
Diagnostic Tools for Dynamic Models of 
Chemical Process Systems in Pyomo.DAE

Robert Parker 1, Bethany Nicholson 2, John Siirola 2, Lorenz Biegler 1

1 Carnegie Mellon University
2 Sandia National Laboratories

November 7, 2021
AIChE Annual Meeting

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned 
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. 

SAND2021-14194CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



Motivation: Dynamic optimization is not easy

2

Have a working steady state model

Add differential equations to make the model dynamic

Fix initial conditions and inputs

Solve square problem (simulation) as initialization

Unfix inputs, add objective function

Dynamic optimization problem fails to solve

We would like to know if we have made a mistake



A dynamic model is one in which many variables and 
constraints are indexed by time

3

Pyomo DAE provides:
• DerivativeVar
• ContinuousSet (time)
• Discretization equations

Many variables and equations 
are indexed by time

model.temperature[t]
model.concentration[t, “CO2”]

Fundamental operations:
• Get all variables and constraints at a point in time
• Find “the same” variable at different points in time

model.concentration[t, “CO2”] = model.concentration[t0, “CO2”]



Pyomo models are trees of blocks

4
model.flowsheet.Compressor.Thermo

Blocks can represent:
• Unit models
• Thermodynamic models
• Scenarios
• Time periods

Blocks are useful for:
• Abstraction
• Namespace organization
• Modular model construction
• Programmatic model construction

model

flowsheet

Compressor

SolidPhaseGasPhase

Thermo ThermoReactions

Reactor

Thermo



Time index may appear at any level of the model tree

5
model.block[t0].temp

model.conc[t0, “CO2”]

To identify variables/constraints at 
a point in time:
• Identify time-indexed variables
• Identify time-indexed blocks
• Process each indexing set

To identify the same variable/constraint 
at different time points
• Descend into time-indexed blocks
• Identify variables
• Ascend back to time-indexed block
• Re-descend at different time point
• Process each indexing set

model

t0

block

tn

temp temp

conc

t0,
”CO2”

t0,
“O2”

tn,
“O2”

… …



A flattened structure makes accessing time-indices easier

6

model.temp[t0]

model

t0

temp

tn

conc 
CO2

t0 tn… … t0 tn…

conc 
O2

model.conc_CO2[t0] model.conc_O2[t0]

• Don’t have to descend/ascend into/out of blocks
• Don’t have to process indexing sets



flatten_dae_components reshapes a model into this structure

7

scalar_vars, dae_vars = flatten_dae_components(model, time, Var)

dae_vars
• All time-indexed variables in model
• Indexed only by time

scalar_vars
• All non-time-indexed variables in model

We have:
• Partitioned variables into time-indexed and non-time-indexed
• Partitioned time-indexed variables into only-time-indexed variables

…

conc 
O2

t0 tn

Now easy to:
• Identify all variables at a particular point in time
• Identify the same variable at different points in time



A model partitioned by time allows targeted debugging

8

flatten_dae_components allows identification of the subsystem at each time point

DerivativeVar and discretization equations allow identification of differential and 
algebraic subsystems at each point in time

In a well-posed DAE:
• The independent subsystem at any point in time should 

be nonsingular

In an index-1 DAE:
• The algebraic subsystem at any point in time should 

be nonsingular 

Debugging smaller systems is easier than debugging the entire model



We have implemented graph-based tools for debugging 
singular systems

9

Model is a bipartite graph of variables and constraints

Bipartite graph has an associated incidence matrix
• Rows = constraints
• Columns = variables

VariablesConstraints

We implement the following algorithms NetworkX Subroutines

1. Maximum matching i. Maximum matching

2. Dulmage-Mendelsohn Partition i. Maximum matching
ii. Breadth-first search

3. Block triangularization i. Maximum matching
ii. Strongly connected components
iii. Topological sort



A maximum matching identifies structural singularity

10

A maximum matching in a bipartite graph:
• Is the largest set of disjoint pairs of adjacent nodes
• Corresponds to the maximum number of matrix 

entries on the diagonal
• Is a perfect matching if every node is matched

If a system does not have a perfect matching, its Jacobian is guaranteed to be singular

VariablesConstraints

Size of maximal matching = 4



The Dulmage-Mendelsohn partition identifies square, 
underconstrained, and overconstrained subsystems

11

The Dulmage-Mendelsohn partition:
• Tells us which nodes can possibly be unmatched

Unmatched variables = underconstrained subsystem

Unmatched constraints = overconstrained subsystem

Perfect matching = square subsystem

Square subsystem is the 
entire system

Overconstrained

Underconstrained
Underconstrained

Overconstrained

Square



Block triangularization decomposes a system into subsystems 
that can be solved independently

12

• Performed by identifying strongly connected 
components

• Narrows down the source of numeric 
singularity or poor conditioning

• Only possible when the system already has a 
perfect matching Factorize/solve each 

block independently



Example on a subsystem from a solid phase thermodynamic 
property package

13

1. Make sure a maximum matching 
contains all constraints and 
variables

2. Dulmage-Mendelsohn permutation 
gives a useful partition:
• Underconstrained
• Square
• Overconstrained

Missing diagonal entry

3. Check numerical singularity (e.g. via SVD)
4. Block triangularization helps identify the 

source of a numeric singularity

Our fix:
• Make particle porosity a variable
• Add equation to calculate flow rate from density

Complete diagonal

Small subsystem extracted from 60,000-variable model using flatten_dae_components



We have implemented tools to decompose and debug large-
scale DAE models

14

flatten_dae_components walks the model tree and processes indexing sets to 
return convenient data structures

A maximum matching identifies structural singularity in subsystems at each point in time

The Dulmage-Mendelsohn partition helps identify the source of structural singularity

Block triangularization helps identify the source of numeric singularity or poor 
conditioning

Code is available:
pyomo.dae.flatten (Pyomo v5.7)

pyomo.contrib.incidence_analysis (Pyomo v6.0)



Acknowledgements

15

Thanks to:
• Larry Biegler and all our group members
• Bethany Nicholson and John Siirola
• Sandia
• IDAES

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned 
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. 



Questions?

16


