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• 3D tomographic reconstruction for MagLIF and other high-energy-density 
experiments is challenging due to limited views from space constraints

• For simple 2D slice reconstruction, orthogonal views may be insufficient for 
reliable solutions, but a third view in the future could provide enough 
information for accurate assessment of morphology

• Using learned 3D basis functions with coherent axial structures may 
adequately constrain 3D reconstructions with just 2 orthogonal views

• Initial 3D reconstructions of MagLIF stagnation columns show irregular hot 
spot structure

We are making progress on tomographic reconstruction from 
limited views in MagLIF to understand stagnation conditions in 3D

Summary
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Measuring fuel and mix volumes in 3D is important for MagLIF, 
but challenging due to limited diagnostic views

Orthogonal projections @ 7.2 keV 
from spherical crystal imager1

0o
90o

MagLIF 
3D Stagnation Plasma

1. E.C. Harding, APS-DPP 2020, 2. P. Knapp, BI01.00004 (this conference)

• Past fuel volume estimates biased by 1D or 2D assumptions
• Creates bias in inferred stagnation parameters (pressure, mix, etc.)2

• Measuring morphology of fuel and liner in 3D is important to 
understand how mix is degrading performance

2D 
x-ray emission 
projections

Be liner Assumption: liner ρR(θ) varies slowly enough over 
stagnation column width that attenuation can be ignored
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• Past fuel volume estimates biased by 1D or 2D assumptions
• Creates bias in inferred stagnation parameters (pressure, mix, etc.)2

• Measuring morphology of fuel and liner in 3D is important to 
understand how mix is degrading performance

• Two views have been fielded, but still a very limited data set 
for uncovering general 3D shape reliably

• Need to add constraints for a more well-posed problem:
• Smooth solutions, non-negativity (emission), cylindrical/helical 

structures

2D 
x-ray emission 
projections

Be liner Assumption: liner ρR(θ) varies slowly enough over 
stagnation column width that attenuation can be ignored

1. E.C. Harding, APS-DPP 2020, 2. P. Knapp, BI01.00004 (this conference)
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• Pixel Basis (solve for each pixel, fi)
• Significant line-of-sight/streaking artifacts with 

few views
• Global basis functions

• Encode natural geometries, smoothness, etc.
• Circular harmonics, SVD, etc.

• Learning-based (train convolutional neural 
networks)

We are using basis-function expansions to better constrain the 
reconstruction and encode natural geometries into the solutions

SVD = Singular Value Decomposition

Projection 
measurements

Projection matrix
Object, array of 
pixels/voxels

Noise

Data model:

Basis function expansion: “Dictionary”

2D Object (slice), f

y
fi

Projections
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We are using basis-function expansions to better constrain the 
reconstruction and encode natural geometries into the solutions

“Optimal” basis functions, 
calculated from SVD on training volumes

I1 … Is … IS

Matrix of slices/volumes“Training Data” 
(slices of helical blobs)

I1

Is

…

…
…

Left singular vectors 
~ principal components

First 25 modes
…

SVD = Singular Value Decomposition

Projection 
measurements

Projection matrix
Object, array of 
pixels/voxels

Noise

Data model:

“Dictionary”Basis function expansion:
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• Reconstruction:*

• Solution is highly sensitive to which 
projections are used

• Can add modes, change value of α, etc., but 
reconstructions still exhibit pathologies

Even a highly reduced problem using basis expansions for 
a 2D slice demonstrates data sparsity using just 2 views

α = 5e-5

Ground Truth

Projections

Reconstructions, rotating projections 

SVD, B = 16

Adding a third view substantially improves 
“convergence” to a common solution 

—   data
o     recon.

s.t. 

L-1 norm 
encourages sparsity

Minimize w.r.t.     :

Circular harmonics, 
M = 5, K = 10

*Solve with Fast-Iterative Shrinkage Thresholding Algorithm: Beck & Teboulle, SIAM, 2009
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• Generate a large training data set (N = 200) of 3D 
volumes with limited axial extent

• Compute SVD on this set of 3D volumes to get 
fundamental modes and use to reconstruct full 3D 
volume

• Future: Build confidence in training data by using 
metrics to determine if images from training volumes 
are in same distribution as exp. images1 

3D basis functions (calculated with SVD) can incorporate 
axially coherent structures, further constraining solution

…

Slices of basis functions from SVD

1. W. Lewis, PP11.00170

Axial structures 
3D training data volumes (helical blobs)

x
z

x
y

Higher-order modes
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Reconstructions on test object (not included in training data) 
with 3D basis functions shows accurate morphology

Orthogonal Projections

Ground Truth (signal/noise = 10)

From Reconstruction

Slices from 3D volume

Reconstruction w/ 
2D basis

Ground Truth

Reconstruction w/3D basis
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Reconstructions on test object (not included in training data) 
with 3D basis functions shows accurate morphology

Orthogonal Projections

Ground Truth (signal/noise = 10)

From Reconstruction

Rotate projections 45o

Reconstructions with 3D basis functions are 
less sensitive to which projections are used!

Reconstruction w/ 
2D basis

Slices from 3D volume

Ground Truth

Reconstruction w/3D basis
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Initial 3D reconstructions of a MagLIF stagnation column 
show asymmetric hot spots 

• Reconstruct volume patch from 
orthogonal projections at 7.2 keV 
using learned 3D SVD basis

• Extend to full volume by stitching 
overlapping patches together

• Projections from reconstruction 
match data to within <15%

Data

From reconstruction

% Difference
400 μm

*Projections are intensity-normalized 
assuming slowly varying liner ρR(θ) 
and center-of-mass aligned
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Initial 3D reconstructions of a MagLIF stagnation column 
show asymmetric hot spots 

*Projections are intensity-normalized 
assuming slowly varying liner ρR(θ) 
and center-of-mass aligned

Data

From reconstruction

% Difference
400 μm

Reconstructed slices

100 μm

• Reconstruct volume patch from 
orthogonal projections at 7.2 keV 
using learned 3D SVD basis

• Extend to full volume by stitching 
overlapping patches together

• Projections from reconstruction 
match data to within <15%
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Initial 3D reconstructions of a MagLIF stagnation column 
show asymmetric hot spots 

Data

From reconstruction

% Difference
400 μm

• Reconstruct volume patch from 
orthogonal projections at 7.2 keV 
using learned 3D SVD basis

• Extend to full volume by stitching 
overlapping patches together

• Projections from reconstruction 
match data to within <15%

*Projections are intensity-normalized 
assuming slowly varying liner ρR(θ) 
and center-of-mass aligned
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• 3D tomographic reconstruction for MagLIF and other HED experiments is 
challenging due to limited views from space constraints

• For simple 2D slice reconstruction, orthogonal views may be insufficient for 
reliable solutions, but a third view in the future could provide enough 
information for accurate assessment of morphology

• Using learned 3D basis functions with coherent axial structures may 
adequately constrain 3D reconstructions with just 2 orthogonal views

• Initial 3D reconstructions of MagLIF stagnation columns show irregular hot 
spot structure

We are making progress on tomographic reconstruction from 
limited views in MagLIF to understand stagnation conditions in 3D

Conclusion


