
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Analysis and Visualization with
Ovis Web Services (OWS)

Tutorial

Ben Schwal ler & Nick Tucker
 L D M S C O N - 1 0 / 2 8 / 2 0 2 1

SAND2021-13623CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Presentation Outline2

 OWS Part 1:
◦ Goals and Overview of the OWS

Infrastructure
◦ Basic Grafana Usage

◦ Basic Navigation
◦ Dashboard Time Selection
◦ Creating Grafana Dashboards
◦ Creating Queries and Calling Analyses

◦ Visualization Best Practices
◦ Drill-down Dashboards
◦ Performance Considerations
◦ Security Considerations

 Ben’s talk about OWS at Sandia
◦ What things has Sandia found useful to

show?

 OWS Part 2:
◦ Analysis Backend

◦ Django Application Design Choices
◦ Grafana Query Handling
◦ Settings for Customized Site Usage
◦ Calling Analysis Modules
◦ Formatting DataFrames for Grafana

◦ Analysis Modules
◦ Python Class Instantiation
◦ DSOS Python API
◦ Performance Considerations
◦ Parallelization Today
◦ Parallelization Tomorrow

OWS Part 1: Goals and
Overview

3

Challenges in HPC Monitoring Analysis

 HPC centers can produce TBs of complex data each day
◦ A single 1500-node HPC cluster at Sandia produces 1.5 TB of time-series data each day

◦ Sampled at 1Hz to give appropriate granularity

◦ Data is high-dimensional (~5000 metrics)

 Running even basic analyses across all data for all time can rapidly create high computational
and storage needs

 OWS infrastructure needs to support a variety of use cases ranging from system administrators
who want to see high-level HPC center-centric views to developers who want fine-grained
details about performance characteristics of their job

4

Goals for HPC Monitoring Analysis and Visualization
Tools

 To meet the challenges in HPC monitoring and provide usability we had several goals:
◦ Efficiently handle large and complex data format of HPC monitoring data
◦ Enable drill-down from center-level to function-level
◦ Allow for users to easily create and share their own analyses and visualizations

 We accomplished these goals by:
◦ Creating a system for in-query analyses so only user-requested analyses happen rather than always

analyzing HPC data and storing results to a separate database
◦ Saves significant compute and storage resources at the cost of increased query times
◦ The “always analyze” use case is still available but is not the default
◦ Allows for analyses to be easily changed without needing to recompute and store results
◦ Users can easily add new analyses to be used in-query

◦ Using open-source front-end visualization which enables easy visualization creation and sharing
◦ Using DSOS database to support flexible querying and data management of HPC monitoring data

5

OWS Infrastructure Overview

 Queries pass through several software objects to return
derived metrics from a DSOS database to a web server

 Note that a python module can be called along the
pipeline

 Part 2 will cover this in more detail

6

Name
/Args

Data
Frame

Web Browser

Client Machine

Grafana
Server

DSOS
DataSource

Monitoring Server

Apache

DSOS
Database

Python
Analysis
Module

JSON
Formatter
Modules

HTTP

HTTP
HTTP

Django App:
Sosdb-

UI/Grafana

JSONDataFrame DataFrame
SosDB Query

OWS Part 1: Basic Grafana
Usage

7

Why Grafana?

 Grafana is a widely used open source GitHub project designed to
enable querying, visualization, and alerting on a wide variety of data
sources.

◦ Open-source allows us to create custom data sources, visualizations, and
backend interface as needed

◦ Also provides a rich assortment of database and visualization plugins

 Grafana is being used across the HPC monitoring community
◦ Creates a common interface for collaboration

 Focuses on filtering by time which is useful for HPC monitoring time-
series data

8

Grafana Dashboard Makeup

 Grafana is made of dashboards with panels
◦ Each dashboards contains some set of panels which can share common parts of a query, such as the time range

9

Panel 1 Panel 2

Time Picker

Add Panel / Save
Dashboard / Settings

Dashboard Variables

Dashboard Name

Grafana Navigation

 Left side bar of Grafana provides several options for navigation. Some have several sub options
but their main purposes are:

◦ Grafana logo: navigate to the Home page
◦ Magnifying glass: search for dashboards by name
◦ Plus sign: add a new dashboard or dashboard folder
◦ Compass: explore database through queries
◦ Bell: manage alerts
◦ Cog: control settings for data sources, plugins, and users
◦ Shield: server administration tools which show security settings, usage statistics, and more

10

Grafana Time Selection

 Grafana’s time picker is at the top of every
dashboard besides Home

 The time range set is automatically included
the queries for all panels in the dashboard

 The time range can be picked using a relative
time range or an absolute time range

 Users can also select a time range by dragging
their mouse across a time-series plot

11

Creating Grafana Dashboards

 Dashboards are created using the plus tool on
the left side navigation bar

 Panels can be added using the add panel
button at the top right

 Dashboards can also be imported from an
open-source grafana.com ID, URL, or from an
existing dashboard’s JSON

12

◦ A dashboard’s JSON can be
found in the dashboard settings

◦ The dashboard ID must be
changed if copying from an
existing dashboard

Creating Queries within Panels

 Right clicking on a panel and hitting edit will take you to the panel’s query editor

 Here we can create queries for a DSOS database and, if desired, run an analysis module in-line

 Select DSosDS (DSOS data source) from the available data sources to start

13

DSOS Data Source Query Parameters

 Query Type: either ‘metrics’ or ‘analysis’
◦ Metrics will perform a raw query on the DSOS database using the given Grafana parameters
◦ Analysis will call the chosen analysis module in the next parameter

 Analysis: the python analysis module to be called

 Query Format: time_series, table, or heatmap
◦ Specifies the visualization JSON format for Grafana compatibility
◦ NOTE: time_series expects timestamp to be in the returned data

 Container: the path to the DSOS container
◦ Simple changes can be made on the backend so the full path is not needed

 Schema: LDMS schema to query

 Metric: comma-separated list of metrics within the chosen schema to query

 Extra Parameters: other arguments to be sent to the analysis module

 Filters: comma-separated list of additional parameters to be included in the DSOS query
◦ E.g. job_id > 0,component_id == 3

14

Changing Panel Visualizations

 Panel visualizations can be modified while editing the panel using the
options panel on the right side

 The panel name, visualization type, visualization options, and overrides
can all be adjusted in this view

◦ Visualization types and options are too numerous to cover entirely here
although the Grafana documentation on these is pretty good
◦ https://grafana.com/docs/grafana/latest/visualizations/

◦ Field overrides are useful for adjusting the names of columns in tables or
adding data links to certain cells

15

https://grafana.com/docs/grafana/latest/visualizations/
https://grafana.com/docs/grafana/latest/visualizations/

Dashboard Variables

 We can add variables that can be altered
by dashboards users and used by
Grafana queries

◦ Go to dashboard settings and select
variables

◦ Add a variable

 Wide variety of variable types. The most
commonly used ones in Sandia’s
infrastructure are:

◦ Text box (allows users to type in a value)
◦ Custom (allows creator to set a variety of

options using a comma-separated list)

 Variables can be referenced using
$NAME in queries

 Additional variables are always available
such as $to and $from which specify the
time range

16

OWS Part 1: Visualization Best
Practices

17

Invest in the Home Dashboard

 Users first view of the Grafana
dashboard will be the Home
dashboard

◦ Users will also commonly navigate
back to Home using the Grafana
logo

 Configuring the Home dashboard
with the already available panels
of recent and starred allow users
to see what they care about most

 Providing commonly used sets of
dashboards is also useful

 MOTD-esque text panels can be
an easy way to disseminate
information to users

18

High-Level vs Low-Level

 To incorporate users and admins alike, Sandia separated the dashboards into high-level
(General) and low-level (Breakdown) folders

◦ Also added panels with links to these dashboards in the Home dashboard

 Idea is to allow admins to start at center or cluster level views and drill-down into job-level
views whereas users can go immediately to their job-level view

 More about specific examples in Ben’s Sandia OWS talk!

19

Drill-down Dashboards

 Configure high-level dashboards to be able to flow to low-level
dashboards using links

◦ Create links either in table cell values or in text panels

 Create links that incorporate the current dashboard’s time range
and custom variables

◦ https://mygrafana.com/d/<DASHBOARD_ID>/<DASHBOARD_NAME>?
orgId=1&to=${__to}&from=${__from}

 Can pass table cell values and dashboard values through links too
◦ https://mygrafana.com/d/<DASHBOARD_ID>/<DASHBOARD_NAME>?

orgId=1&var-name=${__value.raw}&var-JobID=$JobID

20

Performance Considerations

 Make the purpose of each dashboard specific to limit the total number of panels on a
dashboard

◦ More panels makes the dashboard busier and creates more query overhead
◦ E.g. a comprehensive Lustre dashboard that shows all clusters and job performances on the same table

could be burdensome

 Make high-level analyses simplistic as they will likely be run over a larger time-range or a larger
span of cluster nodes

 Make default time-ranges on dashboards reasonable for the accompanying analyses

21

Security Considerations and Future Security Work

 Grafana supports a wide-variety of authentication options including LDAP

 Can restrict sets of dashboards by Grafana “role”
◦ 3 role levels of admin, editor, and viewer
◦ Using LDAP, can set user roles by metagroup
◦ This is done in the ldap.toml file which controls the Grafana server’s LDAP configuration

 Current infrastructure does not support restricting users to only be able to view some data
◦ DSOS user permission capabilities will enable this use case

22

Questions?

23

OWS Part 2: Analysis
Backend

24

In-depth Architecture Overview

 Ovis Web Services is comprised of several different
applications

◦ sosdb-ui
◦ The original OWS web app. Raw metric data and filtering along with LDMS

monitoring. Mostly deprecated, and planned to collapse sosdb-grafana into
sosdb-ui

◦ sosdb-grafana
◦ Provides Grafana query handling for D/SOS

◦ numsos
◦ Provides the JSON formatters used by sosdb-grafana
◦ Provides statistical analysis functionality to perform on DataFrames as well

as pluggable analysis modules for Grafana

◦ Distributed Scalable Object Store (DSOS)
◦ Highly indexed database that provides fast query times across large

databases

◦ Apache
◦ Hosts the Django framework

 OWS does not currently support any other database’s
aside from DSOS

25

Name
/Args

Data
Frame

Web Browser

Client Machine

Grafana
Server

DSOS
DataSource

Monitoring Server

Apache

DSOS
Database

Python
Analysis
Module

JSON
Formatter
Modules

HTTP

HTTP
HTTP

Django App:
Sosdb-

UI/Grafana

JSONDataFrame DataFrame
SosDB Query

Django Application Design Choices

 The Ovis Web Services suite follows the fundamental goal of Django’s stack

 Loose coupling
◦ The various layers of OWS don’t “know” about each other unless absolutely necessary

 Less code
◦ OWS follows the DRY principle, and has base classes for requests that use redundant code, e.g. the

analysis modules

 Quick Development
◦ Large clusters today are inherently unique in their infrastructure, and admins must be able to finely

tune custom analysis to their own unique specifications.
◦ OWS was designed with this in mind, with plug-ability as a primary objective.
◦ OWS provides raw metric querying, basic analysis modules, as well as a framework of basic templates

for custom python3 analysis module development.
◦ With this approach users can create exactly the analysis needed for their unique situation in an easy to

read language.

26

Grafana Query Handling

 Query steps:
◦ A client makes a request on the Grafana client server
◦ The request is sent to the apache server running OWS
◦ The apache server handles the request and makes the

appropriate queries to the relevant containers or
analysis modules

◦ If an analysis module is specified, the module is
dynamically loaded in the Django application at the
time of the query, following one the fundamental
Django design goals of “loose coupling”

◦ The analysis module (or raw metric query) then queries
the specified container on the back-end and returned
in a pandas DataFrame object

◦ The data is then formatted into a JSON object by
Django, and returned to the client

27

Name
/Args

Data
Frame

Web Browser

Client Machine

Grafana
Server

DSOS
DataSource

Monitoring Server

Apache

DSOS
Database

Python
Analysis
Module

JSON
Formatter
Modules

HTTP

HTTP
HTTP

Django App:
Sosdb-Grafana

JSONDataFrame DataFrame
SosDB Query

OWS Configuration

 settings.py is the chief OWS configuration file
◦ Its template is installed into /<install_dir>/sosgui/settings.py.example by default
◦ Ensure to change file name to settings.py before starting apache

 A default configuration file is included on installation with many of the relevant variables
preconfigured.

 Key settings for your system:
◦ ALLOWED_HOSTS = [‘localhost’,‘10.10.0.1’]

◦ Determines the hosts that Django will allow to connect

◦ DSOS_CONF = “<path_to_dsos.conf>”
◦ This is the path to the dsos.conf file that defines your DSOS cluster for OWS

◦ DSOS_ROOT = “<path_to_dsos_container>”
◦ The location of the physical container. With DSOS, this container can be on any node(s) in the cluster

◦ LOG_FILE = “<path_to_install_dir/log_file.txt>”
◦ ODS_LOG_FILE = “<path_to_install_dir/ods_log.txt>”

◦ This is a log file for D/SOS

28

OWS Setup

 Create users for the Django application

 cd /<install_dir>

 python3 manage.py migrate

 python3 manage.py migrate –run-syncdb

 python3 manage.py createsuperuser

 Follow prompt to create admin user

 Can create other users as well, but single admin user is all that’s needed for OWS to function

 Once you have a user database create, your apache configuration in order, and your
sosgui/settings.py file correctly configured, you can start apache.

 Apache will begin serving requests from Grafana at the configured address
<apache>:<port>/grafana/

29

Calling Analysis Modules

 Analysis modules are imported on a by request basis

 Analysis modules by design are part of the numsos module.
◦ They are installed into <numsos_install_path>/lib/python3.6/site-packages/graf_analysis
◦ To use custom analysis modules, simply drop your custom module into the installation directory listed

above.
◦ You will then be able to reference your analysis module from grafana by it’s module name

◦ e.g. if python file is compMinMeanMax.py, Analysis Module would be “compMinMeanMax”

◦ Analysis modules can also be used outside of Grafana, and be fed to any application needed for your
use case that accepts pandas DataFrames.

30

Formatting DataFrames for Grafana

 Numsos currently has three formatters for Grafana

 Time_series
◦ Returns time series data in the format:
◦ [metric_value, posix_time_stamp]

 Heatmap
◦ Bins heatmap data on the server side so that Grafana doesn’t spend a large amount of time parsing the

returned time_series data into bins

 Table
◦ Simply returns the data in a JSON format without adding or changing values

31

OWS Part 2: Analysis
Module

32

Python Class Instantiation

 Init sets up class parameters with a super
call, most importantly setting up self.query

◦ Self.query is set in the Analysis class template
as Sos.SqlQuery(cont, 10000000)

 maxDataPoints is a Grafana variable sent
with every query to indicate the maximum
amount of points the current screen
resolution allows for in the panel

33

DSOS Python API
 Sos.SqlQuery is an object for instantiating DSOS queries

◦ Object takes two variables for instantiation:
◦ Container path
◦ Query size
◦ E.g. query = Sos.SqlQuery(‘/home/me/database’, 1000)

 Sos.SqlQuery.select() sets the filter parameters for the query
◦ Uses Sql-like syntax described in DSOS tutorial
◦ E.g. query.select(‘select Active from meminfo where job_id == 101’)

 Created an analysis class function to parse the filters and add time range filters called get_where
◦ E.g where_clause = self.get_where(filters)

 Sos.SqlSQuery.next() will get up to <query size> records that match the query and returns a pandas
DataFrame

◦ E.g. df = query.next()

 Created an analysis class function to get all data matching the query called get_all_data
◦ Provide the query object as a parameter
◦ E.g. df = self.get_all_data(query)

34

Let’s make some analyses!

 1. Show a time-series of a single metric

 2. Show a time-series of a single metric averaged over all nodes

 2. Show a time-series of the rate of a single metric cumulated over all nodes

 3. Show a table of the top 5 jobs in terms of the average value of a metric

35

Performance Considerations

 Based on experience, the query and data formatting takes more time than the analysis
◦ Moving to clustering, machine learning models, higher level statistics would like change this balance
◦ Data rollover and partitioning will likely help with query performance

 Be judicious in what data to query and filter as much as possible where applicable
◦ Choosing the best indices for the query is critical

◦ I.e. searching for a specific job’s data is fastest using an index based primarily on job_id
◦ Non-job or component specific queries should use an index based primarily on timestamp

36

Parallelization Today / Tomorrow

 The OWS infrastructure is currently parallelized through DSOS queries
◦ We suggest distributing the LDMS data across multiple sources
◦ Python API calls to DSOS database distributed the query across the containers DSOS encapsulates and

performs independent parallel queries

 Future parallelization techniques could include:
◦ Creating a load balancing Apache server to distribute multiple queries from users / single dashboard

across analysis cluster
◦ Parallelizing JSON formatter modules
◦ Creating parallel python analysis code

37

Questions?

38

