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Many important g?s-phase reactions happen over
multiple-well potential energy surfaces
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Experimental and computational tools

] Ruben Van de Vijver
Starting structure

Pattern recognition
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Endocyclic closed-shell cyclization

Refine and
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Checking...

github.com/zadorlab/KinBot Van de Vijver, Zador, CPC, 2020, 248, 106947
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Low-temperature cyclopentane oxidation:
Mechanism and prior studies
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@* HO> @ ++OH HOOPO + «OH — OPO + 2 *OH

1. Wu and Bayes: 3.5 Torr, PIMS, cyclopentyl radical

2. DeSain and Taatjes: up to 723 K and 56 Torr, HO, detection

3. Sirjean et al.: CBS-QB3 for R + O, addition

4. Rashidi et al.: UCCSD(T)-F12a/cc-pVTZ-F12//M06-2X/6-311++G(d,p) and ME for R + O,

5. Miyoshi: R+ O, and y-QOOH + O, PESs at the CBS-QB3 level JCK 1986, 18, 547554
JPCA 2001, 105, 6646-6654

6. This work: 10 Torr-10 bar, 400-700 K, illuminating the coupled first- and second-0O, IPCA 2003, 113, 6924-6935

CNF 2017, 183, 358-371
SAE Tech. Pap. Ser., 2019, 0148-7191
JPCA 2021, 125, 4467-4479 n

addition reactions in unprecedented detail
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R+ O, PES @ CCSD(T)-F12a/cc-pVTZ-F12//M06-2X/6-311++G**
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QOOH + O, PESs @ CCSD(T)-F12a/cc-pVDZ-F12//M06-2X/6-311++G**
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KinBot was used to explore the cation conformers and
fragmentation dynamics as well

26 y-OOQOOH conformers
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Simplified primary sub-mechanism for the oxidation of
cyclopentane at P=10- 7500 Torr and T =400 - 700 K




Kinetics
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Simulations with the ME rate coefficients
10 bar, 575 K
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Simulations with uncertainties
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O(3P) and its reactions with alkenes

Ethene + O(°P)
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O( P) 10.“ | -"_ ™
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Rich in pathways
Li X, Jasper AW, Zador J, Miller JA, Klippenstein SJ.
Proc Combust Inst. 2017;36:219-27.
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What controls ISC? i Products
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What happens when the alkene is cyclic?

HO
2-cyclopentenol

O
‘ DHP
c
‘0 H
CE \Q
" CPN

Cvetanovié, R. J.; Ring, D. F.; Doyle, L. C., Reaction of Oxygen Atoms with Cyclopentene. The Journal of Physical Chemistry 1971, 75, 3056-3061.
Hoyermann, K.; Nothdurft, J.; Olzmann, M.; Wehmeyer, J.; Zeuch, T., Formation and Decomposition of Chemically Activated Cyclopentoxy Radicals from the c-C;hy + O Reaction. The Journal of Physical

Chemistry A 2006, 110, 3165-3173.
Zhao, H. M.; Liu, K. H.; Song, D.; Su, H. M., Nonadiabatic Reaction Mechanisms of the O(3P) with Cyclopentene. Journal of Molecular Graphics & Modelling 2014, 51, 184-192.
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KinBot finds a very large number wells on both PESs

>20 wells on the triplet surface

>65 wells on the singlet surface

Potential energy surface of cpol
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Energy- and flux-based filtering was used




Active pathways and primary yields on the triplet surface

at4 Torr and 298 K Prompt products from 3A
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Active pathways and yields on the singlet surface after ISC

Assuming 1x10%! st |SC rate coefficients

Energy (kcal/mol)

=100

-25.4
3P4

-25.8
3pK
_______ ® [\~ N
-43.8
3.3%
ECO
CO +2CyH,y
-69.3
O/\/+C,H4
ACE 0.1%
c -gis\/ -95.8 HO/\/\/
\C
H 0/\/\/
1PK
43.7%
0.7% | 3carbene + CO




Active pathways and yields on the singlet surface after ISC
Adjusting ISC rate coefficient for 3A to 5x10° s!

Energy (kcal/mol)
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Active pathways and yields on the singlet surface after ISC

Energy (kcal/mol)
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Adjusting ISC rate coefficient for 3A to 5x10° s!
and for 3PK 3x10° s
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Summary ) ~ NEW MECHANISM
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