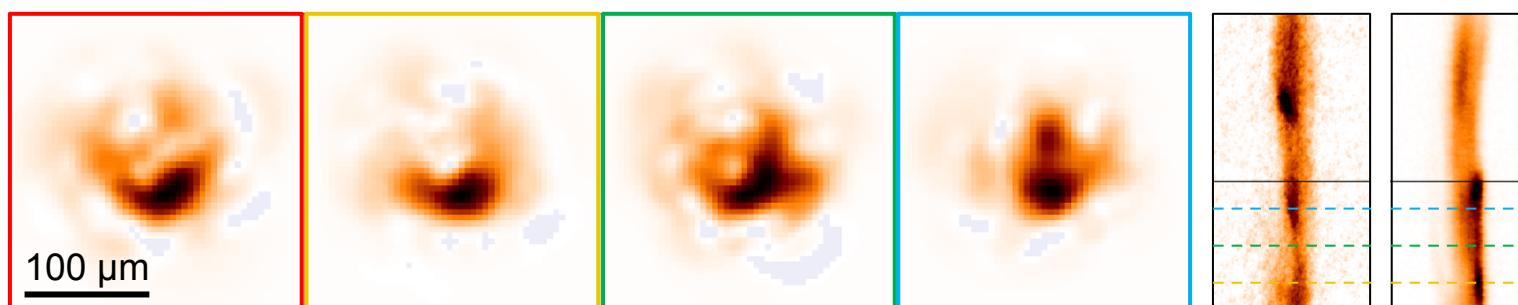


Sandia
National
Laboratories

Tomographic reconstruction of MagLIF emission volumes from orthogonal projections



Reconstructed slices of MagLIF stagnation emission

PRESENTED BY

Jeff Fein

In collaboration with Eric Harding & the MagLIF Team
Sandia National Laboratories, Albuquerque, NM

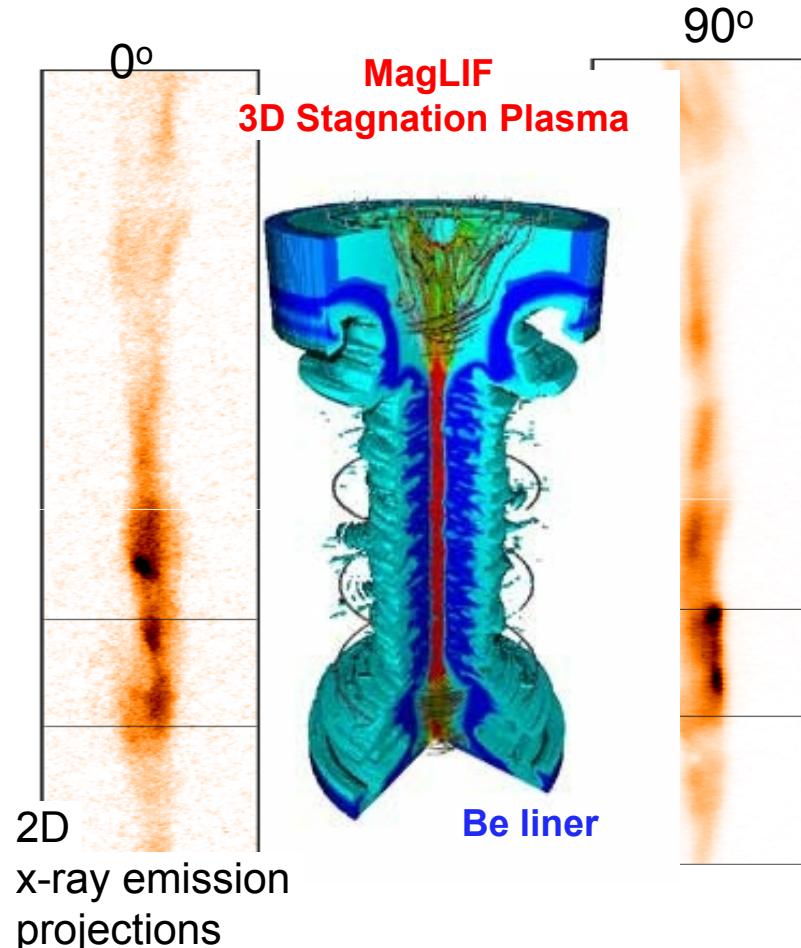
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

We are making progress on tomographic reconstruction from limited views in MagLIF to understand stagnation conditions in 3D

- 3D tomographic reconstruction for MagLIF and other high-energy-density experiments is challenging due to limited views from space constraints
- For simple 2D slice reconstruction, orthogonal views may be insufficient for reliable solutions, but a third view in the future could provide enough information for accurate assessment of morphology
- Using learned 3D basis functions with coherent axial structures may adequately constrain 3D reconstructions with just 2 orthogonal views
- Initial 3D reconstructions of MagLIF stagnation columns show irregular hot spot structure

Measuring fuel and mix volumes in 3D is important for MagLIF,

Orthogonal projections @ 7.2 keV from spherical crystal imager¹

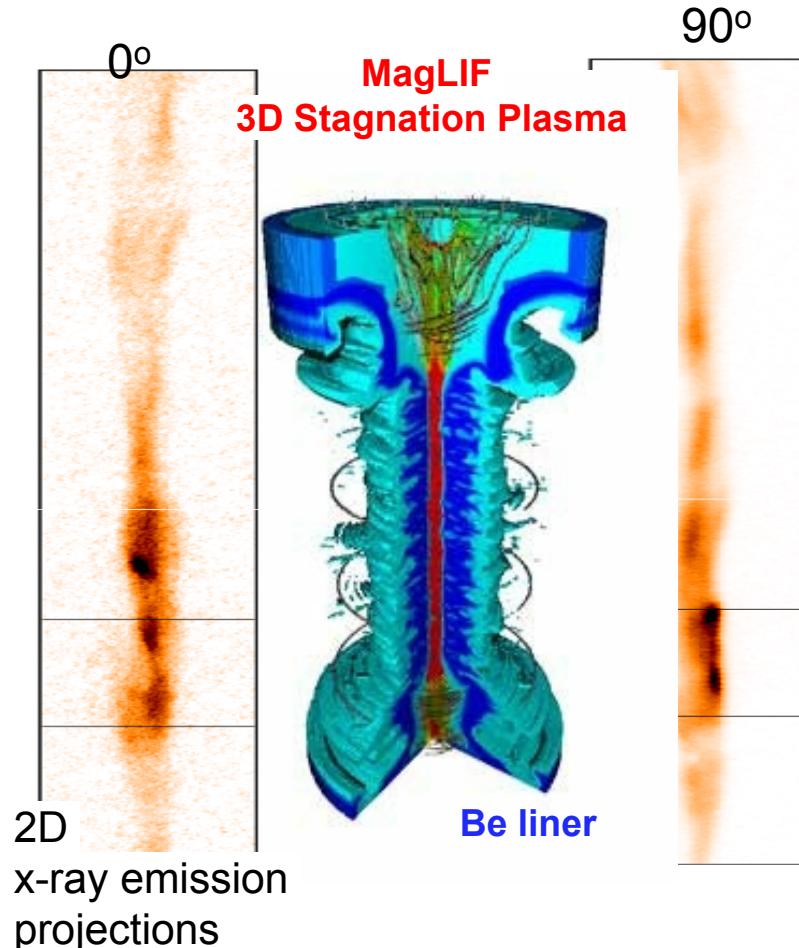


- Past fuel volume estimates biased by 1D or 2D assumptions
 - Creates bias in inferred stagnation parameters (pressure, mix, etc.)²
- Measuring morphology of fuel and liner in 3D is important to understand how mix is degrading performance

Assumption: liner $\rho R(\theta)$ varies slowly enough over stagnation column width that attenuation can be ignored

Measuring fuel and mix volumes in 3D is important for MagLIF,

Orthogonal projections @ 7.2 keV from spherical crystal imager¹



- Past fuel volume estimates biased by 1D or 2D assumptions
 - Creates bias in inferred stagnation parameters (pressure, mix, etc.)²
- Measuring morphology of fuel and liner in 3D is important to understand how mix is degrading performance
- Two views have been fielded, but still a very limited data set for uncovering general 3D shape reliably
- Need to add constraints for a more well-posed problem:
 - Smooth solutions, non-negativity (emission), cylindrical/helical structures

Assumption: liner $\rho R(\theta)$ varies slowly enough over stagnation column width that attenuation can be ignored

We are using basis-function expansions to better constrain the reconstruction and encode natural geometries into the solutions

Data model:

$$\mathbf{y} = \mathbf{Af} + \boldsymbol{\epsilon}$$

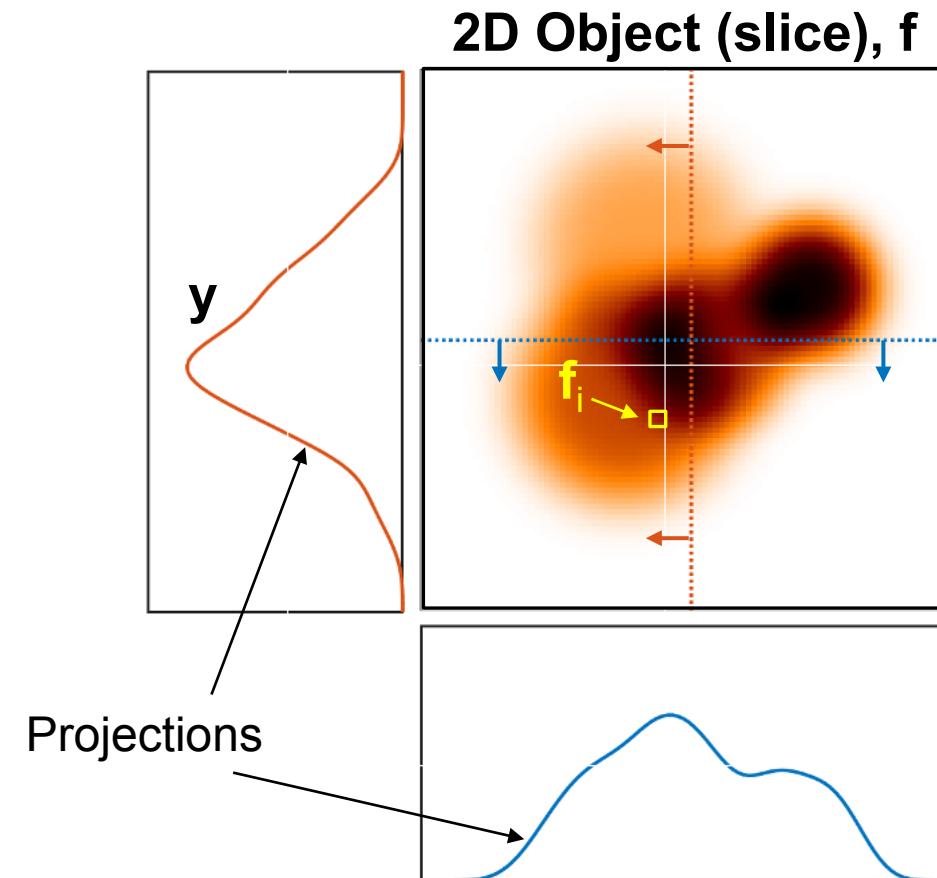
Projection matrix
Object, array of pixels/voxels
Projection measurements
Noise

Basis function expansion:

$$f(x, y) = \sum_b^B a_b d_b(x, y) \Rightarrow \mathbf{f} = \mathbf{D}\mathbf{a}$$

“Dictionary”

- Pixel Basis (solve for each pixel, \mathbf{f}_i)
 - Significant line-of-sight/streaking artifacts with few views
- **Global basis functions**
 - Encode natural geometries, smoothness, etc.
 - Circular harmonics, SVD, etc.
- Learning-based (train convolutional neural networks)



We are using basis-function expansions to better constrain the reconstruction and encode natural geometries into the solutions

Data model:

$$\mathbf{y} = \mathbf{A}\mathbf{f} + \boldsymbol{\epsilon}$$

Projection matrix → Object, array of pixels/voxels
 Projection measurements → Noise

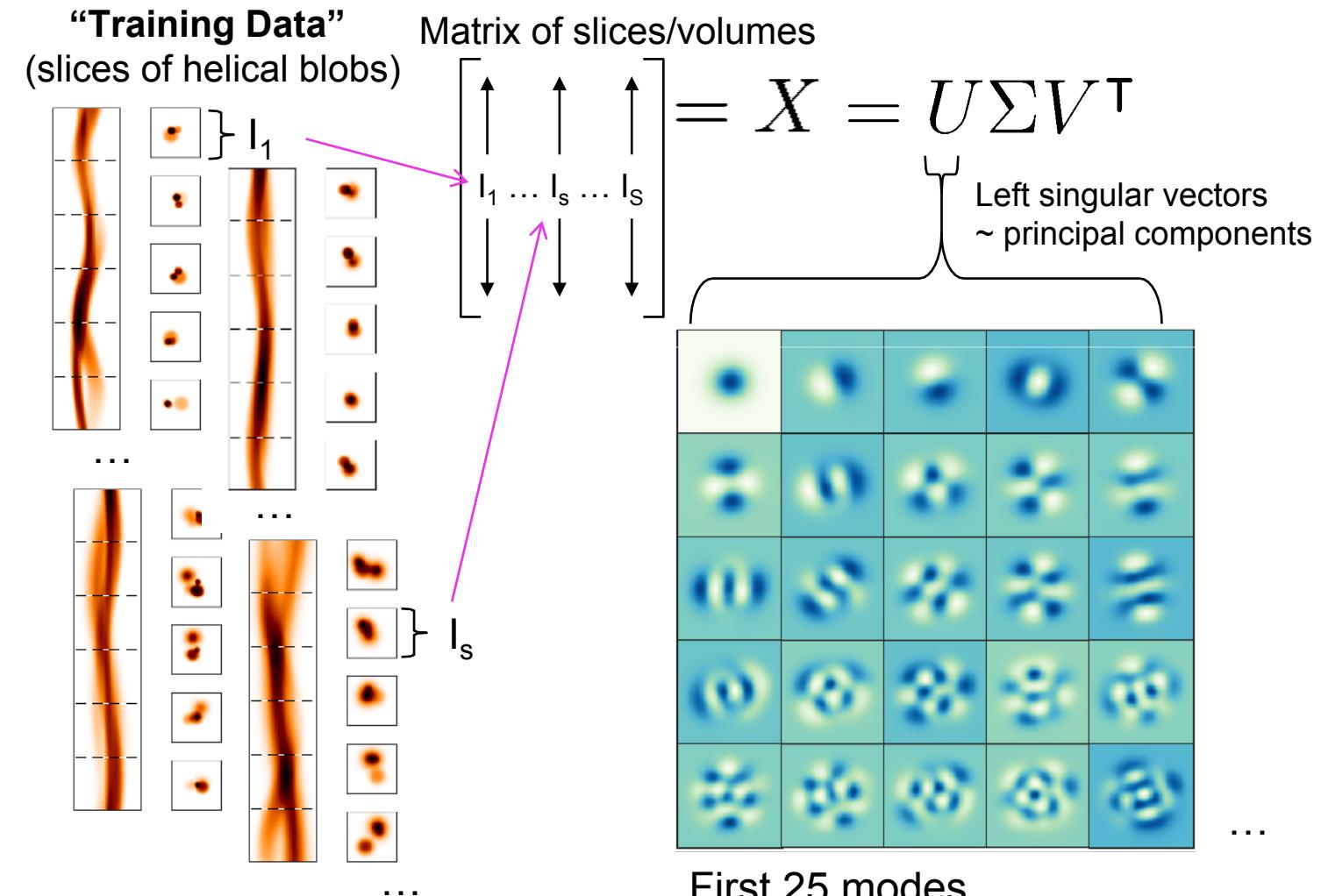
Basis function expansion:

$$f(x, y) = \sum_b^B a_b d_b(x, y) \Rightarrow \mathbf{f} = \mathbf{D}\mathbf{a}$$

“Dictionary”

- Pixel Basis (solve for each pixel, \mathbf{f}_i)
 - Significant line-of-sight/streaking artifacts with few views
- **Global basis functions**
 - Encode natural geometries, smoothness, etc.
 - Circular harmonics, SVD, etc.
- Learning-based (train convolutional neural networks)

**“Optimal” basis functions,
calculated from SVD on training volumes**



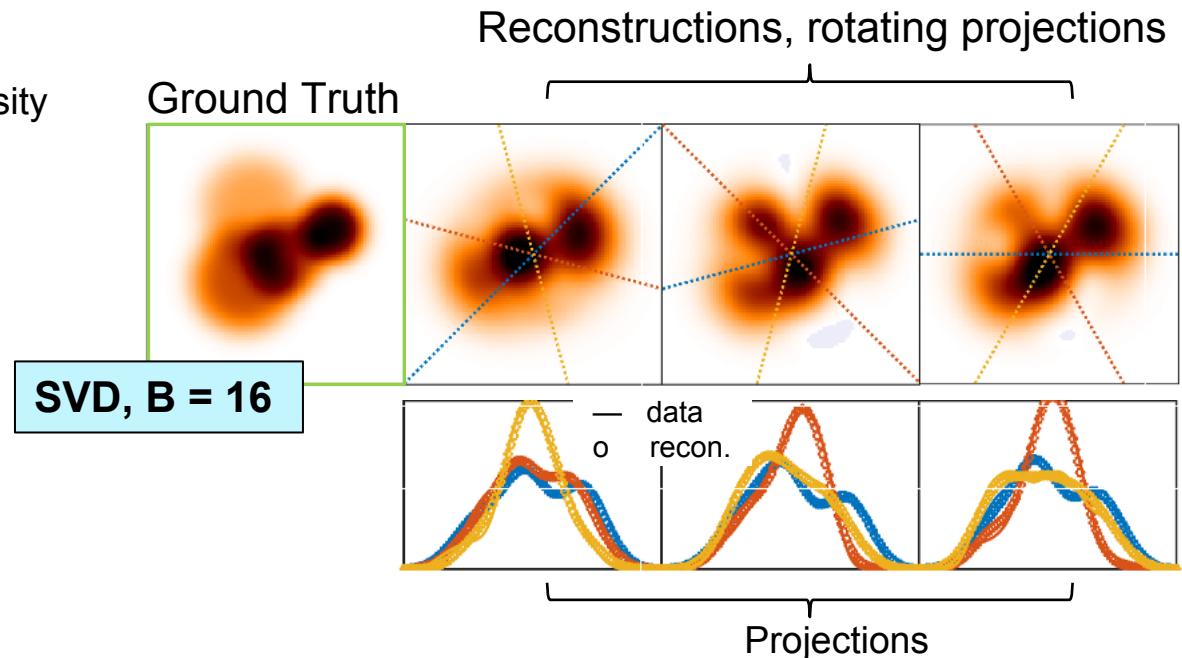
Even a highly reduced problem using basis expansions for a 2D slice demonstrates data sparsity using just 2 views

- **Reconstruction:***

$$\text{Minimize w.r.t. } \mathbf{a}: \frac{1}{2} \|\mathbf{y} - A D \mathbf{a}\|^2 + \alpha \|\mathbf{a}\|_1$$

$$\text{s.t. } D \mathbf{a} = \mathbf{f} \geq 0$$

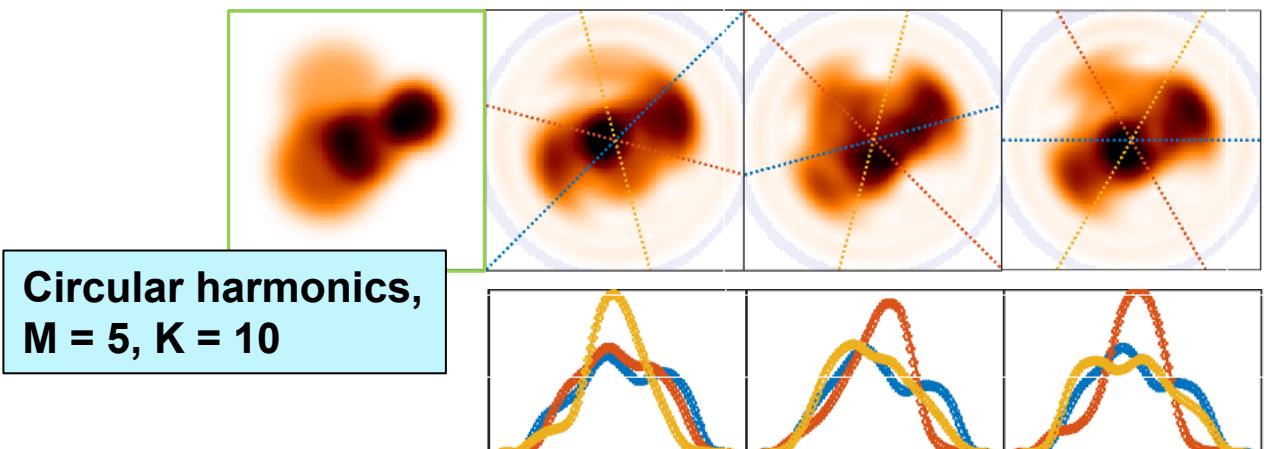
L-1 norm
encourages sparsity



- Solution is highly sensitive to which projections are used
- Can add modes, change value of α , etc., but reconstructions still exhibit pathologies

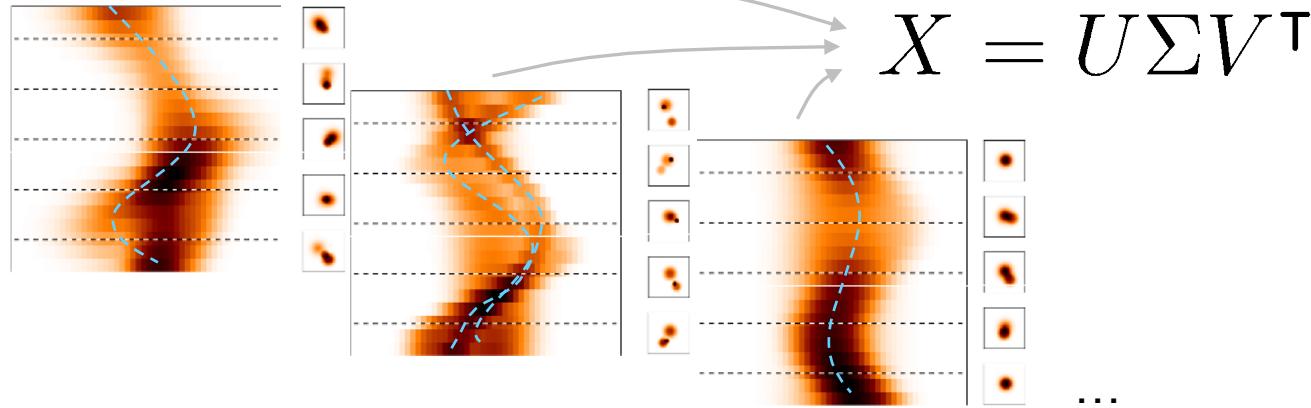
Adding a third view substantially improves “convergence” to a common solution

$$\alpha = 5e-5$$



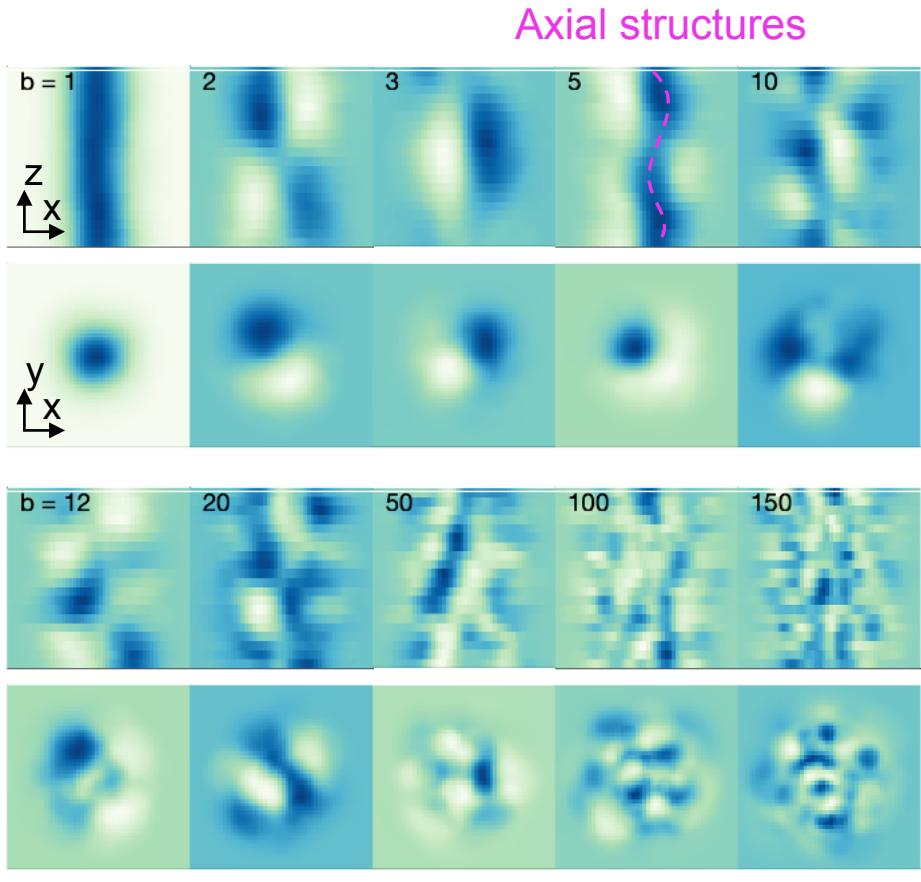
3D basis functions (calculated with SVD) can incorporate axially coherent structures, further constraining solution

3D training data volumes (helical blobs)



- Generate a large training data set ($N = 200$) of 3D volumes with limited axial extent
- Compute SVD on this set of 3D volumes to get fundamental modes and use to reconstruct full 3D volume
- **Future:** Build confidence in training data by using metrics to determine if images from training volumes are in same distribution as exp. images¹

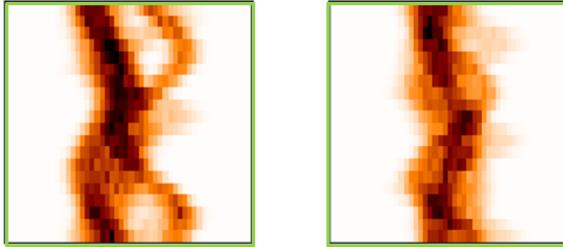
Slices of basis functions from SVD



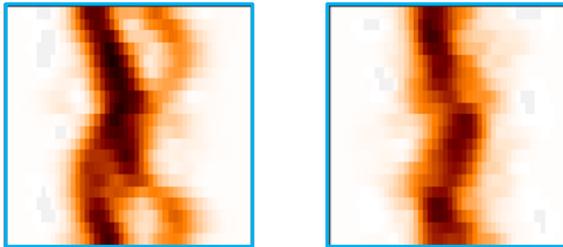
Reconstructions on test object (not included in training data) with 3D basis functions shows accurate morphology

Orthogonal Projections

Ground Truth (signal/noise = 10)

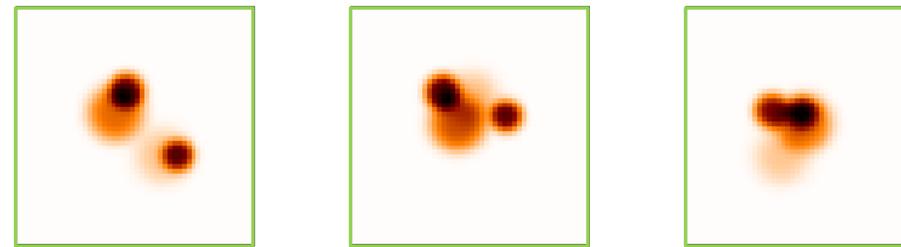


From Reconstruction

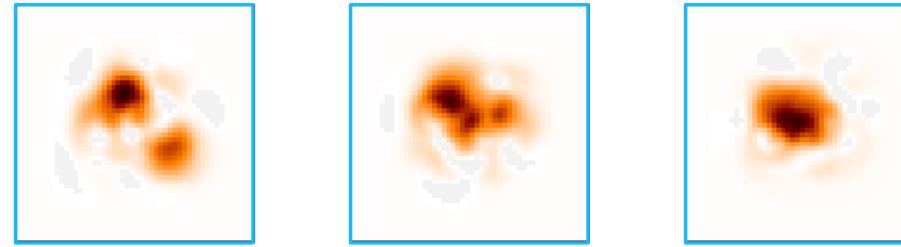
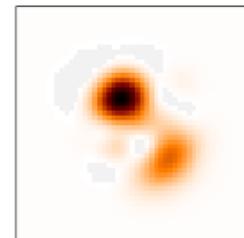


Slices from 3D volume

Ground Truth



Reconstruction w/3D basis

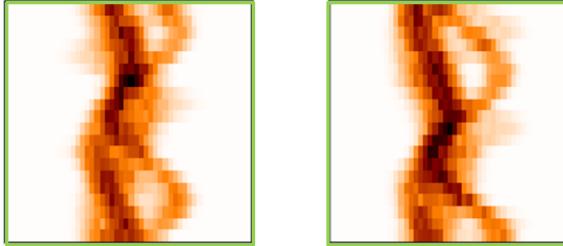


Reconstruction w/
2D basis

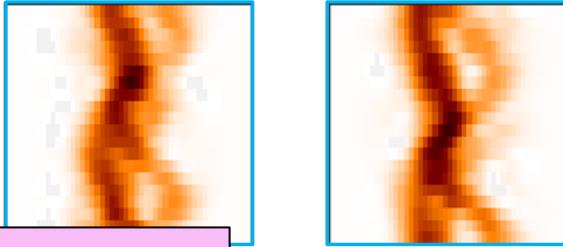
Reconstructions on test object (not included in training data) with 3D basis functions shows accurate morphology

Orthogonal Projections

Ground Truth (signal/noise = 10)



From Reconstruction

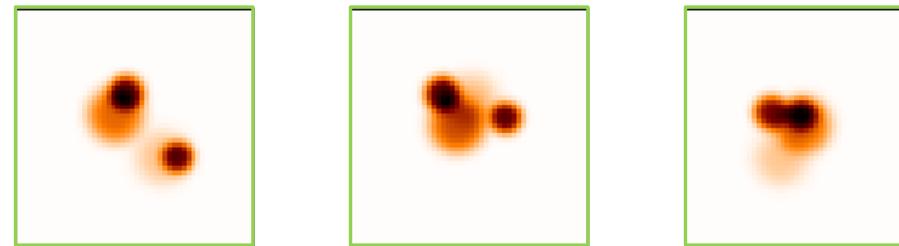


Rotate projections 45°

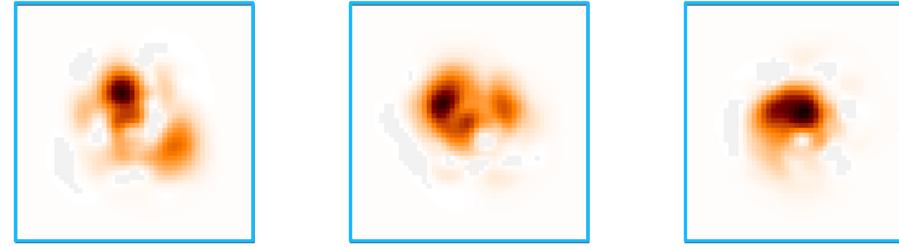
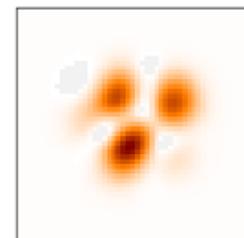
Reconstructions with 3D basis functions are less sensitive to which projections are used!

Slices from 3D volume

Ground Truth



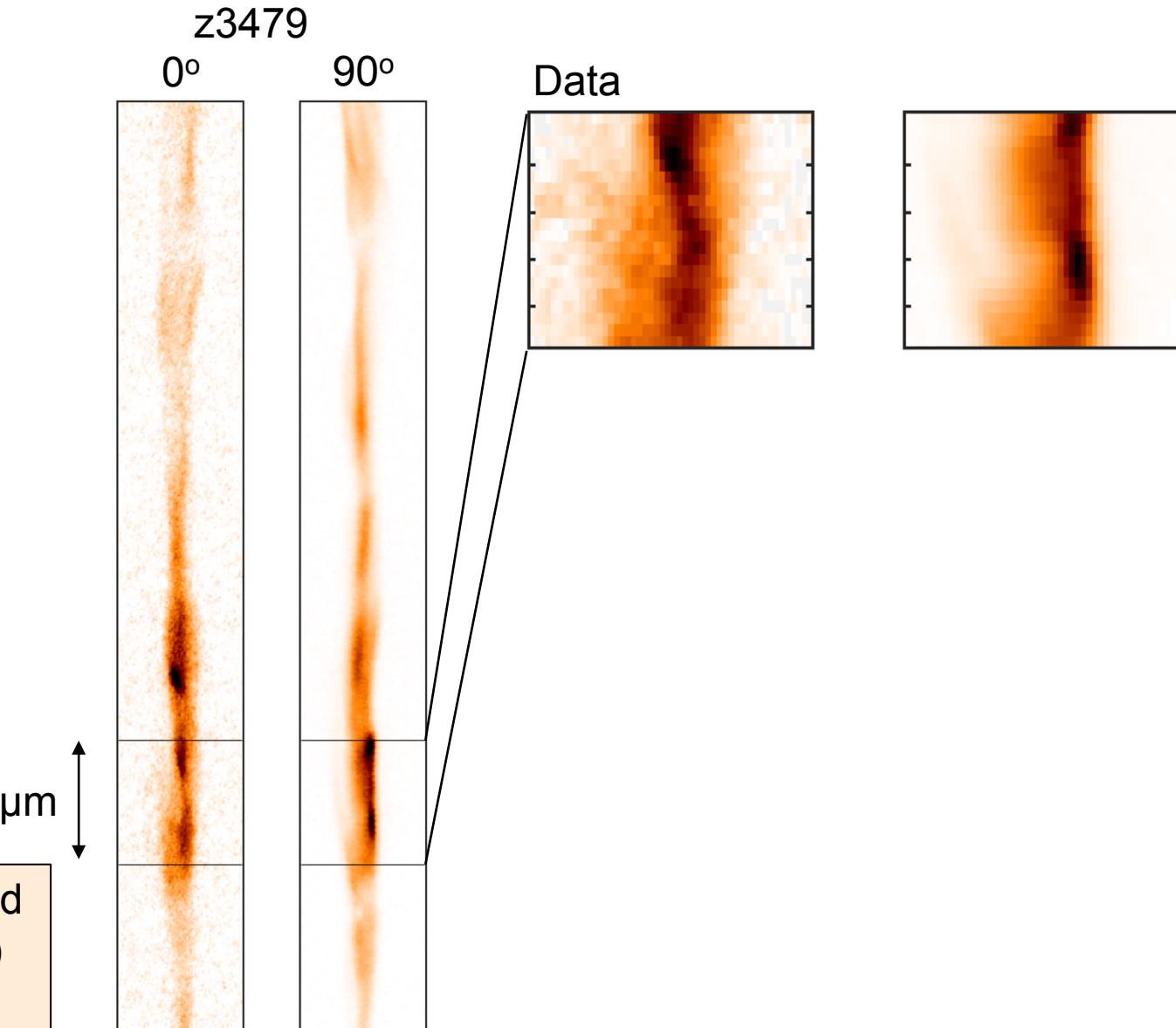
Reconstruction w/3D basis



Reconstruction w/
2D basis

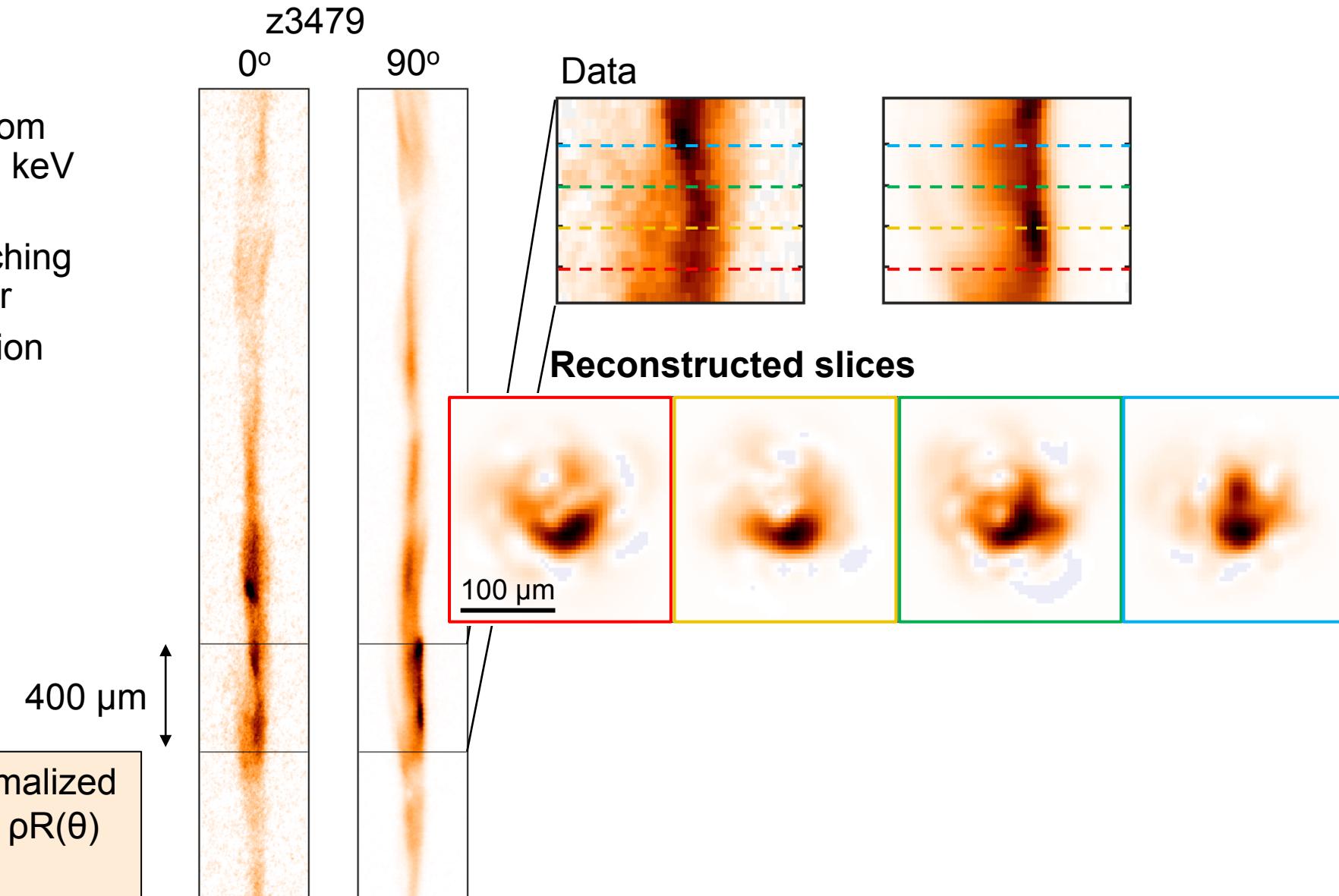
Initial 3D reconstructions of a MagLIF stagnation column show asymmetric hot spots

- Reconstruct volume patch from orthogonal projections at 7.2 keV using learned 3D SVD basis
- Extend to full volume by stitching overlapping patches together
- Projections from reconstruction match data to within <15%



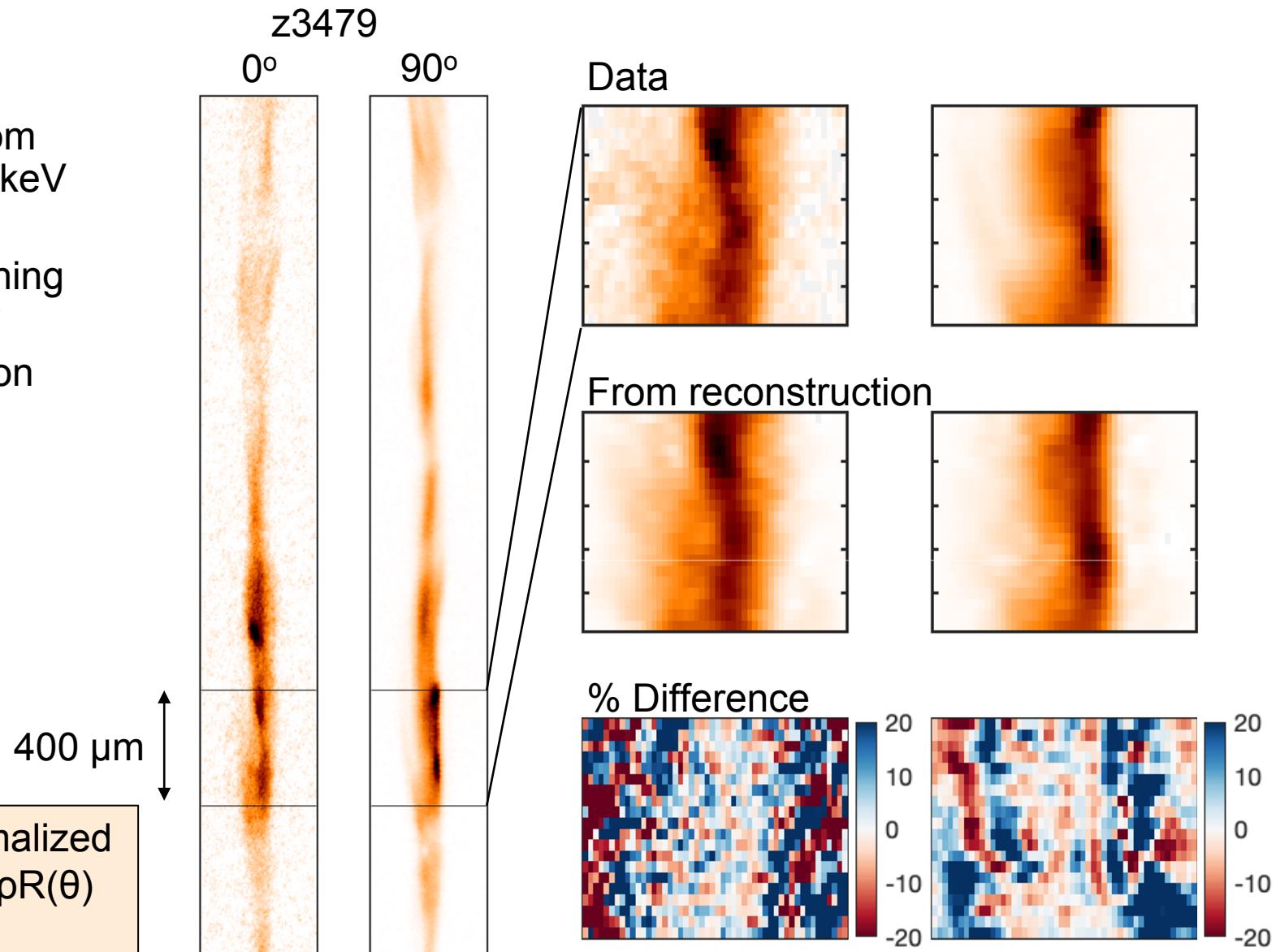
Initial 3D reconstructions of a MagLIF stagnation column show asymmetric hot spots

- Reconstruct volume patch from orthogonal projections at 7.2 keV using learned 3D SVD basis
- Extend to full volume by stitching overlapping patches together
- Projections from reconstruction match data to within <15%



Initial 3D reconstructions of a MagLIF stagnation column show asymmetric hot spots

- Reconstruct volume patch from orthogonal projections at 7.2 keV using learned 3D SVD basis
- Extend to full volume by stitching overlapping patches together
- Projections from reconstruction match data to within <15%



We are making progress on tomographic reconstruction from limited views in MagLIF to understand stagnation conditions in 3D

- 3D tomographic reconstruction for MagLIF and other HED experiments is challenging due to limited views from space constraints
- For simple 2D slice reconstruction, orthogonal views may be insufficient for reliable solutions, but a third view in the future could provide enough information for accurate assessment of morphology
- Using learned 3D basis functions with coherent axial structures may adequately constrain 3D reconstructions with just 2 orthogonal views
- Initial 3D reconstructions of MagLIF stagnation columns show irregular hot spot structure