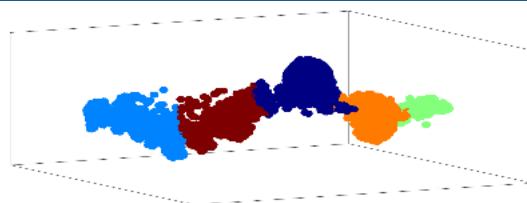
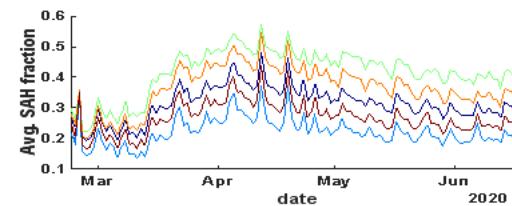
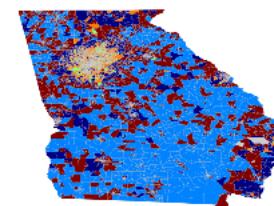
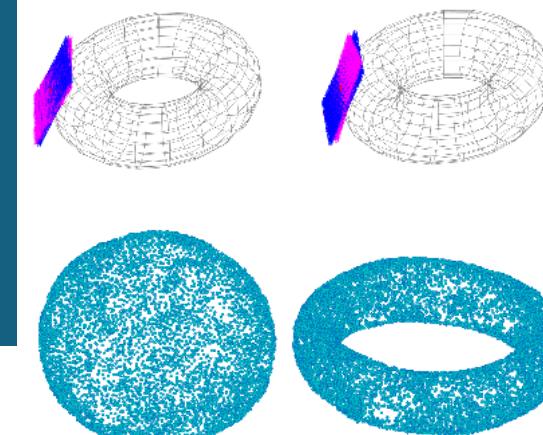


Quantum-inspired manifold learning



Mohan Sarovar

Sandia National Laboratories, Livermore, CA

Quantum Techniques in Machine Learning
November 2021

Acknowledgements

Collaborator:

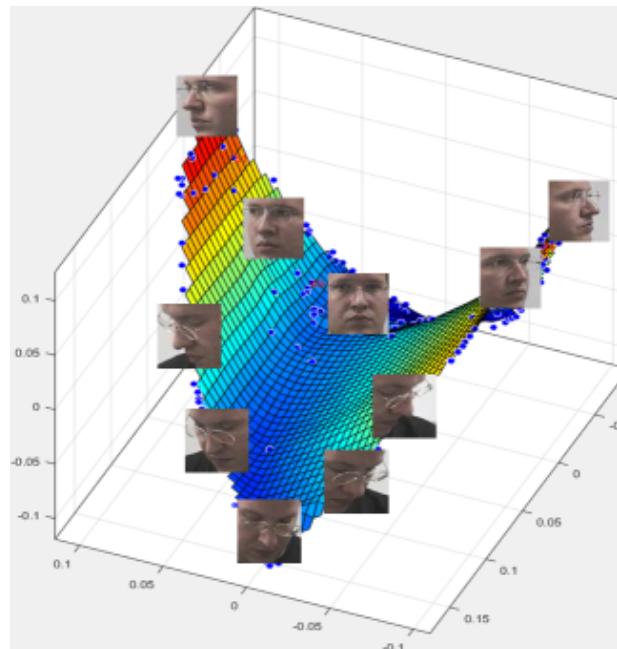
Akshat Kumar (Clarkson University)

Funding:

Data and the manifold hypothesis

- **Geometry** can be a powerful tool in making sense of big data.
- **The manifold hypothesis:** “high dimensional data tend to lie in the vicinity of a low dimensional manifold”.
Fefferman, Mitter, Narayanan. *J. Am. Math. Soc.*, **29**, 983 (2016)
 - *e.g.*, images, randomly generated image of $N \times N$ pixels will almost surely not correspond to a real world scene.
 - *e.g.*, data generated by a dynamical system will follow some equation of motion.

“Manifold learning” =
identifying the geometry and
manifold underlying the data



<https://www.intechopen.com/books/manifolds-current-research-areas/head-pose-estimation-via-manifold-learning>

Some applications of manifold learning

- Identifying the underlying “data manifold” enables:
 - Visualization
 - Representation of data in reduced order coordinates
 - Classification, anomaly detection, image segmentation, autonomous driving, virtual reality, ...

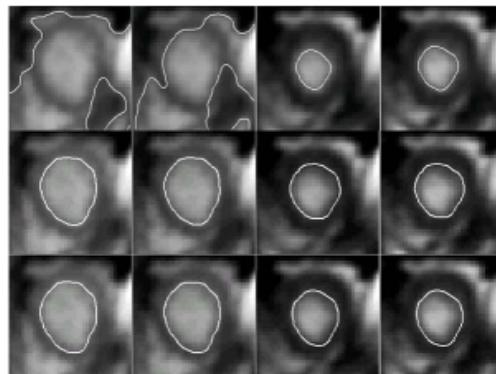
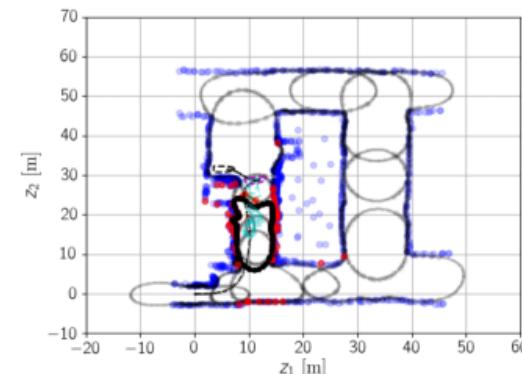
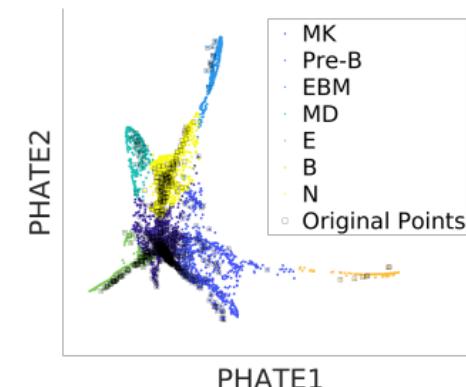


Image segmentation for medical imaging
 Qilong Zhang, et al., 2006 IEEE Comp. Soc. Conf. on Computer Vision and Pattern Recognition (CVPR'06), p. 1092.



Obstacle avoidance in autonomous driving
 Diwale et al., <https://infoscience.epfl.ch/record/265381?ln=en>



Synthesis of data in data-constrained scenarios
 Lindenbaum et al., NeurIPS 2018

Existing methods for manifold learning

- Existing techniques:
 - Diffusion maps, Laplacian eigenmaps, ISOMAP, Local linear embedding, ...
 - Several are *dynamical methods* that rely on the properties of diffusion
 - i.e., at long times heat flow on a manifold distributes heat in a geometrically uniform way
 - Other dynamics useful?

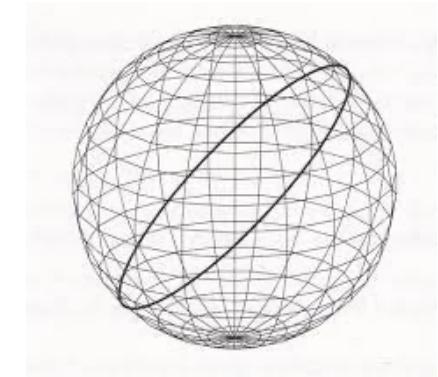
If you want to see something, you send waves in its general direction, you don't throw heat at it.

- *Attributed to Peter Lax*

A. Cloninger and S. Steinerberger, *Applied and Computational Harmonic Analysis*, 2017.

Geodesics

- Our approach to manifold learning will proceed through learning **geodesic distances on the manifold**.
- Once geodesic distances are known, the intrinsic relationship between the data points is known.
- But isn't calculating geodesic easy? Just do dynamics on the manifold.



Free Hamiltonian (K.E. only)

$$\mathcal{H} = |\mathbf{p}|_g^2 = \sum_{i,j} g^{ij}(x) p_i p_j$$

Can solve Hamilton's equations

$$\dot{x}^i = \sum_j g^{ij}(x) p_j$$

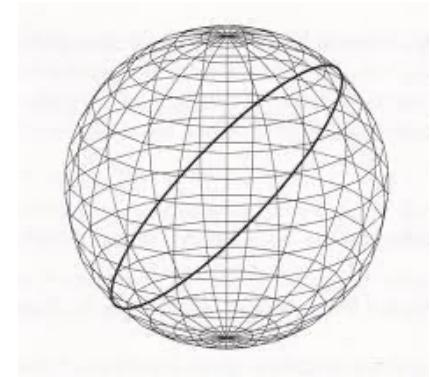
$$\dot{p}_k = - \sum_{ij} g_{,k}^{ij}(x) p_i p_j$$

But our data is just samples of points on the manifold.

Don't know: g_{ij} p^i

Geodesics

- Our approach to manifold learning will proceed through learning **geodesic distances on the manifold**.
- Once geodesic distances are known, the intrinsic relationship between the data points is known.
- But isn't calculating geodesic easy? Just do dynamics on the manifold.



Free Hamiltonian (K.E. only)

$$\mathcal{H} = |\mathbf{p}|_g^2 = \sum_{i,j} g^{ij}(x) p_i p_j$$

Can solve Hamilton's equations

$$\dot{x}^i = \sum_j g^{ij}(x) p_j$$

$$\dot{p}_k = - \sum_{ij} g_{,k}^{ij}(x) p_i p_j$$

But our data is just samples of points on the manifold.

Don't know: g_{ij} p^i

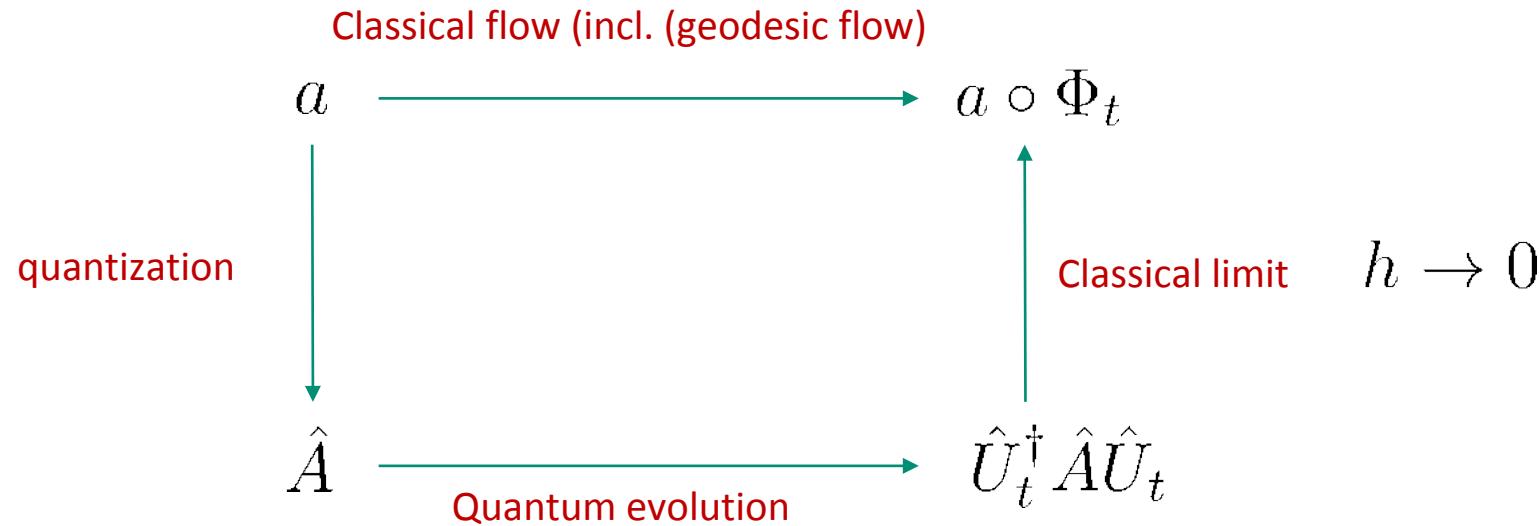
Instead, we will look at **quantized dynamics**.

- Instead of propagating a classical particle on the manifold, we will propagate a quantum state. Why is that better? We'll see.

The quantum manifold learning program

Central motivation

Egorov's theorem (1969)

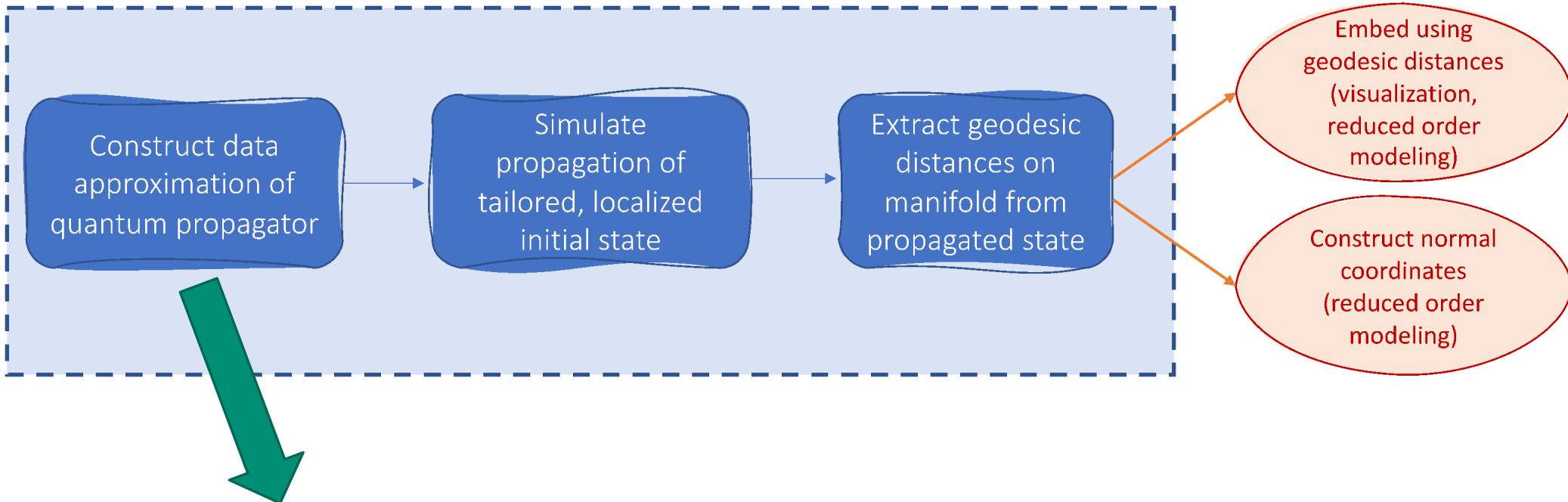


This is the $N \rightarrow \infty$ limit in the data context

Advantages:

1. Linearization: geodesic flow through linear dynamics
 - Must more efficient than approximate solution of geodesic equation (e.g., fast forward marching)
2. Rigorous convergence proofs and hyper-parameter choices

The quantum manifold learning program



Using the samples from the manifold, we want to construct an approximation of the operator:

$$\hat{U}_h(t) = e^{-\frac{i}{\hbar} \hat{H}t} = e^{-i\sqrt{\Delta_g}t}$$

Manifold Laplacian

Data-driven construction of quantum propagator

Data $V = \{v_1, v_2, \dots, v_N\}$ $v_i \in \mathbb{R}^n$

Samples of points on manifold

Graph embedding of data

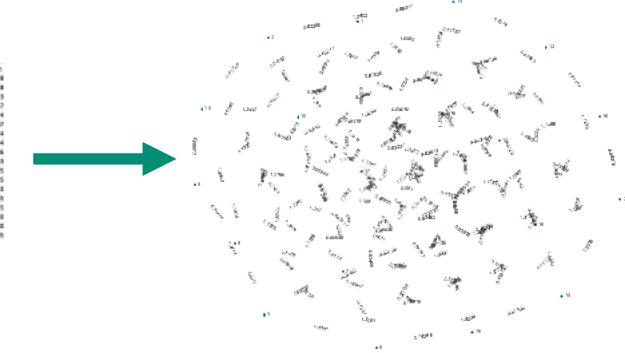
$$[T_{N,\epsilon}]_{i,j} = k\left(\frac{\|v_i - v_j\|^2}{2\epsilon}\right)$$

Scale parameter

Adjacency matrix for symmetric weighted graph

where $k(\cdot)$ is an exponentially decaying function in its argument.

car_id	Symboling	Cylinders	fuelsyst	aspiration	doornumber	carbody	drivewheel	enginesize	wheelbase	carlength	carwidth	carheight	corthight
1	3	4	gas	std	two	convertible	rear	166.5	104.8	64.1	48.8	2548	
2	3	4	gas	std	two	convertible	front	166.5	104.8	64.1	48.8	2548	
3	3	4	gas	std	two	convertible	front	166.5	104.8	64.1	48.8	2548	
4	2	4	gas	std	two	hatchback	front	94.5	177.2	65.5	52.4	2823	
5	2	4	gas	std	two	hatchback	front	94.5	177.2	65.5	52.4	2823	
6	2	4	gas	std	two	hatchback	front	94.5	177.2	65.5	52.4	2823	
7	2	4	gas	std	two	hatchback	front	94.5	177.2	65.5	52.4	2823	
8	1	4	gas	std	two	hatchback	front	94.5	177.2	65.5	52.4	2823	
9	1	4	gas	std	two	hatchback	front	94.5	177.2	65.5	52.4	2823	
10	0	4	gas	std	two	hatchback	front	94.5	177.2	65.5	52.4	2823	
11	0	4	gas	std	two	hatchback	front	94.5	177.2	65.5	52.4	2823	
12	0	4	gas	std	two	hatchback	front	94.5	177.2	65.5	52.4	2823	
13	0	4	gas	std	two	hatchback	front	94.5	177.2	65.5	52.4	2823	
14	0	4	gas	std	two	hatchback	front	94.5	177.2	65.5	52.4	2823	
15	1	4	gas	std	two	hatchback	front	94.5	177.2	65.5	52.4	2823	
16	1	4	gas	std	two	hatchback	front	94.5	177.2	65.5	52.4	2823	
17	0	4	gas	std	two	hatchback	front	94.5	177.2	65.5	52.4	2823	
18	0	4	gas	std	two	hatchback	front	94.5	177.2	65.5	52.4	2823	



Data-driven construction of quantum propagator

Data $V = \{v_1, v_2, \dots, v_N\}$ $v_i \in \mathbb{R}^n$

Samples of points on manifold

Graph embedding of data

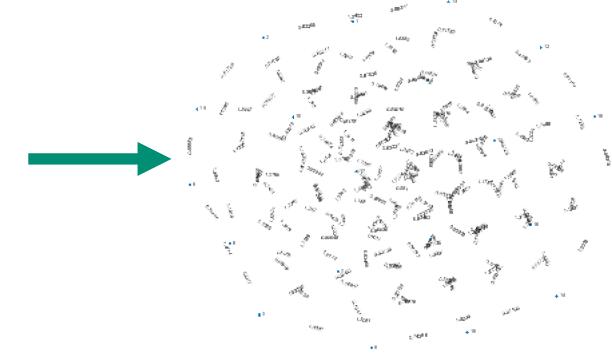
$$[T_{N,\epsilon}]_{i,j} = k\left(\frac{\|v_i - v_j\|^2}{2\epsilon}\right)$$

Scale parameter

Adjacency matrix for symmetric weighted graph

where $k(\cdot)$ is an exponentially decaying function in its argument.

car_id	Symboling	Carkmas	fueltype	aspiration	doornumber	carbody	drivewheel	enginesize	wheelbase	carlength	carwidth	carheight	corthight
1	3	affirmemo	gas	red	two	convertible	red	front	98.6	164.8	64.1	48.8	2548
2	3	affirmemo	gas	red	two	convertible	red	front	98.6	164.8	64.1	48.8	2548
3	3	affirmemo	gas	red	two	convertible	red	front	98.6	164.8	64.1	48.8	2548
4	2	auto	1000	gas	red	front	front	98.8	176.6	66.2	54.3	2357	
5	2	auto	1000	gas	red	front	front	98.8	176.6	66.2	54.3	2357	
6	2	auto	1000	gas	red	front	front	98.8	176.6	66.2	54.3	2357	
7	1	auto	1000	gas	red	front	front	98.8	176.6	66.2	54.3	2357	
8	1	auto	1000	gas	red	front	front	98.8	176.6	66.2	54.3	2357	
9	1	auto	1000	gas	red	front	front	98.8	176.6	66.2	54.3	2357	
10	0	auto	1000	gas	red	front	front	98.8	176.6	66.2	54.3	2357	
11	0	auto	1000	gas	red	front	front	98.8	176.6	66.2	54.3	2357	
12	0	brwe	330	gas	red	front	front	101.2	178.8	64.8	54.3	2365	
13	0	brwe	330	gas	red	front	front	101.2	178.8	64.8	54.3	2365	
14	0	brwe	330	gas	red	front	front	101.2	178.8	64.8	54.3	2365	
15	1	brwe	330	gas	red	front	front	101.2	178.8	64.8	54.3	2365	
16	0	brwe	330	gas	red	front	front	101.2	178.8	64.8	54.3	2365	
17	0	brwe	330	gas	red	front	front	101.2	178.8	64.8	54.3	2365	
18	0	brwe	330	gas	red	front	front	101.2	178.8	64.8	54.3	2365	



Define the graph Laplacian

$$L_{N,\epsilon} \equiv \frac{I_N - D_{N,\epsilon}^{-1} T_{N,\epsilon}}{\epsilon},$$

$$D_{N,\epsilon} \equiv \text{diag}\left(\sum_{j=1}^N [T_{N,\epsilon}]_{i,j}\right)$$

- Also used in spectral methods such as diffusion maps, Laplacian eigenmaps, ...
- In general $\epsilon \rightarrow 0$ $N \rightarrow \infty$

Data-driven construction of quantum propagator

Define the graph Laplacian

$$L_{N,\epsilon} \equiv \frac{I_N - D_{N,\epsilon}^{-1} T_{N,\epsilon}}{\epsilon}, \quad D_{N,\epsilon} \equiv \text{diag}\left(\sum_{j=1}^N [T_{N,\epsilon}]_{i,j}\right)$$

We prove

$$L_{N,\epsilon} \xrightarrow{N \rightarrow \infty} \mathcal{L}_h \approx h^2 \left(\Delta_g + 2 \frac{\nabla p \cdot \nabla}{p} \right)$$

Semiclassical parameter

measure according to which
manifold is sampled

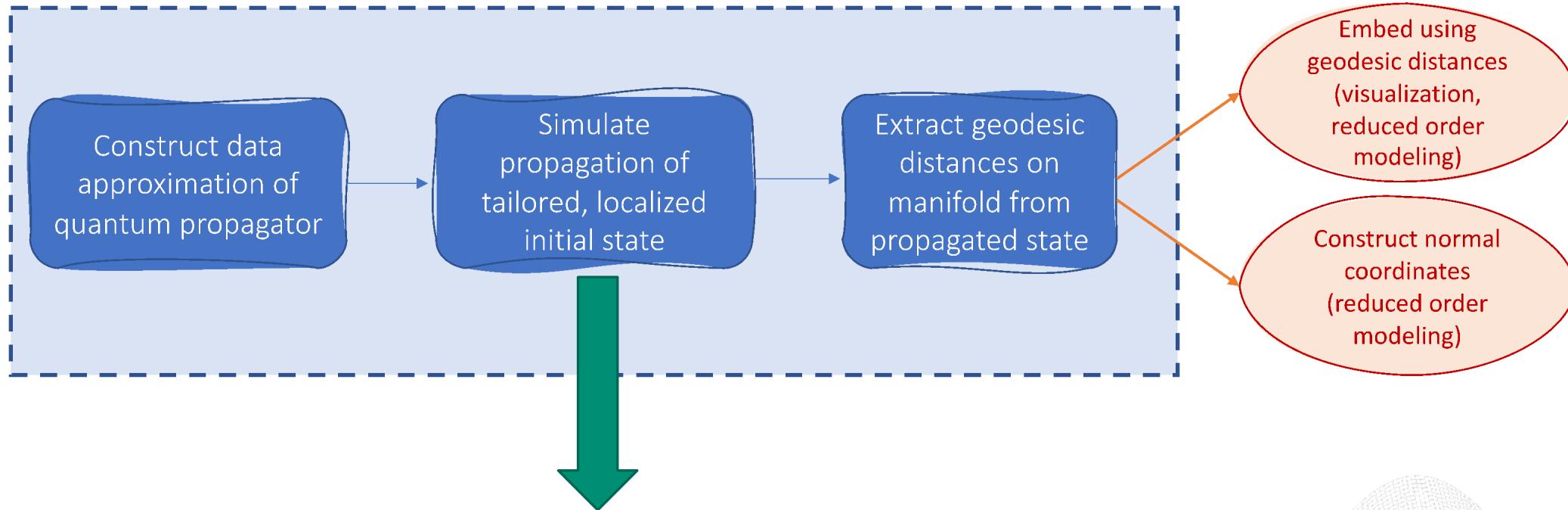
c.f.

- Coifman et al., PNAS, **102**, 7426 (2005)
- Hein, Audibert, von Luxburg, J. Mach. Learn. Res., **8**, 1325 (2007)

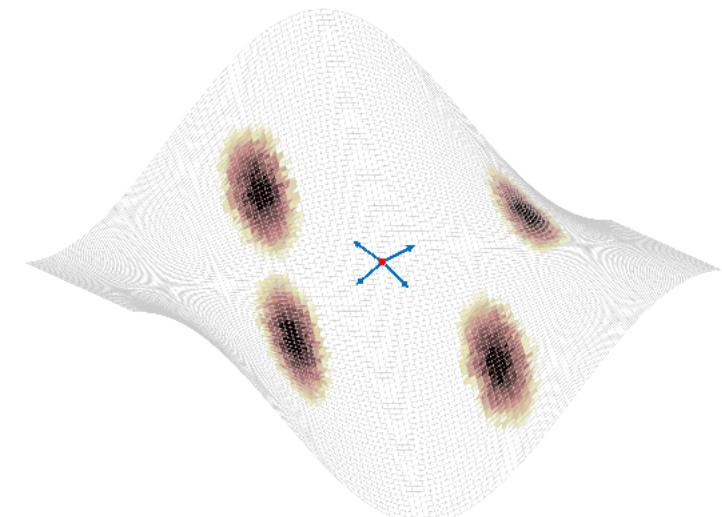
So we can approximate the quantum propagator

$$\hat{U}_h(\mathbf{w}) \approx e^{-\frac{i}{\hbar} \hat{H} t} \quad \check{U}_h(t) = e^{-\frac{i}{\hbar} \sqrt{L_{N,\epsilon}} t}$$

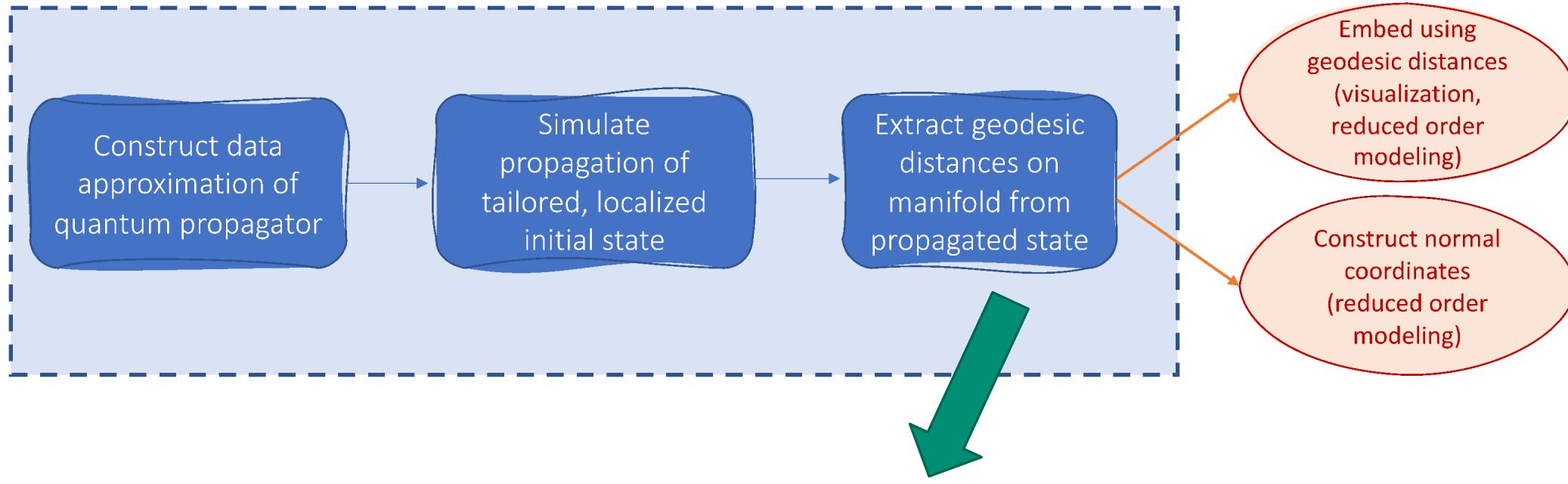
The quantum manifold learning program



- We want to know geodesic distances of sample points from some given point.
- Our strategy will be to propagate a quantum state initially localized at the initial point (like a **test particle**).
- What localized initial state? A delta-function on the initial point is too localized – it's not an L^2 function and will not propagate along geodesics. Instead, use the most classical state, a **coherent state**.



The quantum manifold learning program



How to extract geodesic distance from propagated state? We prove

$$\lim_{h \rightarrow 0} \left| \langle \psi_{\zeta_0}^h | \hat{U}_h(t)^\dagger \hat{x} \hat{U}_h(t) | \psi_{\zeta_0}^h \rangle - x \circ \Phi_t(\mathbf{x}_0, \mathbf{p}_0) \right| = 0$$

Coherent state

Position operator

Geodesic flow

if $h = \epsilon^{\frac{1}{2+\alpha}}$, $\alpha \approx 1$

Discretization as quantization

$$h = \epsilon^{\frac{1}{2+\alpha}}, \quad \alpha \approx 1$$

$$L_{N,\epsilon} \equiv \frac{I_N - D_{N,\epsilon}^{-1} T_{N,\epsilon}}{\epsilon},$$

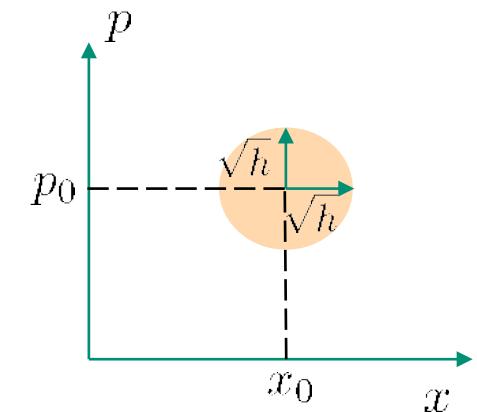
ϵ captures the limited resolution of the manifold due to finite sampling

The “uncertainty” implied by this limited resolution needs to be distributed in phase space

Equal distribution in configuration and momentum space =>

$$h \sim \epsilon^{\frac{1}{2}}$$

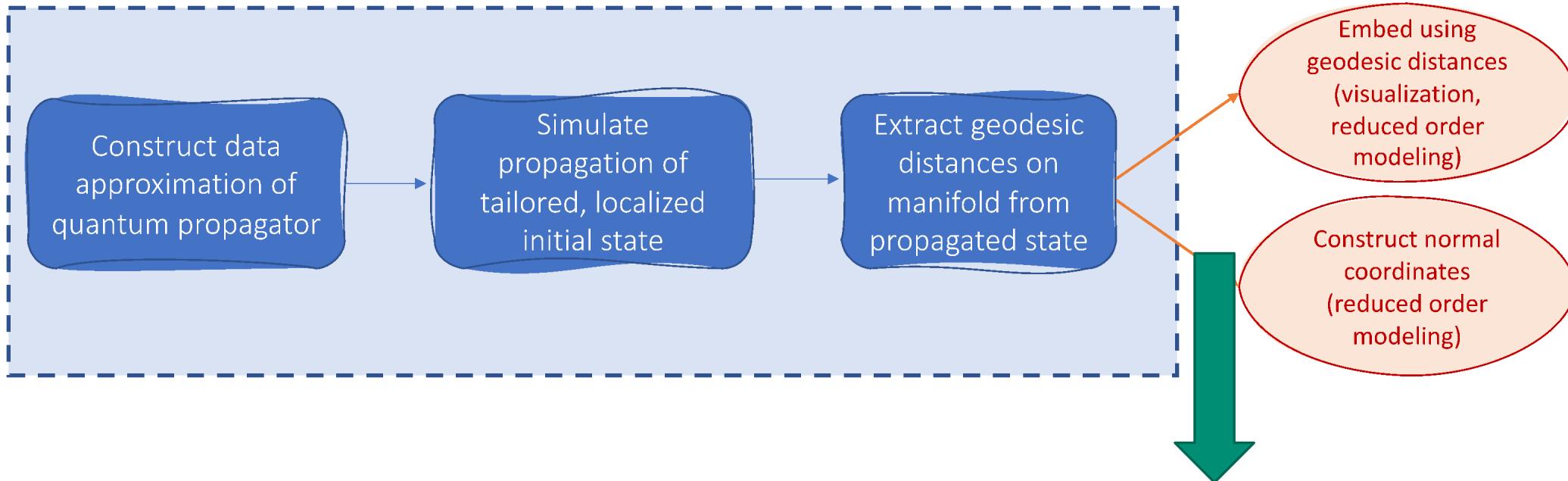
$$\begin{aligned} \zeta_0 &= (\mathbf{x}_0, \mathbf{p}_0) \\ &\in T^*\mathcal{M} \end{aligned}$$



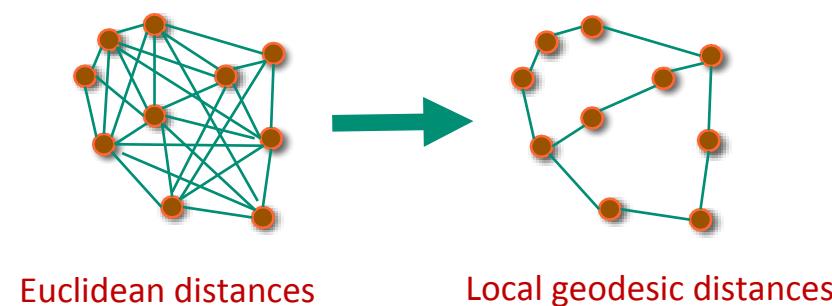
“Classical limit” $h \rightarrow 0$
is the large data limit $N \rightarrow \infty$

$$\psi_{\zeta_0}(\mathbf{x}) = \langle \mathbf{x} | \psi_{\zeta_0} \rangle = \frac{1}{(\pi h)^{\frac{\nu}{4}}} e^{\frac{i}{\hbar} \langle \mathbf{x} - \mathbf{x}_0, \mathbf{p}_0 \rangle} e^{-\frac{|\mathbf{x} - \mathbf{x}_0|^2}{2h}}$$

The quantum manifold learning program

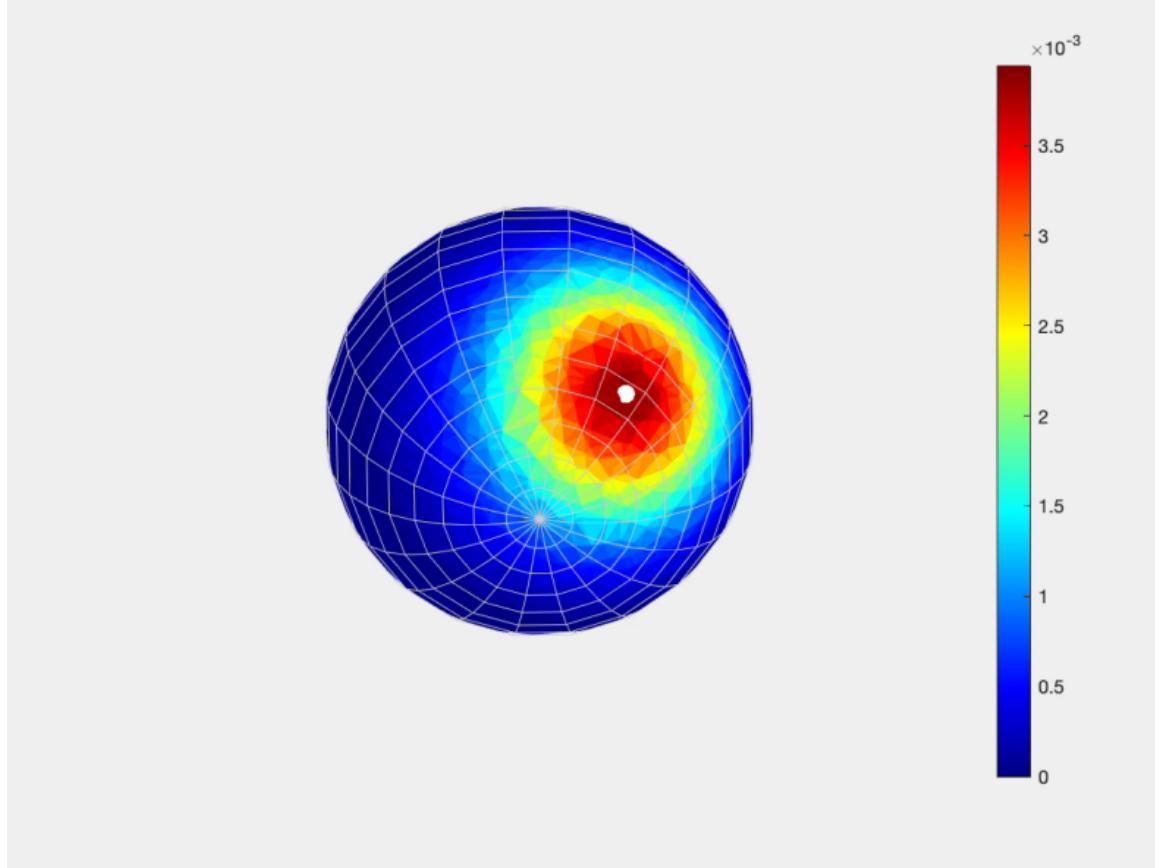
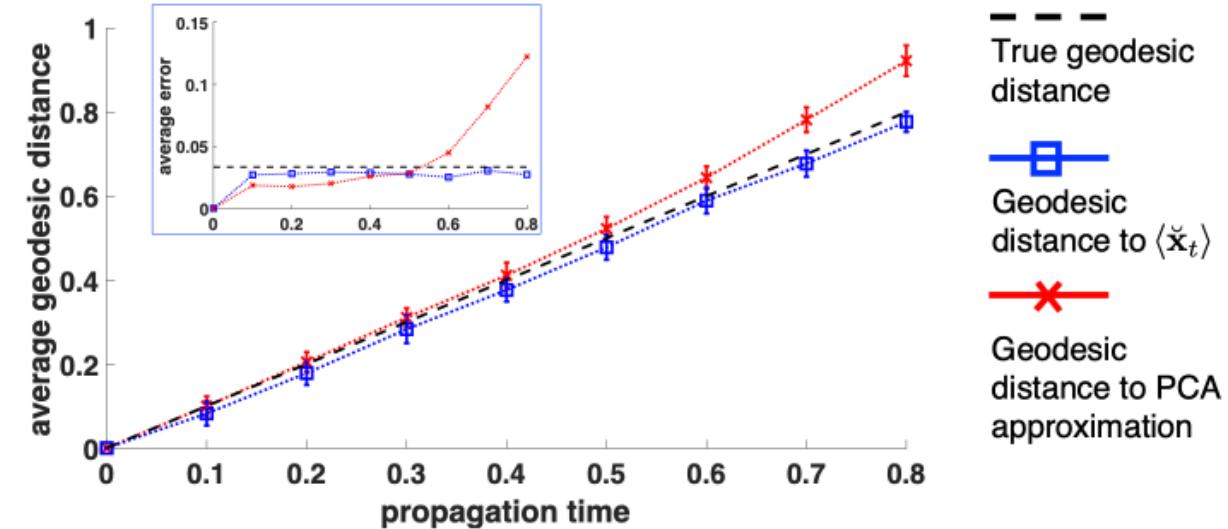


By converting our input Euclidean distances to approximated geodesic distances in neighborhoods, we get a sparse, and more accurate graph embedding of the data

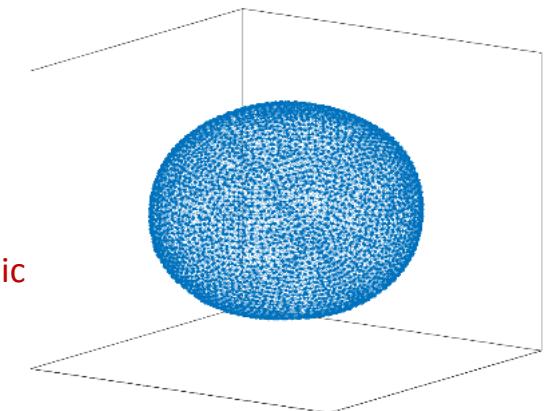


Example: sphere

N=3000 points, uniformly sampled on unit sphere



Force-based embedding
based on extracted geodesic
distances



Example: COVID-19 mobility data

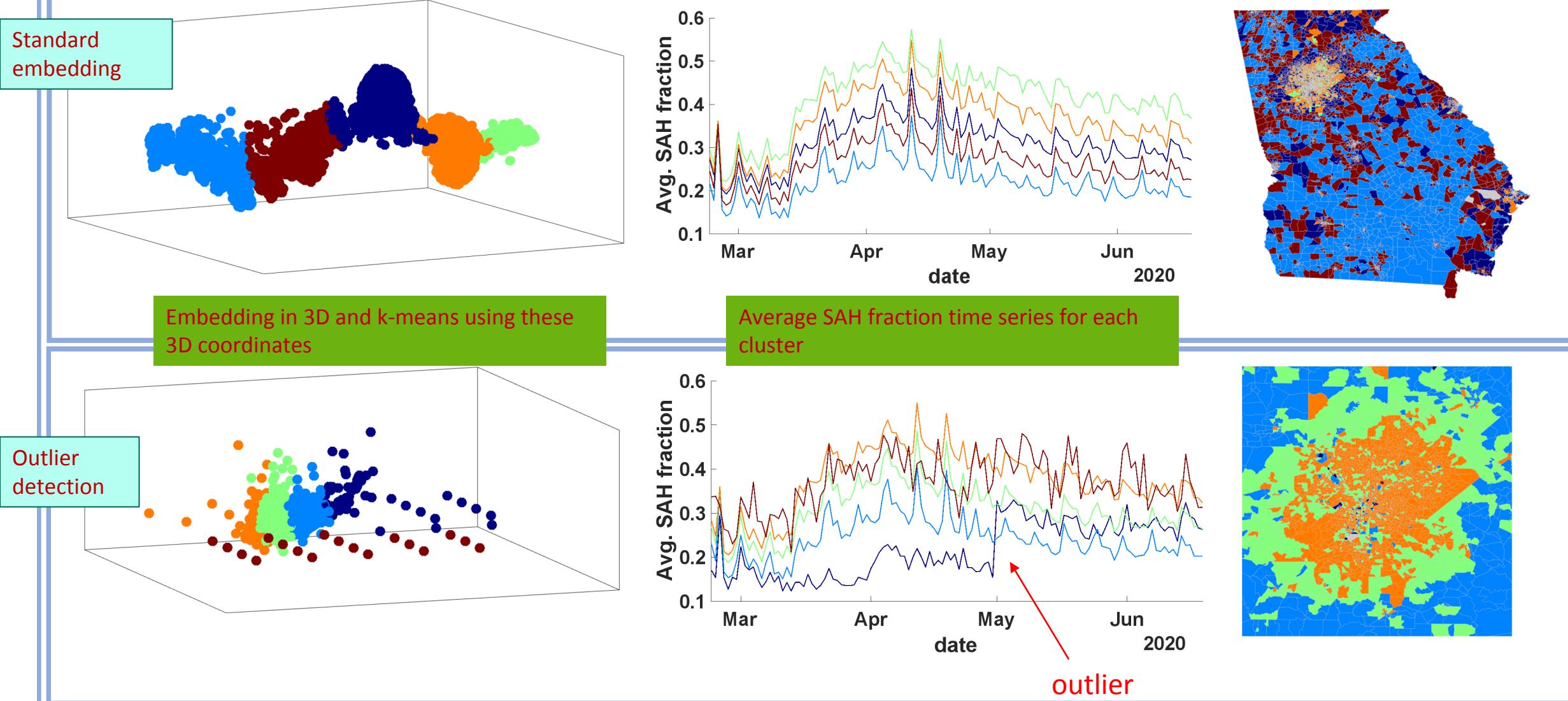
Social Distancing Metric dataset from SafeGraph Inc.

<https://docs.safegraph.com/docs/social-distancing-metrics>

- Dataset collects user location information (from cellphone GPS data) over the course of the initial 3 months of the COVID-19 pandemic (Feb 23, 2020 – June 19, 2020: 117 days).
- Aggregated at the census block group (CBG) level.
- Understanding patterns in mobility behavior can help tune public health policy.
- We compute a “stay-at-home” fraction which represents the fraction of devices that stayed at their home location on a day.
- We concentrate on the data for Georgia (GA), which has 5509 CBGs.
- Dataset: 5509 x 117

Apply manifold learning through geodesics and embed in 3 dimensions (**reduction from 117 dimensions**) and then perform clustering using K-means.

Example: COVID-19 mobility data



Summary

- A new approach to discovering geodesics on data manifolds, and manifold learning, based on quantum dynamics. c.f.
 - Diffusion => Monte Carlo methods
 - Annealing => optimization
 - Quantum and wave propagation => geodesics
- Alternative to some common data processing algorithms:
 - Dijkstra's algorithm
 - Fast forward marching
- Many directions for follow-on research:
 - Develop a quantum algorithm for manifold learning on quantum computers
 - Make existing approach more efficient
 - Develop methods for embedding point cloud data based on geodesic distances

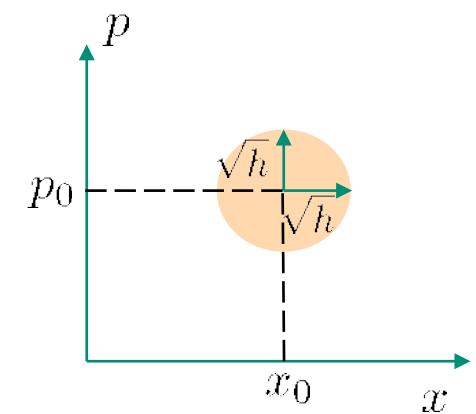
Backup slides

Initial states

- What localized initial state? A delta-function on the initial point is too localized – it's not an L^2 function and will not propagate along geodesics. Instead, use the most classical state, a **coherent state**.
- Coherent states can be characterized in various ways. One useful one:
 - Have **equal and minimal uncertainty** in position and momentum.

$$\psi_{\zeta_0}(\mathbf{x}) = \langle \mathbf{x} | \psi_{\zeta_0} \rangle = \frac{1}{(\pi h)^{\frac{\nu}{4}}} e^{\frac{i}{\hbar} \langle \mathbf{x} - \mathbf{x}_0, \mathbf{p}_0 \rangle} e^{-\frac{\|\mathbf{x} - \mathbf{x}_0\|^2}{2\hbar}} \quad \zeta_0 = (\mathbf{x}_0, \mathbf{p}_0) \in T^* \mathcal{M}$$

Combesure & Robert. *Coherent States and Applications in Mathematical Physics*. Springer Netherlands, 2012.
 Gazeau, *Coherent States in Quantum Physics*. Wiley-VCH, 2009.



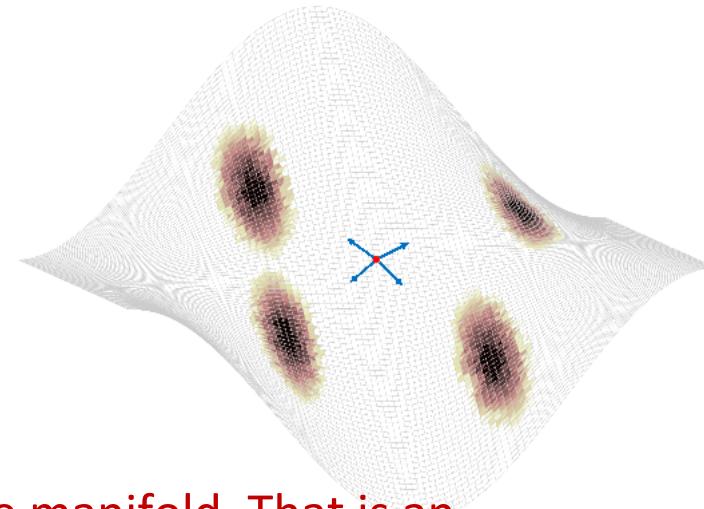
- Can approximate this using the data we have

$$\left[|\tilde{\psi}_{\zeta_0} \rangle \right]_i = e^{\frac{i}{\hbar} (v_i - v_0)^\top p_0} e^{-\frac{\|v_i - v_0\|^2}{2\hbar}}, \quad 1 \leq i \leq N.$$

- Initial momentum approximated using a principal component analysis (PCA)

Propagation of coherent states

- We propagate a collection of such coherent states to determine the *geodesic spray* of points a certain geodesic distance from initial point.



- It's pretty neat that we're able to do everything with just samples from the manifold. That is an advantage of quantization.
- In the continuum (asymptotic) setting, computing $|\psi_t\rangle$ corresponds to computing

$$\psi(\mathbf{x}, t) = \int_{\mathcal{M}} d\mathbf{x}' G(\mathbf{x}, \mathbf{x}'; t) \psi(\mathbf{x}', 0)$$

Dynamics completely in terms of position coordinates only.

Example: COVID-19 mobility data

Google COVID-19 Community Mobility Reports
<https://www.google.com/covid19/mobility/>

Dataset collects user mobility information (% change in mobility from baseline) over 6 categories for 132 countries and regions within these countries.

Timeframe: ~1 year (Feb 15, 2020 – Jan 24, 2021)

Baseline: Jan 3 – Feb 6, 2020

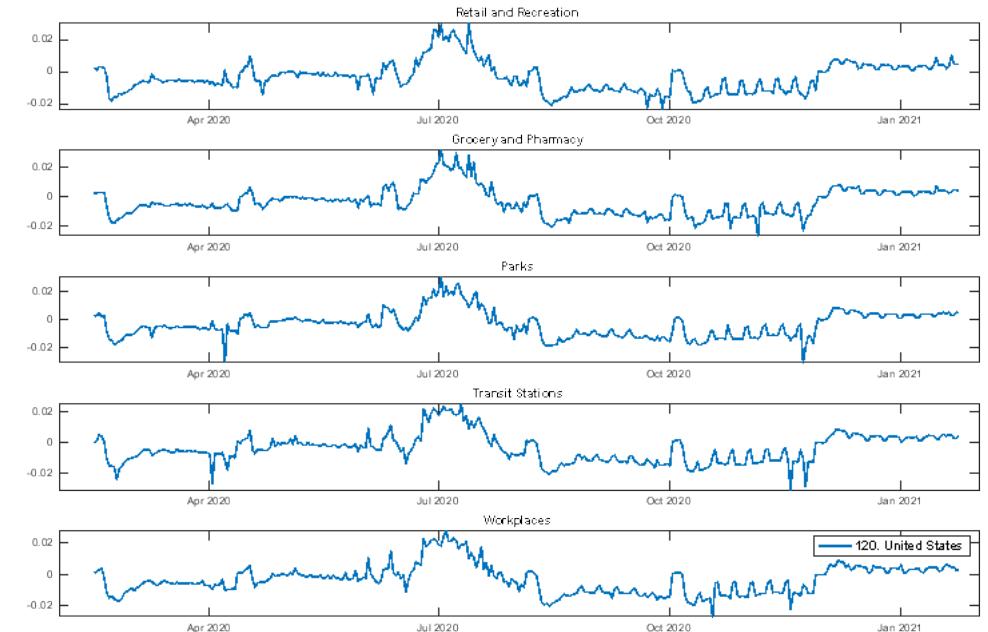
Categories: Retail and recreation, grocery and pharmacy, parks, transit stations, workplaces.

After pre-processing:

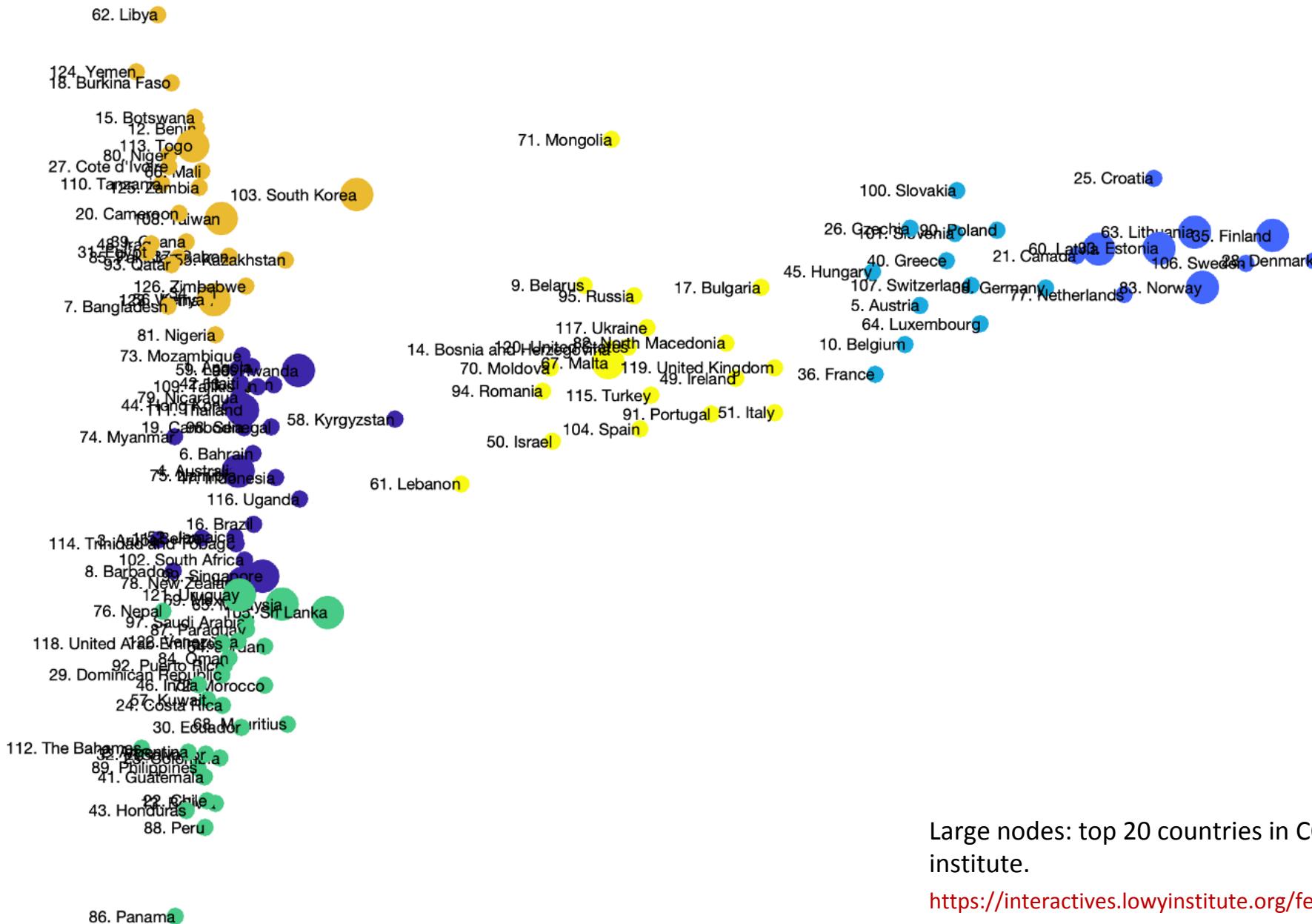
For each country, **345*5=1725 columns (features)** that represent a time series of mobility changes across 5 categories.

Apply manifold learning through geodesics and embed in 3 dimensions (**reduction from 1725 dimensions**)

e.g.,



Example: COVID-19 mobility data



Large nodes: top 20 countries in COVID response according to Lowy institute.
<https://interactives.lowyinstitute.org/features/covid-performance/>

