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3 ‘ Data and the manifold hypothesis

* Geometry can be a powerful tool in making sense of big data.

* The manifold hypothesis: “high dimensional data tend to lie in the vicinity of a low
dimensional manif0|d", Fefferman, Mitter, Narayanan. J. Am. Math. Soc., 29, 983 (2016)

* e.g., images, randomly generated image of NxN pixels will almost surely not correspond to a real
world scene.
* e.g., data generated by a dynamical system will follow some equation of motion.

“Manifold learning” =
identifying the geometry and
manifold underlying the data

https://www.intechopen.com/books/manifolds-current-
research-areas/head-pose-estimation-via-manifold-learning
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4 ‘ Some applications of manifold learning

* I|dentifying the underlying “data manifold” enables:
* Visualization
* Representation of data in reduced order coordinates
* (lassification, anomaly detection, image segmentation, autonomous driving, virtual reality, ...

- Pre-B
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Image segmentation for medical imaging Obstacle avoidance in autonomous driving Synthesis of data in data-constrained scenarios
Qilong Zhang, et al., 2006 IEEE Comp. Soc. Conf. Diwale et al., Lindenbaum et al., NeurIPS 2018

on Computer Vision and Pattern Recognition https://infoscience.epfl.ch/record/265381?In=en

(CVPR’06), p. 1092.



s | EXisting methods for manifold learning

* Existing techniques:
* Diffusion maps, Laplacian eigenmaps, ISOMAP, Local linear embedding, ...
* Several are dynamical methods that rely on the properties of diffusion
* j.e., atlongtimes heat flow on a manifold distributes heat in a geometrically uniform
way
* Other dynamics useful?

If you want to see something, you send waves in its general direction, you
don’t throw heat at it.
- Attributed to Peter Lax

A. Cloninger and S. Steinerberger, Applied and Computational Harmonic Analysis, 2017.



« | Geodesics

* OQOur approach to manifold learning will proceed through learning geodesic
distances on the manifold.

* Once geodesic distances are known, the intrinsic relationship between the data
points is known.

* Butisn’t calculating geodesic easy? Just do dynamics on the manifold.

Free Hamiltonian (K.E. only) H = ‘p'g = E glj(i)ptpj
(2]
Can solve Hamilton’s equations

J
P ==Y _ gh(x)pip;
i

But our data is just samples of points on the manifold.

Don’t know:  gi; p'



7 ‘ Geodesics

* OQOur approach to manifold learning will proceed through learning geodesic
distances on the manifold.

* Once geodesic distances are known, the intrinsic relationship between the data
points is known.

* Butisn’t calculating geodesic easy? Just do dynamics on the manifold.

Free Hamiltonian (K.E. only) 7‘[ = ‘p'g = Z gij (-L)Ps.PJ
(2]
Can solve Hamilton’s equations
B =" g"(x)p Instead, we will look at quantized
j dynamics.
M = — Z Q?;"j (,{(;)p,{:pj - Instgad of propagatfng a cIassiFaI
i particle on the manifold, we will

propagate a quantum state. Why is that

But our data is just samples of points on the manifold. better? We'll see.

Don’t know: gij pt



s | The guantum manifold learning program

Classical flow (incl. (geodesic flow)

a > a o Py

A

Central motivation Egorov’s theorem (1969) '
i

This is the N — oo limit in

uantization | imi h —
q Classical limit 0 the data context

A\. > AtTAAt

Quantum evolution

Advantages:

1. Linearization: geodesic flow through linear dynamics
- Must more efficient than approximate solution of geodesic
equation (e.g., fast forward marching)

2. Rigorous convergence proofs and hyper-parameter choices



9 ‘ The quantum manifold learning program

Embed using
geodesic distances
(visualization,

Extract geodesic reduced order

distances on modeling)
manifold from
propagated state

e e ———

—_

Simulate
propagation of
‘ tailored, localized
initial state

e

Construct data
approximation of

quantum propagator

Construct normal
coordinates
(reduced order
modeling)

Manifold Laplacian



10 ‘ Data-driven construction of quantum propagator

Data V ={vy,v9,...,on} v, €R" Samples of points on manifold
Graph embedding of data it

Vi — U
[TN,e}@‘.,j — k( ” D ) — Adjacency matrix for symmetric
@ weighted graph

Scale parameter

where k‘() is an exponentially decaying function in its argument.




11 ‘ Data-driven construction of quantum propagator

Data V ={vy,v9,...,on} v, €R" Samples of points on manifold

T

Graph embedding of data

= L e

PEERREELEE
TRRTIRATER

Vi — U
[TN,e}@‘.,j — k( ” D ) — Adjacency matrix for symmetric
@ weighted graph

Scale parameter

where k‘() is an exponentially decaying function in its argument.

Define the graph Laplacian

N
Dy.= diag(Z[TNTe]@_,j)

1=1

* Also used in spectral methods such as diffusion maps, Laplacian eigenmaps, ...

* Ingeneral € —a@ N — x




2 | Data-driven construction of quantum propagator

Define the graph Laplacian

I~ — D_l TN -
N N,E N? i : DN,G. — (11ag(Z{TN-F]3;})

L.LM,E =
€ =1
We prove c.f.
N —=oo 2 Vp c V - Coifman et al., PNAS, 102, 7426 (2005) K
LN?(-: Y £h ~ h Ag —|— 2 —_— - Hein, Audibert, von Luxburg, J. Mach. Learn. Res., §,

p 1325 (2007)
/ measure according to which

. . manifold is sampled
Semiclassical parameter

So we can approximate the quantum propagator Uh (&jth= e_%Hf Up(t) = e—:—;\/ Lnet



3 ‘ The quantum manifold learning program

Embed using
geodesic distances
(visualization,

Extract geodesic reduced order

distances on modeling)
manifold from
propagated state

e e ———

—_

Simulate
propagation of
tailored, localized
initial state

e

Construct data
approximation of ‘

quantum propagator Construct normal

coordinates
(reduced order
modeling)

- We want to know geodesic distances of sample points from some given point.

- Our strategy will be to propagate a quantum state initially localized at the
initial point (like a test particle).

- What localized initial state? A delta-function on the initial point is too localized
— its not an L? function and will not propagate along geodesics. Instead, use the
most classical state, a coherent state.




4 | The quantum manifold learning program

Embed using

geodesic distances
S emm—— (visualization,
Simulate Extract geodesic reduced order

Construct data
approximation of ‘
quantum propagator

propagation of distances on modeling)
|
tailored, localized manifold from

initial state propagated state Construct normal
o T — coordinates

(reduced order
modeling)

How to extract geodesic distance from propagated state? We prove

lim | (02|04 (87205 () 4L,) — = 0 @4 (x0, Po)| = 0

h—>0/ v\ \

Coherent state Position operator Geodesic flow

1
if h=exte, axl




s | Discretization as quantization h=cita, anl
In — Dy T . . . -~ ,
Ly.= ; e captures the limited resolution of the manifold due to finite sampling

The “uncertainty” implied by this limited resolution needs to be distributed in phase space

Equal distribution in configuration and momentum space =>

“Classical limit”

is the large data limit

h —0
N — 0

1
h ~ €2

Co = (XOaPO)
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16 ‘ The quantum manifold learning program

Embed using
geodesic distances
(visualization,

Extract geodesic reduced order
distances on modeling)
manifold from

propagated state

— s

—_

Simulate
propagation of
‘ tailored, localized
initial state

e

Construct data
approximation of

quantum propagator Construct normal

coordinates
(reduced order
modeling)

By converting our input Euclidean
distances to approximated geodesic
distances in neighborhoods, we get a
sparse, and more accurate graph
embedding of the data

Euclidean distances Local geodesic distances



7 ‘ Example: sphere

N=3000 points, uniformly sampled on unit sphere
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s | Example: COVID-19 mobility data

Social Distancing Metric dataset from SafeGraph Inc.
https://docs.safegraph.com/docs/social-distancing-metrics

* Dataset collects user location information (from cellphone GPS data) over the course of the initial 3 months of the
COVID-19 pandemic (Feb 23, 2020 — June 19, 2020: 117 days).

e Aggregated at the census block group (CBG) level.
* Understanding patterns in mobility behavior can help tune public health policy.

* We compute a “stay-at-home” fraction which represents the fraction of devices that stayed at their home location
on a day.

* We concentrate on the data for Georgia (GA), which has 5509 CBGs.
* Dataset: 5509 x 117
Apply manifold learning through geodesics and embed in 3

dimensions (reduction from 117 dimensions) and then
perform clustering using K-means.




19 ‘ Example: COVID-19 mobility data
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c.f. Levin et al., “Cell Phone Mobility Data and Manifold Learning.” https://doi.org/10.1101/2020.10.31.20223776



20 Summary

* A new approach to discovering geodesics on data manifolds, and manifold learning, based on
guantum dynamics. c.f.

e Diffusion => Monte Carlo methods
* Annealing => optimization
* Quantum and wave propagation => geodesics

* Alternative to some common data processing algorithms:
* Dijkstra’s algorithm
* Fast forward marching

* Many directions for follow-on research:
* Develop a quantum algorithm for manifold learning on quantum computers
* Make existing approach more efficient
* Develop methods for embedding point cloud data based on geodesic distances
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Backup slides




2 ‘ Initial states

 What localized initial state? A delta-function on the initial point is too localized — its not an L?
function and will not propagate along geodesics. Instead, use the most classical state, a coherent
state.

* Coherent states can be characterized in various ways. One useful one:

* Have equal and minimal uncertainty in position and momentum. P
A
1 i Ix—q 1| Vh
— — _~ enXXoPo) Co = (X0, Po po b—— -2 '
T/)CU (X) — (XW)CU) — ( Ay e € 2h ( ’ ) Fo Vh
wh) cT* M |
I
Combescure & Robert. Coherent States and Applications in Mathematical Physics. Springer Netherlands, 2012. }! >
Gazeau, Coherent States in Quantum Physics. Wiley-VCH, 2009. 0 £z

* Can approximate this using the data we have

2
g —vqll

Wc(])]=e%(”'i"”°)Tpﬂe s, 1<3<N.

* Initial momentum approximated using a principal component analysis (PCA)



» | Propagation of coherent states

* We propagate a collection of such coherent states to determine the geodesic spray of points a
certain geodesic distance from initial point.

* |t's pretty neat that we're able to do everything with just samples from the manifold. That is an
advantage of quantization.

* In the continuum (asymptotic) setting, computing |’¢Dt)cm|{é7$;bw6{g)s to computing

P(x,t) = /M dx' G(x,x";t)y(x',0)

Dynamics completely in terms of position coordinates only.



2« | Example: COVID-19 mobility data

Google COVID-19 Community Mobility Reports
https://www.google.com/covid19/mobility/

Dataset collects user mobility information (% change in mobility from baseline) over 6 categories for 132 countries and
regions within these countries.

Timeframe: ~1 year (Feb 15, 2020 — Jan 24, 2021)
Baseline: Jan 3 — Feb 6, 2020
Categories: Retail and recreation, grocery and pharmacy, parks, transit stations, workplaces.

e.g., _ _
Retail and Recreation

After pre-processing: ' I —
For each country, 345*5=1725 columns (features) that l oy ey —
represent a time series of mobility changes across 5 | | ]
categories. S
Apply manifold learning through geodesics and embed in 3 - = = —
dimensions (reduction from 1725 dimensions) -




‘ Example: COVID-19 mobility data
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‘ Example: COVID-19 mobility data
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