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We are making progress on tomographic reconstruction from
limited views in MagLIF to understand stagnation conditions in 3D
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- 3D tomographic reconstruction for MagLIF and other high-energy-density
experiments is challenging due to limited views from space constraints

* For simple 2D slice reconstruction, orthogonal views may be insufficient for
reliable solutions, but a third view in the future could provide enough
information for accurate assessment of morphology

» Using learned 3D basis functions with coherent axial structures may
adequately constrain 3D reconstructions with just 2 orthogonal views

 Initial 3D reconstructions of MagLIF stagnation columns show irregular hot
spot structure



Measuring fuel and mix volumes in 3D is important for MagLlIF,
but challenging due to limited diagnostic views

Orthogonal projections @ 7.2 keV

from spherical crystal imager! - Past fuel volume estimates biased by 1D or 2D assumptions
90°

Creates bias in inferred stagnation parameters (pressure, mix, etc.)?

no
= | MagLlIF

3D Stagnation Plasma * Measuring morphology of fuel and liner in 3D is important to
understand how mix is degrading performance

2D Be liner Assumption: liner pR(0) varies slowly enough over
X-ray emission stagnation column width that attenuation can be ignored
projections

1. E.C. Harding, APS-DPP 2020, 2. P. Knapp, BI101.00004 (this conference)



Measuring fuel and mix volumes in 3D is important for MagLlIF,

but challenging due to limited diagnostic views
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1. E.C. Harding, APS-DPP 2020, 2. P. Knapp,

Past fuel volume estimates biased by 1D or 2D assumptions
Creates bias in inferred stagnation parameters (pressure, mix, etc.)?

Measuring morphology of fuel and liner in 3D is important to
understand how mix is degrading performance

Two views have been fielded, but still a very limited data set
for uncovering general 3D shape reliably

Need to add constraints for a more well-posed problem:

Smooth solutions, non-negativity (emission), cylindrical/helical
structures

Assumption: liner pR(0) varies slowly enough over
stagnation column width that attenuation can be ignored

B101.00004 (this conference)



We are using basis-function expansions to better constrain the
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reconstruction and encode natural geometries into the solutions |
Data model: _ _
o _ Object, array of 2D Ob.leCt (sllce), f
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- Global basis functions \\/ "\ :
* Encode natural geometries, smoothness, etc. I
* Circular harmonics, SVD, etc.
Learning-based (train convolutional neural
networks)

SVD = Singular Value Decomposition



We are using basis-function expansions to better constrain the
reconstruction and encode natural geometries into the solutions

Data model:

o _ Object, array of
Projection matrix

~ v pixels/voxels
y = Af + ¢
Projection -~ \Noise
measurements
Basis function expansion: “Dictionary”
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Pixel Basis (solve for each pixel, f;)

Significant line-of-sight/streaking artifacts with
few views

Global basis functions
Encode natural geometries, smoothness, etc.
Circular harmonics, SVD, etc.

Learning-based (train convolutional neural
networks)

SVD = Singular Value Decomposition

“Training Data”
(slices of helical blobs)

“Optimal” basis functions,

calculated from SVD on training volumes
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Even a highly reduced problem using basis expansions for
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a 2D slice demonstrates data sparsity using just 2 views
L1 norm Reconstructions, rotating projections
* Reconstruction:” encourages sparsity Ground Truth ' ‘ O
Minimize w.r.t. a: §HY — A Dal]* + al|al; ' 0
st. Da=f>0 SVD, B = 16 k_ S : ,
Solution is hi t i A A ﬂ ‘
. ution is highly sensitive to which ‘ _ : ‘
projections are used W

« Can add modes, change value of a, etc., but
reconstructions still exhibit pathologies

Adding a third view substantially improves
“convergence” to a common solution

Circular harmonics, | ' -

M=5 K=10 ‘ A ;Q

o=5ec VA VA

*Solve with Fast-Iterative Shrinkage Thresholding Algorithm: Beck & Teboulle, SIAM, 2009




‘ 3D basis functions (calculated with SVD) can incorporate
axially coherent structures, further constraining solution

3D training data volumes (helical blobs)

X =UXVT

» Generate a large training data set (N = 200) of 3D

volumes with limited axial extent

*  Compute SVD on this set of 3D volumes to get
fundamental modes and use to reconstruct full 3D

volume

* Future: Build confidence in training data by using
metrics to determine if images from tralnlng volumes

are in same distribution as exp. images'

1. W. Lewis, PP11.00170

Slices of basis functions from SVD
Axial structures

Higher-order modes
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Reconstructions on test object (not included in training data)
with 3D basis functions shows accurate morphology

Orthogonal Projections Slices from 3D volume
: ‘ \ : : \
Ground Truth (signal/noise = 10) Ground Truth
| L - '
. s -
From Reconstruction Reconstruction w/3D basis
. .- -
-
- | Reconstruction w/
# 2D basis




Reconstructions on test object (not included in training data)
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with 3D basis functions shows accurate morphology
Orthogonal Projections Slices from 3D volume
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Reconstructions with 3D basis functions are " o | Reconstruction w/
less sensitive to which projections are used! 2D basis




Initial 3D reconstructions of a MagLIF stagnation column

show asymmetric hot spots

z3479
0° 90° Data
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* Reconstruct volume patch from
orthogonal projections at 7.2 keV
using learned 3D SVD basis

» Extend to full volume by stitching
overlapping patches together

* Projections from reconstruction
match data to within <15%

400 um [

*Projections are intensity-normalized
assuming slowly varying liner pR(0)
and center-of-mass aligned
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Initial 3D reconstructions of a MagLIF stagnation column
show asymmetric hot spots

Reconstruct volume patch from
orthogonal projections at 7.2 keV
using learned 3D SVD basis

Extend to full volume by stitching
overlapping patches together

Projections from reconstruction
match data to within <15%

400 um [

*Projections are intensity-normalized
assuming slowly varying liner pR(0)
and center-of-mass aligned
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Initial 3D reconstructions of a MagLIF stagnation column

show asymmetric hot spots
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* Reconstruct volume patch from
orthogonal projections at 7.2 keV
using learned 3D SVD basis

» Extend to full volume by stitching
overlapping patches together

* Projections from reconstruction
match data to within <15%

From reconstruction
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*Projections are intensity-normalized
assuming slowly varying liner pR(0)
and center-of-mass aligned




We are making progress on tomographic reconstruction from

“ " limited views in MagLIF to understand stagnation conditions in 3D

» 3D tomographic reconstruction for MagLIF and other HED experiments is
challenging due to limited views from space constraints

* For simple 2D slice reconstruction, orthogonal views may be insufficient for
reliable solutions, but a third view in the future could provide enough
information for accurate assessment of morphology

» Using learned 3D basis functions with coherent axial structures may
adequately constrain 3D reconstructions with just 2 orthogonal views

 Initial 3D reconstructions of MagLIF stagnation columns show irregular hot
spot structure



