particles

References:
® |.D.Boyd, Journ. Thermophys. Heat Transf., 1996

® S. Rjasanow, W.Wagner, Journ. Comp. Phys., 1996
® S J. Araki,R.S. Martin, Phys. Plasmas, 2020
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Variable weight DSMC

Splitting during collisions (same species colliding):

® |f particle 1 represents N; molecules, particle 2 represents N, molecules
(and N; > N,), then during collisions only N, molecules actually collide
® Have to split particle 1 into two particles 1" and 1" with weights N,,
N; — N,, collide particles 1" and 2

N, — Nz‘$
.*A\ cplting  colisio / N
\

'\
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Particle merging

One of the (many) possible approaches
Octree merging [R. Martin, J.-L. Cambier, Journ. Comp. Phys., 2016]:

® Divide velocity space into octants

® Subdivide octants based on mass
inside

® |n each suboctant, can replace N (>2)
particles with 2 particles
(need 2 particles for conservation)

® Continue subdivision
until target # of particles is reached

® Costis O(nlogn

c,max)
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Event splitting

Outline

® Suppose we have IV, possible processes that can occur during a collision
(e.g. elastic collision, ionization reaction, vibrational transition, etc.),

and the corresponding probabilities are {pi}i\i’l
® Standard DSMC “all-or-nothing” approach: sample process type based on

N ..
1p;}, 2, and model only that collision process

® But we're doing particle splitting anyway, so what if we split particles

: N : : ..
proportionally to {p;}.*, and simulate all possible collision outcomes?

This is what we call “event splitting” (similar reasoning also be applied to
boundary conditions)

References:

® (. Oblapenko et al., submitted to Journ. Comp. Phys., 2021
® (. Oblapenko et al., Scitech 2021 Proceedings, 2021
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Standard (all-or-nothing) DSMC approach

True

>

False
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Event splitting approach
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Event splitting

Why do event splitting?
® Improve simulation of low-probability processes
® Reduce need for particle cloning, since we create more particles during a

collision step

Possible cons of the event splitting approach?
® |ncreased computational cost

1. Need to simulate IV, scattering events for each collision instead of 1
2. More particles produced—more frequent merging required

Possible workarounds/cost reduction measures:

® Perform splitting based not on specific processes, but on process groups:
e.g., don't split based on all vibrational transition reactions, but based
on total probability of a vibrational transition occurring, choose specific
transition using the standard DSMC approach
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Numerical results: 0D

® Ar/Art/e™ mixture, initialized with small molar fraction of ions and
electrons

® Accelerated by a constant electric field

® After initial transient period, gas reaches quasi-steady state (characterized
by constant ionization rate coefficient)

® Steady-state dependent only on value of reduced electric field, processes
considered, and their cross-sections

® Considered electron-argon collision processes:
® Elastic scattering
® Electron-impact ionization

® Can gather statistics for the instantaneous ionization rate coefficient

® Can compare to Bolsig+ solver
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Electron-neutral cross-sections
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® Tabular data from the BSR model [L. Pitchford et al., J. Phys. D, 2013]
® Anisotropic scattering model from [Okhrimovskyy et al., Phys. Rev. E, 2002]
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0-D results, electron number density
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E/n=50Td
—— Acceptance-rejection
—— Event splitting
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® Dotted lines: 100 particles/species
® Filled lines: 30000 particles/species
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0-D results, error and cost

E/n=50Td
—¢— Acceptance-rejection
...................... _+_ Event splitting
——=- Bolsig+ solution
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® Computational cost similar, but significant reduction in noise!
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Numerical results: 1D

® Argon-filled gap, pd = 0.3 Torr-cm
® Constant voltage drop across gap: 450V
® Cell closest to cathode seeded with small fraction of ions and electrons
® Boundary conditions
® Electrons absorbed at boundaries
® |ons neutralized at anode

® |ons hitting cathode emit an electron with probability y,, = 0.1
® Electrons accelerated across gap cause ionization—produced ions create
more electrons at cathode—breakdown at sufficiently high enough voltage
® Breakdown characterized by exponential rise in current density at anode
® Event splitting can be performed for
® Electron-neutral collisions
® |ons hitting cathode
® Both collisions and emission
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Numerical results: 1D
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Numerical results: 1D
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® Significant reduction in noise whilst maintaining similar computational cost

m—
% -
&Y }
_ . ¥ ODE
The University of Texas at Austin —ComputetionalFluid Physics Lab

18

Z




Numerical results: 1D, PIC-DSMC

® Argon-filled gap, pd = 0.5 Torr-cm

® Constant voltage drop across gap: 200V

® Fully coupled PIC-DSMC simulation

® Thomson's algorithm used for Poisson equation solver
® \elocity Verlet used for particle movement
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Numerical results: 1D, PIC-DSMC
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Numerical results: 1D, PIC-DSMC
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Conclusions

® New collision scheme proposed for variable-weight DSMC simulations
® Reduces variance in modeling of low-probability processes

® For test case without a coupled PIC solver, provides significant benefits in
terms of computational cost-vs-noise

® For test case with a couple PIC solver, provides an advantage in terms of
noise vs average number of particles per cell

® Further extensions may include splitting on probability of grouped
processes (i.e. electronic excitation), as well improvement of anisotropic

scattering
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