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3 ‘ Problem Overview

= Remote Sensing Big Data are earth observing data continuously obtained
from remote sensors (e.g. satellite, cameras, drones, RADARSs, etc.)
= Big Data Characteristics: Volume and Velocity

= The capability of detecting objects of interests and tracking them as they
move is important to many critical and challenging national security missions

= Common application: home/business surveillance, environmental
monitoring, autonomous sensing, etc..

=Key Challenges:

= Computation Processing
= High volume of data and detection rate (large field-of-view)
= Real-time processing requirement

= Small Object Detection
= Difficult to detect far away objects (lack of spatial features)



4 ‘General Framework for Remote Sensing
System

: Tasking, Collection, Processing, Exploitation,
Tasking Dissemination (TCPED)
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s I Artificial Intelligence (Al) Processing

= Machine learning and Deep Learning Techniques

Image— — Detected
Objects

YOLO Vehicle Detector

Al Object

Detector
(e.g. YOLO)

Frame

=Advantages

: Eas;; to get started (e.g. TensorFlow, Caffe, PyTorch,
etc..

= Requires deep quality features in training data
= Large pre-trained labels
= High accuracy

= Fast decision (operates on one image frame)

= Populate methods: You Only Look Once (YOLO), Mask R- Results produced by students from UIUC during
CNN the 2018 SNL/UIUC/ARI internship program

= Disadvantages

= Requires a large number of training labels (i.e. usually
thousands of examples per target class)

= Limited explainability
* VVulnerabilitv (pixel attack)



Traditional Detection Processing

Key Advantages:

= Algorithm does not require pre-trained labels

= Explainable (strong mathematic and statistical
principles)

Disadvantages:
= May requwe multiple frames to drive down false
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71 Research Problem: Detection of Small
Moving Object

*Challenges

= Large field-of-view sensor placed very far away

=Small sized target (just a few pixels)

= Adaptive algorithm (does not require pre-trained labels)
*Low SNR target



: ‘ Experiment: Remote Detection of Vehicles from
Sandia Peak

Camera Specification ___Cropped Raw Im

Image Resolution | Lens focal length

Mysterium X 24 frames per 3072x1620 72mm
second

Camera Location

Camera Location

g —e
- g

Camera Location 10,379 feet antn

« Distance to target is ~4000 ft.
« Size of the vehicles range from 4-20 pixels.
Ground Target 6060 feet * Vehicles are barely visible to the human eye. !

Elevation

Elevation



Method: Detection Processing using

Constraints .
Algorithm Workflow
frame
= Key scientific contributions: |

> An ideal “Normalized Difference
Frame” calculation to perform
velocity matched filter
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ol Normalized Difference Calculation

Let Fs (t) correspond to the stabilized frame at time t, and B(t-1) corresponds to the
background computed in the previous time step.

The Difference Frame at time t, can be calculated using the following equation:

D(t) = Fy(t) — B(t—1)

The Temporal Variance v for each pixel at time t, can be calculated using an Infinite Impulse
Response (IIR) filter with the following equation: |

v(i,j,t) =1 =y)D(3,j,)* +yv(i,jt—1)

where ¥, the variance update rate [0,1]

The Temporal Standard Deviation o for each pixel at time t, can be obtained by using the
following equation:

o(i,j,t) =yv(ij,t)




I Normalized Difference Calculation (cont.)

The Normalized Difference Frame Ny for frame pixel location (i,]) in time t is expressed
as follow:

Key Motivation: Pixels in different parts of an image can have
different temporal standard deviation, depending on factors such
as the environment and the scene structure. It is important to
normalize frame relative to account for variation of noise
levels across an image.



12‘ Constrained Velocity Matched Filter
(CVMF) Process

Normalized Difference Frame
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s 1 Chip Placement
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Strategy: Dividing the road into different number of regions (called “chips”)
Key Motivation: Enable parallel processing of individual chips and Z-score calcula



1 Velocity Matched Filter Processing on “Chips”

The continuous VMF process can be implemented in discreate form, by shift-
and-add-operation with different velocity hypotheses along the path.

Example of an object’s mgvement over time Shifting and Adding Operation

A7 S /®/+_-

e ~— (i)t —1)

Cli+Aij+4j,t)  CEFTALj+At+1)
C(i,j,t—-1) C(i + Ai,j + Aj,t)

+

C(i + Aij + Aj,t + 1)

Mathematically, this can be expressed as the following:

S, j,t)=C+ALj+Aj,t—w)+-C(i,j,t)+ - C(i+Ai,j+Aj,t+w)

where §, is the summation of the pixel (i, j) across multiple frames. (Ai, Aj) corresponds to
the shift positions, and w, represents the frame window for the summation, and k
corresponds to the index of the matched hypothesis.
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5 ‘ Computation Analysis

The total number of matched hypothesis K can be expressed as:

K=M N
(6)

where M is the number of directional hypotheses and N is the number of velocity
hypotheses. Since the movement of the individual targets are constrained in a pre-
determined path, M is 2 in most cases (cither forward or backward direction). IE/! can be
greater than 2 when the chip is at an intersection. The number of velocities depends on the
target’s speed.

Processing of each individual chip can be done independently



6 1 Z-score Calculation

To find the detection in the sum chip S for a given hypothesis k, we first normalized the sum
chip to form a Z-score chip. We can do this by computing the mean pgs and standard
deviation g of the sum chip §S. For dense target scenarios, it is recommended that a trim
mean is used instead, to avoid high SNR targets inflating the mean estimates.

Then, we compute the Z score of the sum chip Z for each pixel (i,)) using the following




v 1 Z-Score Thresholding

If (|Zs(i,j)| = T), then pixel (i,)) is a candidate detection.




s I Tracker Feedback

Normalized Difference Frame
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As the target(s) are being tracked, the state vectors X associated with covariance P (motion
constraint) are fed back to the CVMF process to tine tune the pre-detined velocity bins and
improve the accuracy of matching,



w I Multiple Target Tracker

An object’s dynamic movement can be expressed mathematically using the following
equations:

() =Ax(t—1) +q(t—-1), q(®~N(0,Q)

(10)
y(t) = HX(t) + r(b), r(t)~N(O,R)

where X corresponds to the state vector, Y corresponds to the output vector, A corresponds
to the system matrix, and H corresponds to the output matrix. The system includes
additive process noise q and measurement noise 7, which are modeled as white noise
gaussian with zero mean.

The constant velocity model can be expressed in the following form:

Kl(t) = l’](_t - 1) +A'I‘X3(t_ 1) + q1

X(t) = x,(t— 1)+ ATx,(t — 1) + q;

x3(t) = x3(t—1) +qs

Xy(t) = x4(t— 1)+,




» | State Equation in matrixed form

In matrix form, this can be expressed as:

where Q, is the process noise matrix, and R, is the measurement noise
matrix. Kalman Filtering can be used to predict and update the state
estimates and its covariance estimate P at each time step.



n | Kalman Filtering

Kalman Filtering is used to update states and covariance for each time step.

2(klk-1) =A%k - 1]k - 1)
Prediction Step P (k|k-1)=A P(k — 1]k — 1)AT+ Q

K(k) = P(k|k — 1)HT(HP(k|k — DHT + R)™!

Updated Steps:

X(k|k) = X(k[k — 1) + K (y(k) — H)X(k|k — 1)

P(klk) = (I - K(k)H)P(k|k — 1)

As the target(s) are being tracked, the state vectors X associated with covariance P (motion
constraint) are fed back to the CVMF process to fine tune the pre-defined velocity bins and
improve the accuracy of matching.



2 ‘ Benchmark Comparison
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23 ‘ ROC curve comparison E
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I
The additional CVMF processing improves baseline ROC curve significantl;&




2 I CVMF Normalized Difference vs CVMF
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0.95 |
0.9 II
0.85 |

0.8 f

Probability of Detection

0.7

CWMF - 5 MDframe
CWVMF - 3 NDframe |

0.7 r
CWMF - 5 Dframe
CWMF - 3 Dframe
0.65 :
0 5 10 15 20 25

False Alarm Per Frame

Operating CVMF Normalized Difference Frame is much more
desirable than on the Difference Frame.



s 1 Conclusion

= The addition of CVMF processing significantly improves the ROC curves
= CVMF should be operating on normalized difference frame

= Key Scientific Contribution I
i
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