This paper describes obijective technical results and analysis. Any subjective views or opinions that might/be expressed|in SAND2021-13623C
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Analysis and Visualization with
Ovis Web Services (OWS

Tutorial

LDMSCON - 10/28/2021
Ben Schwaller & Nick Tucker

- — — — @ciiEroy NSA

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly.owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration/under contract' DE-NA0003525.

2 | Presentation Outline

OWS Part 1: OWS Part 2:
> Goals and Overview of the OWS > Analysis Backend
Infrastructure

> Django Application Design Choices
o Grafana Query Handling

o Settings for Customized Site Usage
o Calling Analysis Modules

o Formatting DataFrames for Grafana

> Basic Grafana Usage
> Basic Navigation
> Dashboard Time Selection
o Creating Grafana Dashboards
o Creating Queries and Calling Analyses

> Visualization Best Practices > Analysis Modules
> Drill-down Dashboards o Python Class Instantiation

DSOS Python API
Performance Considerations
Parallelization Today
Parallelization Tomorrow

o

o Performance Considerations
o Security Considerations

o

o

o

Ben’'s talk about OWS at Sandia

> What things has Sandia found useful to
show?

OWS Part 1: Goals and
Overview

+ I Challenges in HPC Monitoring Analysis

HPC centers can produce TBs of complex data each day
o A single 1500-node HPC cluster at Sandia produces 1.5 TB of time-series data each day

o Sampled at 1Hz to give appropriate granularity

o Data is high-dimensional (~*5000 metrics)

Running even basic analyses across all data for all time can rapidly create high computational
and storage needs

OWS infrastructure needs to support a variety of use cases ranging from system administrators
who want to see high-level HPC center-centric views to developers who want fine-grained
details about performance characteristics of their job

s | Goals for HPC Monitoring Analysis and Visualization
Tools

To meet the challenges in HPC monitoring and provide usability we had several goals:
o Efficiently handle large and complex data format of HPC monitoring data
° Enable drill-down from center-level to function-level
o Allow for users to easily create and share their own analyses and visualizations

We accomplished these goals by:

o Creating a system for in-query analyses so only user-requested analyses happen rather than always
analyzing HPC data and storing results to a separate database

o Saves significant compute and storage resources at the cost of increased query times
° The “always analyze” use case is still available but is not the default
o Allows for analyses to be easily changed without needing to recompute and store results
o Users can easily add new analyses to be used in-query
o Using open-source front-end visualization which enables easy visualization creation and sharing

o Using DSOS database to support flexible querying and data management of HPC monitoring data

6 ‘ OWS Infrastructure Overview

Queries pass through several software objects to return
derived metrics from a DSOS database to a web server

Note that a python module can be called along the
pipeline

Part 2 will cover this in more detail

Client Machine

Grafana
Server

DSOS
DataSource

Django App:

Sosdb-
HTTP Ul/Grafana

HTTP
4
Apach e DataFrame

JSON
JSON

Formatter
Modules

Monitoring Server

Name
/Args

Data
Frame

50sDB Query DataFrame

Python
Analysis
Module

DSOS
Database

OWS Part 1: Basic Grafana
Usage

s I Why Grafana?

Grafana is a widely used open source GitHub project designed to
enable querying, visualization, and alerting on a wide variety of data
sources.

o Open-source allows us to create custom data sources, visualizations, and
backend interface as needed

o Also provides a rich assortment of database and visualization plugins

Grafana is being used across the HPC monitoring community
o Creates a common interface for collaboration

Focuses on filtering by time which is useful for HPC monitoring time-

series data G ra fa n d

Grafana Dashboard Makeup

Grafana is made of dashboards with panels
° Each dashboards contains some set of panels which can share common parts of a query, such as the time range

Add Panel / Save
Dashboard Name Dashboard / Settings

r———
+

System Open/Close/Stat Rate System Read Rate

+

ML:Panel1

oo
oo

P

iy

]

500 ops

%0 MB/5
||||| || ||| ||||Im h |l| || || |II|I Illllllll‘”l ‘Il”ll"l‘|l“ ‘llllllll .
[| II |Il n sxn=000_00 M "1l
10:35 10:40 10:45 10:50 10:55 1100

10005 1035 10:40 10:45 1050 1055 11:00 10:05

impule = login pule — login

0 I Grafana Navigation

Left side bar of Grafana provides several options for navigation. Some have several sub options
but their main purposes are:

o Grafana logo: navigate to the Home page

(¢]

Magnifying glass: search for dashboards by name

(¢]

Plus sign: add a new dashboard or dashboard folder
o Compass: explore database through queries

(¢]

Bell: manage alerts

(¢]

Cog: control settings for data sources, plugins, and users

(¢]

Shield: server administration tools which show security settings, usage statistics, and more

11

Grafana Time Selection

October 2021

Grafana’s time picker is at the top of every
dashboard besides Home

The time range set is automatically included
the queries for all panels in the dashboard

The time range can be picked using a relative
time range or an absolute time range

Users can also select a time range by dragging
their mouse across a time-series plot

Absolute time range

From

now-1h|

To

now

Apply time range
Recently used absolute ranges
2021-10-20 13:14:59 to 2021-10-20 13:
2021-10-14 13:00:00 to 2021-10-1413:
2021-10-14 13:00:00 to 2021-10-1413:

2021-10-14 13:00:00 to 2021-10-1413:

Browser Time

Relative time ranges
Last 5 minutes
Last 15 minutes
Last 30 minutes
Last 1 hour
Last 3 hours
Last 6 hours
Last 12 hours
Last 24 hours
Last 2 days
Last 7 days

UTC-06:00 Change time zone

2 I Creating Grafana Dashboards

a8 Mew dashboard

Dashboards are created using the plus tool on
the left side navigation bar

Panels can be added using the add panel
button at the top right

Dashboards can also be imported from an
open-source grafana.com ID, URL, or from an
existing dashboard’s JSON

o A dashboard’s JSON can be
found in the dashboard settings

o The dashboard ID must be 2 . [T A0
changed if copying from an : |
eXiSting daShboa rd e " i o B _ Import via panel json

JSON Madel
’ 1, Upload JSON file

13 ‘ Creating Queries within Panels

Panel Title DSosDS Query inspector
® View
W & Edit

=g Share
Explore analysis kokkosProgressDS0S

Inspect N, ' i
@ Insp b time_series

@ More...
eclipse kokkos_appmon
T Remove
*
10:00 11:00 12:00 13:.00 14:.00 15:00
job_id == SJobID

A-zeries

Right clicking on a panel and hitting edit will take you to the panel’s query editor
Here we can create queries for a DSOS database and, if desired, run an analysis module in-line

Select DSosDS (DSOS data source) from the available data sources to start]

4 I DSOS Data Source Query Parameters

Query Type: either ‘metrics’ or ‘analysis’
o Metrics will perform a raw query on the DSOS database using the given Grafana parameters
o Analysis will call the chosen analysis module in the next parameter

Analysis: the python analysis module to be called

Query Format: time_series, table, or heatmap
o Specifies the visualization JSON format for Grafana compatibility

o NOTE: time_series expects timestamp to be in the returned data

Container: the path to the DSOS container
o Simple changes can be made on the backend so the full path is not needed

Schema: LDMS schema to query
Metric: comma-separated list of metrics within the chosen schema to query
Extra Parameters: other arguments to be sent to the analysis module

Filters: comma-separated list of additional parameters to be included in the DSOS query
° E.g.job_id > 0,component_id ==

s I Changing Panel Visualizations

Panel visualizations can be modified while editing the panel using the
options panel on the right side

The panel name, visualization type, visualization options, and overrides
can all be adjusted in this view

° Visualization types and options are too numerous to cover entirely here
although the Grafana documentation on these is pretty good

o https://grafana.com/docs/grafana/latest/visualizations/

° Field overrides are useful for adjusting the names of columns in tables or
adding data links to certain cells

Panel Field

Settings

Panel title

Panel Title

Description

Visualization

Heatmap

Overrides

Stat

12.4
v

GETMETT]

https://grafana.com/docs/grafana/latest/visualizations/
https://grafana.com/docs/grafana/latest/visualizations/

16 1 Dashboard Variables

We can add variables that can be altered
by dashboards users and used by
Grafana queries

° Go to dashboard settings and select
variables tt General

o Add a variable O Annotations

Variables : New

| Variables

Wide variety of variable types. The most
commonly used ones in Sandia’s ¢ Links
infrastructure are: ¢ JSON Model

o Text box (allows users to type in a value)

o Custom (allows creator to set a variety of

. . . Save dashboard
optlons using a comma-separated |ISt)

Save As...

Variables can be referenced using
SNAME in queries

Additional variables are always available
such as Sto and Sfrom which specify the
time range

OWS Part 1: Visualization Best
Practices

18

Invest in the Home Dashboard

Users first view of the Grafana

dashboard will be the Home
dashboard

o Users will also commonly navigate &
back to Home using the Grafana
logo

Configuring the Home dashboard
with the already available panels
of recent and starred allow users
to see what they care about most

Providing commonly used sets of
dashboards is also useful

MOTD-esque text panels can be
an easy way to disseminate
information to users

Job Lustre Bytes RAW

Job Lustre Bytes R/W Breakout

Job Lustre File Ops

Job Lustre File Ops Breakout

Job Memaory Usage

Tutorial Materials

v I High-Level vs Low-Level

To incorporate users and admins alike, Sandia separated the dashboards into high-level
(General) and low-level (Breakdown) folders

> Also added panels with links to these dashboards in the Home dashboard

Idea is to allow admins to start at center or cluster level views and drill-down into job-level
views whereas users can go immediately to their job-level view

More about specific examples in Ben’s Sandia OWS talk!

20 I Drill-down Dashboards

Configure high-level dashboards to be able to flow to low-level
dashboards using links U —

o Create links either in table cell values or in text panels

Create links that incorporate the current dashboard’s time range
and custom variables
° https://mygrafana.com/d/<DASHBOARD ID>/<DASHBOARD_NAME>? Flelds with name
orgld=1&to=5{ _to}&from=${ from} name

Data links

Can pass table cell values and dashboard values through links too

o https://mygrafana.com/d/<DASHBOARD ID>/<DASHBOARD_ NAME>? L
orgld=1&var-name=${__value.raw}&var-JobID=SJobID

+ Add link

21 | Performance Considerations

Make the purpose of each dashboard specific to limit the total number of panels on a
dashboard

° More panels makes the dashboard busier and creates more query overhead

° E.g. a comprehensive Lustre dashboard that shows all clusters and job performances on the same table
could be burdensome

Make high-level analyses simplistic as they will likely be run over a larger time-range or a larger
span of cluster nodes

Make default time-ranges on dashboards reasonable for the accompanying analyses

2 | Security Considerations and Future Security Work

Grafana supports a wide-variety of authentication options including LDAP

Can restrict sets of dashboards by Grafana “role”
> 3 role levels of admin, editor, and viewer
o Using LDAP, can set user roles by metagroup
o This is done in the Idap.toml file which controls the Grafana server’s LDAP configuration

Current infrastructure does not support restricting users to only be able to view some data
o DSOS user permission capabilities will enable this use case

OWS Part 2: Analysis
Backend

25 | In-depth Architecture Overview

. Client Machine
Ovis Web Services is comprised of several different
applications
o sosdb-ui 4
> The original OWS web app. Raw metric data and filtering along with LDMS HTTP
monitoring. Mostly deprecated, and planned to collapse sosdb-grafana into i
sosdb-ui Grafana Monitoring Server
o sosdb-grafana Server
> Provides Grafana query handling for D/SOS DSOS ';'Zme
rgs
° NnUMSOoS DataSource Django App: Python
- Dat i
o Provides the JSON formatters used by sosdb-grafana HTTP Ullsgigtf)ana A&‘;ﬁ:
° Provides statistical gnalysis functionality to perform on DataFrames as well HTTP ry
as pluggable analysis modules for Grafana DataFrame 150N SosDB Query . o
o Distributed Scalable Object Store (DSOS)
o Highly indexed database that provides fast query times across large JSON
databases Formatter DSOS
. Apache Modules Database
o Hosts the Django framework

OWS does not currently support any other database’s
aside from DSOS

26 I Django Application Design Choices

The Ovis Web Services suite follows the fundamental goal of Django’s stack

Loose coupling
o The various layers of OWS don’t “know” about each other unless absolutely necessary

Less code

o OWS follows the DRY principle, and has base classes for requests that use redundant code, e.g. the
analysis modules

Quick Development

o Large clusters today are inherently unique in their infrastructure, and admins must be able to finely
tune custom analysis to their own unique specifications.

o OWS was designed with this in mind, with plug-ability as a primary objective.

o OWS provides raw metric querying, basic analysis modules, as well as a framework of basic templates
for custom python3 analysis module development.

o With this approach users can create exactly the analysis needed for their unique situation in an easy to
read language.

27 ‘ Grafana Query Handling

Client Machine

Query steps:

o A client makes a request on the Grafana client server HTTP

° The request is sent to the apache server running OWS Mortorng S
onitoring >erver
° The apache server handles the request and makes the Grafana

. . . Server
appropriate queries to the relevant containers or 5505 Name
; /Args
analysis modules DataSource Diango App: : Python
o If an analysis module is specified, the module is T ol e ’;::C:VTE
. u
dynamically loaded in the Django application at the HTTP Y
time of the query, following one the fundamental DataFrame S0sDB Query . taFrame
Django design goals of “loose coupling”
JSON
o The analysis module (or raw metric query) then queries Formatter DSOS

the specified container on the back-end and returned Modules Database
in a pandas DataFrame object

o The data is then formatted into a JSON object by
Django, and returned to the client

22 I OWS Configuration

settings.py is the chief OWS configuration file
° |ts template is installed into /<install_dir>/sosgui/settings.py.example by default
° Ensure to change file name to settings.py before starting apache

A default configuration file is included on installation with many of the relevant variables
preconfigured.

Key settings for your system:
o ALLOWED_HOSTS = [‘localhost’,10.10.0.17]

o Determines the hosts that Django will allow to connect

o DSOS_CONF = “<path_to_dsos.conf>”
° This is the path to the dsos.conf file that defines your DSOS cluster for OWS

o DSOS_ROOQOT = “<path_to_dsos_container>”"

° The location of the physical container. With DSOS, this container can be on any node(s) in the cluster
o LOG_FILE = “<path_to_install_dir/log_file.txt>"

o ODS_LOG_FILE = “<path_to_install_dir/ods_log.txt>"
o This is a log file for D/SOS

29 I OWS Setup

Create users for the Django application

cd /<install_dir>

python3 manage.py migrate

python3 manage.py migrate —run-syncdb

python3 manage.py createsuperuser

Follow prompt to create admin user

Can create other users as well, but single admin user is all that’s needed for OWS to function

Once you have a user database create, your apache configuration in order, and your
sosgui/settings.py file correctly configured, you can start apache.

Apache will begin serving requests from Grafana at the configured address
<apache>:<port>/grafana/

0 | Calling Analysis Modules

Analysis modules are imported on a by request basis

Analysis modules by design are part of the numsos module.
> They are installed into <numsos_install_path>/lib/python3.6/site-packages/graf analysis

° To use custom analysis modules, simply drop your custom module into the installation directory listed
above.

° You will then be able to reference your analysis module from grafana by it’s module name
o e.g. if python file is compMinMeanMax.py, Analysis Module would be “compMinMeanMax”

o Analysis modules can also be used outside of Grafana, and be fed to any application needed for your
use case that accepts pandas DataFrames.

3 | Formatting DataFrames for Grafana

Numsos currently has three formatters for Grafana

Time_series
o Returns time series data in the format:
° [metric_value, posix_time_stamp]

Heatmap

° Bins heatmap data on the server side so that Grafana doesn’t spend a large amount of time parsing the
returned time_series data into bins

Table
o Simply returns the data in a JSON format without adding or changing values

OWS Part 2: Analysis
Module

Python Class Instantiation

dsos ~n|11THLAna1u 15)z
init__ (self, co start, end, schema='job_id', maxDataPoints=4096):
HPHILJ 1n1t __lcont, start, end, schema, 100880¢

def get data(self, metrics, filters=[],params=None):

Init sets up class parameters with a super "V sel = nselect v + join(metrics) + * fron * + str(self.schema)
. . 5 f'select {self.schema}
call, most importantly setting up self.query where claus EH: get where(filters)
. . . order = 'time_job c
o Self.query is set in the Analysis class template orderby="order by + order
as Sos.SqlQuery(cont, 100000000) e e aetyerero ause)

. o o nrint(E} -d
maxDataPoints is a Grafana variable sent return res
with every query to indicate the maximum e b e L ays exe. info()

print(s TILEJ+ +stric.tb_lineno))

amount of points the current screen

resolution allows for in the panel
om sosdb import Sos
om grafanaFormatter import DataFormatter
om time_series formatter import time_series formatter
1 dsosTemplate import dsosTemplate

SEss Sos.Session{"/opt/ovis/eclipse/conf
cont storage/eclipse/sos/ldms-data

cont sess.open{cont)
model = dsosTemplate(cont, time.time()-200, time.time(),
Ihchemq- eminto', maxDataPoints=4096)
¥ = model.get_data([Active'])
fmt = time series formatter(x)
= fmt.ret_json()
print{x)

14 1 DSOS Python AP

Sos.SqglQuery is an object for instantiating DSOS queries
° Object takes two variables for instantiation:
o Container path
° Query size
o E.g. query = Sos.SqlQuery(‘/home/me/database’, 1000)

Sos.SqlQuery.select() sets the filter parameters for the query
o Uses Sql-like syntax described in DSOS tutorial

o E.g. query.select(‘select Active from meminfo where job_id == 101’)

Created an analysis class function to parse the filters and add time range filters called get_where
o E.g where_clause = self.get_where(filters)

So0s.SqlSQuery.next() will get up to <query size> records that match the query and returns a pandas
DataFrame

° E.g. df = query.next()

Created an analysis class function to get all data matching the query called get_all data
° Provide the query object as a parameter
o E.g. df = self.get_all _data(query)

5 | Let’'s make some analyses!

1. Show a time-series of a single metric
2. Show a time-series of a single metric averaged over all nodes
2. Show a time-series of the rate of a single metric cumulated over all nodes

3. Show a table of the top 5 jobs in terms of the average value of a metric

36 ‘ Performance Considerations

Based on experience, the query and data formatting takes more time than the analysis
> Moving to clustering, machine learning models, higher level statistics would like change this balance
o Data rollover and partitioning will likely help with query performance

Be judicious in what data to query and filter as much as possible where applicable
o Choosing the best indices for the query is critical

o |.e. searching for a specific job’s data is fastest using an index based primarily on job_id
> Non-job or component specific queries should use an index based primarily on timestamp

7 | Parallelization Today / Tomorrow

The OWS infrastructure is currently parallelized through DSOS queries
o We suggest distributing the LDMS data across multiple sources

o Python API calls to DSOS database distributed the query across the containers DSOS encapsulates and
performs independent parallel queries

Future parallelization techniques could include:

o Creating a load balancing Apache server to distribute multiple queries from users / single dashboard
across analysis cluster

o Parallelizing JSON formatter modules
o Creating parallel python analysis code

