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Data and the manifold hypothesis3

• Geometry can be a powerful tool in making sense of big data.

• The manifold hypothesis: “high dimensional data tend to lie in the vicinity of a low 
dimensional manifold”.
• e.g., images, randomly generated image of NxN pixels will almost surely not correspond to a real 

world scene.
• e.g., data generated by a dynamical system will follow some equation of motion.

Fefferman, Mitter, Narayanan. J. Am. Math. Soc., 29, 983 (2016)

https://www.intechopen.com/books/manifolds-current-
research-areas/head-pose-estimation-via-manifold-learning

“Manifold learning” = 
identifying the geometry and 
manifold underlying the data



Some applications of manifold learning4

• Identifying the underlying “data manifold” enables:
• Visualization
• Representation of data in reduced order coordinates
• Classification, anomaly detection, image segmentation, autonomous driving, virtual reality, …

Image segmentation for medical imaging
Qilong Zhang, et al., 2006 IEEE Comp. Soc. Conf. 
on Computer Vision and Pattern Recognition 
(CVPR’06), p. 1092.

Synthesis of data in data-constrained scenarios
Lindenbaum et al., NeurIPS 2018

Obstacle avoidance in autonomous driving
Diwale et al., 
https://infoscience.epfl.ch/record/265381?ln=en



Existing methods for manifold learning5

• Existing techniques: 
• Diffusion maps, Laplacian eigenmaps, ISOMAP, Local linear embedding, …
• Several are dynamical methods that rely on the properties of diffusion

• i.e., at long times heat flow on a manifold distributes heat in a geometrically uniform 
way

• Other dynamics useful?

If you want to see something, you send waves in its general direction, you 
don’t throw heat at it.
- Attributed to Peter Lax
A. Cloninger and S. Steinerberger, Applied and Computational Harmonic Analysis, 2017.



Geodesics6

• Our approach to manifold learning will proceed through learning geodesic 
distances on the manifold. 

• Once geodesic distances are known, the intrinsic relationship between the data 
points is known.

• But isn’t calculating geodesic easy? Just do dynamics on the manifold.

Free Hamiltonian (K.E. only)

Can solve Hamilton’s equations 

But our data is just samples of points on the manifold.

Don’t know:
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Instead, we will look at quantized 
dynamics.

• Instead of propagating a classical 
particle on the manifold, we will 
propagate a quantum state. Why is that 
better? We’ll see.



The quantum manifold learning program8

quantization

Quantum evolution

Classical flow (incl. (geodesic flow)

Classical limit

Advantages: 
1. Linearization: geodesic flow through linear dynamics

- Must more efficient than approximate solution of geodesic 
equation (e.g., fast forward marching) 

2. Rigorous convergence proofs and hyper-parameter choices

Egorov’s theorem (1969)Central motivation



The quantum manifold learning program9

Using the samples from the manifold, we want to construct an approximation of the operator:

Manifold Laplacian



Data-driven construction of quantum propagator10

Samples of points on manifoldData

Graph embedding of data

Adjacency matrix for symmetric 
weighted graph

where is an exponentially decaying function in its argument.
Scale parameter



Data-driven construction of quantum propagator11

Samples of points on manifoldData

Graph embedding of data

Adjacency matrix for symmetric 
weighted graph

where is an exponentially decaying function in its argument.

• Also used in spectral methods such as diffusion maps, Laplacian eigenmaps, …

• In general              as

Define the graph Laplacian

Scale parameter



Data-driven construction of quantum propagator12

Define the graph Laplacian

We prove

measure according to which 
manifold is sampled

So we can approximate the quantum propagator                            with

c.f. 
- Coifman et al., PNAS, 102, 7426 (2005)
- Hein, Audibert, von Luxburg, J. Mach. Learn. Res., 8, 
1325 (2007)

Semiclassical parameter



The quantum manifold learning program13

- We want to know geodesic distances of sample points from some given point. 

- Our strategy will be to propagate a quantum state initially localized at the 
initial point (like a test particle).

- What localized initial state? A delta-function on the initial point is too localized 
– its not an L2 function and will not propagate along geodesics. Instead, use the 
most classical state, a coherent state.



The quantum manifold learning program14

How to extract geodesic distance from propagated state? We prove

Position operatorCoherent state Geodesic flow

if



Discretization as quantization15

“Classical limit” 

is the large data limit

The “uncertainty” implied by this limited resolution needs to be distributed in phase space

Equal distribution in configuration and momentum space =>  



The quantum manifold learning program16

Euclidean distances Local geodesic distances

By converting our input Euclidean 
distances to approximated geodesic 
distances in neighborhoods, we get a 
sparse, and more accurate graph 
embedding of the data 



Example: sphere17

N=3000 points, uniformly sampled on unit sphere

Force-based embedding 
based on extracted geodesic 
distances



Example: COVID-19 mobility data18

Social Distancing Metric dataset from SafeGraph Inc.
https://docs.safegraph.com/docs/social-distancing-metrics

• Dataset collects user location information (from cellphone GPS data) over the course of the initial 3 months of the 
COVID-19 pandemic (Feb 23, 2020 – June 19, 2020: 117 days).

• Aggregated at the census block group (CBG) level.

• Understanding patterns in mobility behavior can help tune public health policy.  

• We compute a “stay-at-home” fraction which represents the fraction of devices that stayed at  their home location 
on a day.

• We concentrate on the data for Georgia (GA), which has 5509 CBGs.

• Dataset: 5509 x 117 

Apply manifold learning through geodesics and embed in 3 
dimensions (reduction from 117 dimensions) and then 
perform clustering using K-means.



Example: COVID-19 mobility data19

outlier
c.f. Levin et al., “Cell Phone Mobility Data and Manifold Learning.” https://doi.org/10.1101/2020.10.31.20223776

Embedding in 3D and k-means using these 
3D coordinates

Outlier 
detection

Standard 
embedding

Average SAH fraction time series for each 
cluster



Summary20

• A new approach to discovering geodesics on data manifolds, and manifold learning, based on 
quantum dynamics. c.f.
• Diffusion => Monte Carlo methods
• Annealing => optimization
• Quantum and wave propagation => geodesics

• Alternative to some common data processing algorithms:
• Dijkstra’s algorithm
• Fast forward marching

• Many directions for follow-on research:
• Develop a quantum algorithm for manifold learning on quantum computers
• Make existing approach more efficient
• Develop methods for embedding point cloud data based on geodesic distances



21

Backup slides



Initial states22

• What localized initial state? A delta-function on the initial point is too localized – its not an L 2 
function and will not propagate along geodesics. Instead, use the most classical state, a coherent 
state.

• Coherent states can be characterized in various ways. One useful one:
• Have equal and minimal uncertainty in position and momentum.

• Can approximate this using the data we have

• Initial momentum approximated using a principal component analysis (PCA) 

Combescure & Robert. Coherent States and Applications in Mathematical Physics. Springer Netherlands, 2012.
Gazeau, Coherent States in Quantum Physics. Wiley-VCH, 2009.



Propagation of coherent states23

• We propagate a collection of such coherent states to determine the geodesic spray of points a 
certain geodesic distance from initial point.

• It’s pretty neat that we’re able to do everything with just samples from the manifold. That is an 
advantage of quantization.

• In the continuum (asymptotic) setting, computing                            corresponds to computing

Dynamics completely in terms of position coordinates only.



Example: COVID-19 mobility data24

https://www.google.com/covid19/mobility/

Dataset collects user mobility information (% change in mobility from baseline) over 6 categories for 132 countries and 
regions within these countries.

Timeframe: ~1 year (Feb 15, 2020 – Jan 24, 2021)
Baseline: Jan 3 – Feb 6, 2020
Categories: Retail and recreation, grocery and pharmacy, parks, transit stations, workplaces.

e.g.,
After pre-processing:

For each country, 345*5=1725 columns (features) that 
represent a time series of mobility changes across 5 
categories.

Apply manifold learning through geodesics and embed in 3 
dimensions (reduction from 1725 dimensions)



Example: COVID-19 mobility data25

Large nodes: top 20 countries in COVID response according to Lowy 
institute.
https://interactives.lowyinstitute.org/features/covid-performance/



Example: COVID-19 mobility data26


