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ABSTRACT

The temporal analysis of products (TAP) reactor provides a route to extract intrinsic kinetics from
transient measurements. Current TAP uncertainty quantification only considers the experimental noise
present in the outlet flow signal. Additional sources of uncertainty such as initial surface coverages,
catalyst zone location, inert void fraction, gas pulse intensity and pulse delay, are not included. For
this reason, a framework for quantifying initial state uncertainties present in TAP experiments is
presented and applied to a carbon monoxide oxidation case study. Two methods for quantifying
these sources of uncertainty are introduced. The first utilizes initial state sensitivities to approximate
the parameter variances and provide insights into the structural certainty of the model. The second
generates parameter confidence distributions through an ensemble-based sampling algorithm. The
initial state covariance matrix can ultimately be merged with the experimental noise covariance

matrix, providing a unified description of the parameter uncertainties for a TAP experiment.

Keywords Transient kinetics - Uncertainty Quantification - Micro-kinetic Modeling - Inverse Problems
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Introduction

The scale-up of chemical processes often hinges on the design of catalytic materials through kinetic modeling!' However,
obtaining flexibility (i.e. accurately predicting reaction rates and selectivities under diverse operating conditions)® is a
challenge for microkinetic model construction. Many experimental and computational methods exist for constructing
reliable models, but each can struggle with efficiency and information density® For example, the error associated with
adsorption energies and reaction barriers extracted from surface science experiments or density functional theory (DFT)
calculations is generally accepted to be on the order of 20 kJ/mol. %2 Transient experiments, which can rapidly generate
large volumes of data and identify potential reaction intermediates of elementary steps are an underutilized alternative
to these traditional approaches, but they require extensive postprocessing of experimental data. The TAP reactor system
is particularly valuable, in structure-activity relationships as it captures catalyst state changes in milli-second time
resolution over a series of reactant pulses."”8 However, the error associated with kinetic parameters extracted from TAP

experiments has not been extensively studied.

The quantification of model parameter and reaction/reactor simulation uncertainties has become more common in
the last decade 219 For example, the uncertainties of DFT calculations have been determined and propagated to
steady-state simulations, providing useful insights into the distributions and mechanistic overlaps between the turnover
frequencies of experimentally observed products'! Elsewhere, automated methods of reducing uncertainty in kinetic

parameters have been implemented'213 Vlachos et al. have performed extensive research on the topic 41

and recently
published several broadly applicable programs and direct applications to ethane dehydrogenation 218 Moreover, Savara
and Walker recently released the CheKiPEUQ code for Bayesian parameter estimation of kinetic models based on
experiment and theory ™ Generally, uncertainty quantification (UQ) allows investigators to draw stronger conclusions

than purely deterministic analyses since confidence intervals can be placed around quantities of interest (Qol).

Though some investigations have been performed, TAP UQ has been studied to a lesser extent. Exceptions include

201211 55 well as

Yablonsky et al. discussing the influence of uncertainties on the results of TAP based chemical-calculus,
the TAPsolver Python program that constructs covariance matrices for PDE-constrained optimized parameters.>? The
complexity of the noise present in the outlet flow signal has also been explored,?* but there are lingering uncertainties
present. In particular, when performing PDE-constrained optimization, all initial states must be defined (e.g. pulse
intensity, pulse delay, reactor temperature, surface composition) before a simulation can be performed, as illustrated

in Figure[I] The values of these initial states are assumed to be known exactly, but often contain their own level of

uncertainty which in turn leads to uncertainties in the simulated outlet fluxes and associated fitted kinetic parameters.



A PREPRINT - NOVEMBER 7, 2022

Pulse

Intensig

Catalyst
Zone Position -3 Forward Problem

“Running Simulations”
== Inverse Problem
“Fitting Parameters”

Initial
' Experimental Conditions
Fr‘;%l(m Signal Noise & H
bservables
: Model €. (Data)

Figure 1: Various sources of uncertainty present in the TAP reactor setup and experimental data, which have an
undetermined impact on the kinetic information extracted while modeling. The forward and inverse formulation of TAP

experiments can provide researchers with this information.
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Presently, there is no standard approach for analyzing the uncertainty resulting from initial states of PDE-constrained
optimization of kinetic parameters from TAP experiments. For this reason, the impact of the uncertainties of the pulse
intensity, pulse delay, catalyst zone position, void fraction and surface composition on fitted parameters are studied.
The methods developed for gaining qualitative and quantitative insights from these sources are presented in Figure
[2] The sensitivity-based algorithm is computationally efficient and provides a rough estimate of parameter variance
and structural certainty. The ensemble-based sampling algorithm is more computationally expensive but yields a more
detailed covariance matrix for quantitative associations. A carbon monoxide oxidation experimental data set is used as
a case study, where the mechanism, set of kinetic parameters, and their associated uncertainties have previously been
explored.?? Comparisons between the impact of uncertainty in the initial state and the experimental noise are made.
The results indicate that when the objective function is used to identify reasonable ranges of initial states, the resulting
uncertainty is larger than the experimental uncertainty, while both are significantly lower than typical uncertainty from

computational chemistry.

Methodology

Problem definition and numerical tools

PDE:s are often used to interpret the complex transport and reactions occurring during TAP experiments.® Knudsen
diffusion is the dominant driving force of transport, while a series of gas-surface and surface-surface reactions can
take place in the catalyst zone at the center of the reactor:** Details of the PDEs have been thoroughly outlined
elsewhere © TAPsolver, a Python package for the processing of TAP experimental data, is used to perform the analysis
presented here ?? This methodology can be framed as the forward and inverse problem (outlined in Figure . The
forward problem is analyzed when the initial states and models are known and the observables (or outlet data) are to be
determined. The inverse problem involves the observables being specified, while the information related to the model is
unknown. This is the primary terminology used to discuss the newly developed methods. A carbon monoxide oxidation
case study is used to analyze the sources of uncertainty in the TAP inverse problem and the TAPsolver package is used
for all forward and inverse simulations. In TAPsolver, we used the Scipy optimization routine L-BFGS built into the
FEniCS and Dolfin-Adjoint Python packages. We began with an arbitrary initial guess for our kinetic parameters (0.001)
and allowed the optimization routine to converge to a local optimal 2225%27l For more complex mechanisms, initial
guesses can be taken from DFT studies or global optimization routines (e.g. PyDDSBB or Python implementation of

the data-driven spatial branch-and-bound algorithm for simulation-based optimization) .28

The case study consists of
co-pulsing of carbon monoxide and oxygen over a partially oxidized platinum catalyst. The mechanism used to fit the

experimental data is

K
CO +x == CO* )]
b

1
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The kinetic parameters fitted to the experimental data were found and are presented in Table [I| Minor variations
between the values in Table[I] and the prior analysis are due to the more accurate specification of the initial conditions
in this analysis/?® The reactor configuration is provided in the supplementary information (Section 1). These details
include pulse intensities and times, surface compositions, zone lengths and void fractions (i.e. all initial conditions),

and values of the kinetic parameters.

One source of uncertainty is the noise present in the experimental data from the mass spectrometer signal, and this
experimental noise translates to uncertainty in the fitted kinetic parameters. Unlike other sources of uncertainty,
experimental noise is present in the objective function (i.e. parameter optimization involves the presence of noise in the

signal). The objective function is defined as

G T )
N (Fsyn - FObS)i.j
D )
i=0 j=0 iJ
where J? is the objective function scaled to the experimental standard error, 0;,; (determined via multiple measure-
ments or analysis of baseline signal). At the minima of the objective function, the curvature is positive-definite and
approximately quadratic. This shape allows confidence intervals to be constructed through the analysis of the Hessian
matrix. The Hessian is determined by calculating the second-order derivatives in the objective space, written as
o?JN

HJN(]’C):W

(6)

where k is the set of kinetic parameters in the model. The covariance and confidence intervals are then estimated
through
Py~ Hy(k)™! (7)

and subsequently taking the square-root of the diagonal values

)

where Py is the covariance matrix and o; is the standard error of parameter ¢ due to experimental signal noise. The
inter-quartile range (IQR) can also be computed as IQ R; = 1.350; assuming the distribution is normal, and is useful

for comparing uncertainties with distributions that are not Gaussian. The uncertainty due to experimental noise was
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calculated and is provided in Table[I] It should be noted that these uncertainties do not reflect the global nature of the

kinetic parameter uncertainties.
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Table 1: Kinetic parameters determined through the analysis of carbon monoxide oxidation experimental data over a

platinum catalyst.2?

Reaction  Value  Standard Error IQR Units
k[ 2.80%10' 279%107" 3.77%10 ' o
kY 1.06x10" 1.02%107' 1.38x10"" 1
kj  9.63%107" 6.69%107% 9.03%107° <
k3 6.56%10° 7.48%107% 1.01x107' 1
Ef  9.05%107% 1.41%107* 1.90%107* m

nmoés

k] 4.45%10° 2541072 3.43%1072 <n

nmol

3

3
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Initial State Uncertainty

When the forward and inverse methodology are applied to TAP experiments, it is often assumed that the initial conditions
are known exactly. Unfortunately, this is rarely the case and these conditions have some degree of uncertainty associated
with them. Directly connecting these uncertainties to the simulated outlet flux in an analytical manner is not possible
and variations of these initial conditions must be made numerically. We utilize two approaches for numerical analysis
of initial state uncertainty: sensitivity analysis and ensemble sampling. These approaches are shown schematically in

Fig. [2]and described below.

Sensitivity-based analysis

A sensitivity-based approach can be useful for identifying initial conditions that significantly shift parameter values at a
low computational cost. The methodology consists of selecting a parameter and defining a range of relevant values
for exploration. Defining relevant conditions can vary depending on the context, but can generally be understood
as physically meaningful (e.g. void fractions or surface coverages between zero and one) or within experimentally
possible values. From there, several different points or a uniform distribution within the domain can be generated and
the optimization routine (minimizing Equation [5) applied to each condition. The results reveal both the influence of
initial conditions on the parameters, as well as their influence on the objective function, providing quantitative insight
into the values of the initial conditions that are most consistent with the experimental measurements. In addition, the
results can provide qualitative insight into the structural (e.g. mechanistic model) uncertainty, where discontinuities in
the observed parameters indicate a change in the structure of the elementary reactions that are most consistent with the
experimental data. Similarly, a variance calculation can be used to approximate the variance of the kinetic parameters
from the sensitivity analysis approach?? The local sensitivity (S) can be approximated as

A
g, Ok Ak

I= 31 AT ©))

where £k is the kinetic parameter of interest, I is the initial condition of interest, while Ak and AT are small increments
used for a finite difference approximation of the derivative. The variance of the sensitivity-based approximation of the
kinetic parameter distribution (o;) is then calculated by multiplying the local sensitivity with an assumed initial state
standard error (G ), written as

o1 =S5:1071 (10)

Equation[I0|can be expanded to approximate the kinetic parameter variance involving all desired initial conditions (N)

in the form

(1)

where g; is the total approximated parametric standard error on kinetic parameter ¢ derived from the independent

sensitivity-based estimations.

10
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Figure 2: The sensitivity and ensemble approaches offer two ways to quantify the impact initial state uncertainties have
on the uncertainty of kinetic parameters. The sensitivity approach is computationally inexpensive but relies on more
assumptions, while the ensemble-sampling approach is more computationally expensive and relies on fewer

assumptions. The probability distributions can be constructed based on experimental data generated by the investigator.

11
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Ensemble-based analysis

The sensitivity-based approach only provides an approximation of the variance based on the assumption that the
objective function responds linearly to the parameter, and provides no information about co-variances. A more detailed,
but more computationally expensive alternative is the ensemble-based approach. To use the ensemble-based approach,
a probability distribution must be defined over each of the initial states. This distribution can then be used to generate
random samples that are used to create an ensemble of inverse models. In this study, we assume that initial conditions
that are effectively unbounded (e.g. pulse intensities and void fraction) are described by a normal distribution (see
Supplementary Information (Section 2), and initial conditions that are bounded on [0, 1] (e.g. surface coverages) are

described by the beta distribution*¥ The normal distribution is defined as

S S U Y ELTTAY
f(z)_éf (%)e p( 2< 5, )) (12)

where p; is the mean and 6 is the standard error associated with the uncertainty for the initial state I. The beta

distribution is defined as

f(z) = m:f**l(l — )Pt (13)

where « and [ represent the shape parameters of the distribution and B is a normalization factor given by

1
B(aﬁ):/o t* (1 —t)P~Ldt. (14)

The resulting parameter ensembles can be used to compute a parameter covariance matrix

Pr = cov (Ms,k> (15)

where M 1, is the matrix consisting of the refitted kinetic parameters (k) for each member of the ensemble (s). Assuming

no correlation between the covariance of the initial state and experimental noise, the two can be added as

Pr =P+ Py (16)

where Pr is the covariance matrix that includes uncertainty from the experimental signal and the initial states. Any
sampling algorithm can be used to perform this analysis, but the random sampling algorithm in Scipy was used to
collect and propagate the uncertainty from all distributions in this study?>*!/ We also note that while the ensemble
approach is computationally expensive, it is also “perfectly parallel”, since each member of the ensemble can be run

independently, enabling relatively rapid estimates if many cores are available.

12
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Results

Sensitivity Analysis and Continuous Parameter Variation

There are a total of 8 initial conditions being considered in the carbon monoxide oxidation case study, with 6 kinetic
parameters included in the mechanism, resulting in a total of 48 sensitivities. For brevity, we only show the sensitivity
of parameter k{ , or the adsorption of carbon monoxide, in Figure|3| The remaining figures are qualitatively similar, and
are provided in the supplementary information (Sections 3 - 10). Alongside the variation in the value of the kinetic
parameter (black circles), the objective function value is also shown (red squares) to provide insight into the initial

conditions that are most consistent with the experimental observations.

The first initial conditions varied are the surface coverages of the platinum catalyst. The assumed initial coverage of
carbon monoxide and molecular oxygen are 0.0, while atomic oxygen is assumed to be 0.5. The range under which
each species coverage was varied was not identical, with the species having an assumed initial coverage of 0 (i.e. CO*
and O3) only changing between 0 and 0.2 and atomic oxygen coverage between O and 1. This was due to the divergence
of the objective function at more extreme values for the low coverage species. In the case of O* coverage, the value
of k{ increases exponentially near the boundaries of 0 and 1. Simultaneously, there is a significant increase in the
value of the objective function, indicating that the model is no longer able to accurately describe the experimental
data. This makes intuitive sense, since a complete coverage of atomic oxygen or open sites will lead to either no
adsorption of carbon monoxide or no oxygen available for conversion to carbon dioxide. A similar observation can
be made in the molecular oxygen figure, where a discontinuous change occurs in the value of k{ and the objective
function near a coverage of 0.02. When the molecular oxygen coverage reaches this value, the elementary reactions for
molecular oxygen adsorption and desorption no longer adequately capture the experimental observations (resulting in
a discontinuous increase in the objective function). The objective function does not experience a discontinuity as a

function of carbon monoxide coverage, but does increase monotonically as the coverage is increased.

The next set of initial conditions explored are the pulse intensities and delays. The initial pulse intensities for both carbon
monoxide and molecular oxygen are 5 nmols and the delay in carbon monoxide pulsing was 10 ms. The intensities were
varied between 3 and 8 nmols, while the delay was adjusted between 0 and 40 ms. Near the experimentally assumed
carbon monoxide pulse intensity, there is only a limited change in the value of the adsorption parameter. However,
when the intensity is reduced below 4 nmol, the parameter value increases by orders of magnitude and the objective
function also increases sharply, indicating that the values are inconsistent with the experimental data. A unique change
in the molecular oxygen intensity variation is also present, where oxygen intensities below approximately 4.1 nmols
results in no change to the kinetic parameter, while the parameter varies linearly at higher values. At lower intensities,
the objective function also increases sharply, indicating that these values are not consistent with the experimental data.
Varying the pulse delay caused less dramatic changes to parameter values. The carbon monoxide delay resulted in a
linear decrease in the adsorption parameter, along with a decrease in the objective function value. This suggests that a

longer CO pulse delay is slightly more consistent with the experiment, which could be due to an unknown delay in the

13
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experiment, or an artifact of an imperfect description of diffusion. However, the decreases in the kinetic parameter and

objective function are limited, suggesting that the effect can be neglected.

The remaining two initial conditions explored are the catalyst zone location and the inert zone void fraction. The
experimentally assumed values for each are 2.89 cm (i.e. the center of the reactor) and 0.4, respectively. Although the
range of location values explored results in a substantial variation (a factor of ~2) in the parameter, the trend is generally
linear. The void fraction values vary more significantly with an exponential change in the kinetic parameter at low
void fractions. When the reactor is assumed to have an inert material with a void fraction of 0, the kinetic parameters
increase and follow an inconsistent, chaotic trend, and the objective function increases sharply. This indicates that
assuming the reactor model has a small void fraction (less than 0.25) would be inconsistent with the experimental data.
However, there is a region in the void fraction between 0.2 - 0.4 where the objective function is nearly constant, while
the rate constant varies exponentially. This suggests that it is critical to establish a highly accurate void fraction with
experimental techniques to reduce the uncertainty in kinetic parameters. Beyond void fractions of approximately 0.4, it
becomes increasingly difficult for the optimal kinetics to accurately describe the experimental data (i.e. the objective
function continues to increase with the void fraction value). Similar to the continuous reduction in the void fraction,
there is a limit for which the kinetics can describe the experimental data when transport is not accurately defined. For
this reason, close attention should be given to transport specifications when fitting kinetic parameters to experimental

data.

The information related to variations near the experimentally assumed initial conditions for each of the five remaining
kinetic parameters are provided in Table [2| This table provides the normalized sensitivity values, where a small step
was made in the initial condition and the value of the parameter was observed. Equation[9] was used to generate the
sensitivity values, and the sensitivities were normalized by dividing by the assumed kinetic parameters (i.e. the values
found with deterministic initial conditions). The step size for each initial condition is provided in the A column. The
other columns in the table represent the parameter change being monitored (0k), while the rows represent the initial
condition being varied (Jinitial). Full sensitivity plots for each parameter as a function of each initial state are provided

in the supplementary information.

Of the initial conditions impacting the adsorption of carbon monoxide (k‘{ ), the void fraction has the highest sensitivity
(approximately 70). Considering the previous discussion of Figure [3| this was an expected result. The impact the
void has on the other parameters explored is less pronounced than for k! , with the exception of kg and k5. A major

g /" is the sensitivity of kg /" to other initial conditions.

difference between the impact the void fraction has on k{ and k
The sensitivity of both kg /% to the molecular oxygen coverage is larger than the sensitivity to the void fraction. The
molecular oxygen coverage also has the highest impact on the parameter kg by over an order of magnitude, with the
void fraction being the second most important. Carbon monoxide coverage was found to be the most impactful initial
condition on the value of k%, with the void fraction again being the second most important. Of the initial conditions

considered, the pulse delays were consistently found to have the lowest sensitivity. The results indicate that many

different initial conditions can have an impact on the values of kinetic parameters.

14
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Sensitivities are useful because they require no assumptions about the uncertainty of the initial conditions. However, as
Eq. [T reveals, the uncertainty of a kinetic parameter is related to both the sensitivity and the uncertainty of the initial
conditions. The approximations of the individual kinetic parameter standard errors for each initial state, calculated
using Equation[I0] are given in Table[3] The standard error of each initial condition is also included in the table, and is
consistent with the ensembles used in later sections. Comparing Tables 2]and [3|reveals that differences in uncertainty
on each initial state can shift their relative importance. For example, in the case of carbon monoxide adsorption (k{ ),
the O* coverage has a larger impact on the parameter than the void fraction after accounting for initial state uncertainty.
The parameter is very sensitive to the void fraction, but since the void fraction is experimentally well determined*? it
has less of an impact on the parameter. This indicates that even approximate estimates of initial state uncertainties are

necessary to identify the relative impact between different states on each parameter.

Ensemble-based sampling

The sensitivity-based approach is useful because it does not require a probability distribution and gives insight into
the global impact of a given initial condition. However, when a probability distribution around the initial conditions is
available or can be assumed, the ensemble-based approach can be utilized. This method does not require an assumption
that initial conditions follow normal distributions and enables the simultaneous quantification of uncertainty from
multiple initial states. Unfortunately, not all initial states have a clearly defined probability distribution. Nonetheless, it
is possible to make reasonable assumptions. We start by analyzing two initial conditions that are expected to be normally
distributed (pulse intensities and void fractions), then move to conditions that do not follow normal distributions (surface
coverages). We then analyze the overall uncertainty from these five initial conditions. The influence of zone position
and pulse delays are not considered. Zone position cannot be varied continuously due to the nature of the finite element
simulation, and is experimentally well defined. Pulse delays have a relatively small impact based on the sensitivity
analysis, and their probability distribution is difficult to define since the uncertainty arises from a combination of
random noise in the timing and possibly systematic errors arising from discrepancies between the diffusion model and

the real system. The distributions for each of the initial conditions are provided in Table 4]

Normally distributed initial conditions: Pulse intensity and void fraction

The pulse intensities and void fraction are expected to follow normal distributions since the uncertainty comes from
random fluctuations and the parameter values are far from physical boundaries. The standard errors of pulse intensities
are expected to be 0.05 nmol (see supplementary information), while the standard error of the void fraction is 0.005°°
To propagate the uncertainty, 2000 random samples of the probability distributions were generated and the associated

parameters refitted.

The distribution of refitted parameters for pulse intensity and void fraction uncertainty propagation are presented in
Figure [6] as solid blue lines. These probability distributions follow an approximately Gaussian distribution around

their mean values. IQRs can be determined using the percentiles of these distributions and are provided in Table .

15
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One advantage of normally distributed initial conditions is that the resulting ensembles can be used to construct a
statistically rigorous covariance matrix by using Equation [I5] The covariance matrix can then be normalized to yield a
correlation matrix, which is visualized and compared to the correlation matrix due to experimental noise in Fig. 4] for

the uncertainty due to pulse intensities and void fraction.

16
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Figure 3: The sensitivity of the kinetic parameter (black dots) and changes in the objective function (red squares) for
carbon monoxide adsorption with variations to the surface coverages (A-C), carbon monoxide delay (D), pulse

intensities (E-F), catalyst zone location (G), and void fraction (H).
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Table 2: Normalized values of the kinetic parameter sensitivities relative to changes in the initial conditions. These

values were found through Equation |§| and were normalized by their baseline value (i.e. (0k;/0I)/k;). Continuous

variations of the initial conditions (like those in Figure[3) can be found in the supplementary information (Sections 3 to

10).

Variable ok ok} okl ok} okJ ok} Step Size (A)

aCo*  1.15-1072 1.76-10'  6.76-107'  6.82-107'  3.89-1072 1.14-10° 3.33-1073 (—)

005  8.62-107* 2.07-10° 3.94- 10" 1.52-10" 4.38-10  8.47-107* 3.33-1073 (-)

90* 831-107" 7.26-107° 1.06-10°  4.93-107' 1.03-10° 1.02-10° 1.67-107% (—)

aTrc° 1311072 1.36-1072 5.73-107* 4.32.107* 3.89-107*  1.40-1073 1.00- 10° (ms)

dvoid 6.86- 10° 3.99-10° 1.53-10* 1.41-10'  8.08-107* 1.03-10° 5.04-1073 (=)
dloc  2.41-10° 7.55-107'  8.93-107* 4.69-10°  6.67-1072 1.89-10°  1.00-107* (cm)
oI°°  6.53-107%  4.00-107'  247-107%  6.23-107%  1.22-107%  3.56-107%  1.60- 102 (nmol)
o1°  2.80-107%  4.72.107%  7.88-107' 1.40-107'  6.95-107' 1.13-107%2  1.60-1072 (nmol)
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Table 3: Approximated values of the standard error of each kinetic parameter w.r.t. each of the initial conditions

explored using Equation[T0] For the definition of surface coverage standard errors, the variations in the beta distributions

were assumed to be accurate approximations. The experimentally observed values of the void and pulse intensity

standard errors were also used, while loose approximations of the pulse delay and location standard errors were applied.

Variable o(kl)

(k)

(k)

o (k3)

(k)

o (ki)

o a or
CO* 2481073 1.46-10°  3.86-107*  2.57-1072  2.00-107°  2.96-1072  6.00-1073
O3 1.85-107%  1.72-107% 2.25-107' 5.73-107'  2.26-107*  2.20-102  6.00-1072
o 2.10-10°  7.09-107*  7.13-107%  2.20-107%  6.22.10~*  3.13-10"'  7.07-107?
TCC 234107 9.40-107* 2.73-107° 1.36-107° 1.67-107% 3.03-107°  5.00-107°
void 1.23-10°  2.76-107'  7.27-1072  4.43-107'  3.46-107° 223.1072  5.00-1073
loc  8.63-107* 1.04-107* 850-107% 3.00-107' 5.71-107°® 8.17-107%  1.00-1072
I°° 1.16-1072  2.76-1072  1.17-107° 2.00-107* 5.23-1077 2.44.107*  5.00-1073
I°2 499107  3.26-107%  3.75-107%  4.41-107% 2.98-107° 2.44.10~*  5.00-1073
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Figure 4: The correlation matrices for the experimental noise uncertainty (a) and the pulse intensity and void ensemble

uncertainty (b).
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The experimental noise uncertainty experiences a mixture of highly negative (large, red circles) and positive correlations
(large, blue circles) between kinetic parameters, with some parameters experiencing limited correlation (small, faint
red circles). The pulse intensity and void ensemble uncertainty was largely positively correlated, except for kinetic
parameter kg , which shows little to no correlation with other parameters. The correlation matrix reveals that there are
significant correlations between the errors of different parameters, suggesting that uncertainty estimates based on the

assumption of independent parameters will tend to underestimate the error .22

Beta distributed initial conditions: Surface coverages

While the pulse intensity and void fraction errors are expected to follow normal distributions with known standard
errors, this is not the case for all initial conditions. In particular, surface coverages near zero cannot follow a normal
distribution since they are bounded to be positive and less than one, and the variance of surface coverages are typically
unknown. However, several surface coverages were found to be highly impactful based on the sensitivity analysis
(Tables [213), suggesting that the uncertainty in these initial conditions cannot be neglected. To better understand the
potential impact these initial states have on the parameters, we make pragmatic assumptions about the initial distribution.
The beta distribution (Equations[I3]and[I4) is used to define the initial coverage of each species. The variances are
unknown, but some insight is provided by the objective function values shown in Figure [3] The objective function
is relatively flat for the O* coverage, so a conservative standard error of ~0.07 ML (02 = 0.005) is selected. In
the case of CO* and Oy* coverages the objective function rises sharply for coverages larger than ~0.02 ML, so a
strongly skewed distribution is used to limit coverages to mostly be below this threshold. The resulting distributions are
presented in Figure[5] with the atomic oxygen distribution (shape factors of « and 3 both equal to 50) approximately
following a normal distribution and carbon monoxide and molecular oxygen (shape factors of « and 5 equal to 1.5 and
200, respectively) being skewed heavily toward the 0 boundary. Following the definition of each distribution, initial
surface coverages were drawn as samples from the distribution and the kinetic parameters were independently refitted
to generate a parameter ensemble. In Figure [6)) the green, red and pink lines represent the carbon monoxide, molecular

oxygen and atomic oxygen coverage ensembles, respectively.
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Figure 5: The beta distribution of surface coverages used to propagate uncertainty to the kinetic parameters. The shape
parameters for the atomic oxygen coverage (a) are both equal to 50 (u = 0.5, 0 = 5.0 - 10~3), while their values for

carbon monoxide and molecular oxygen (b) are « = 1.5 and 8 = 200 (u = 7.4 - 1073, 02 = 3.6 - 107°).
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Table 4: Quantitative details of the distributions used during the sampling of initial state and reactor configuration

uncertainties.

Condition Distribution Mean Variance
CO Intensity (nmol) Gaussian 5.00%10°  5.00% 1072
02 Intensity (nmol) Gaussian 2.79% 1071 5.00 % 1072
Void Fraction (-) Gaussian ~ 4.00 107! 5.00% 1073
CO* Coverage (-) Beta 7.40%107%  3.60 %1075
O>* Coverage (—) Beta 7.40 x 1073 3.60 % 107°
* Coverage (-) Beta 5.00% 107"  5.00% 1073
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First, the uncertainty in carbon monoxide coverage was propagated to the model parameters. Many of the distributions
were found to have narrow ranges, especially when compared to those found in the pulse intensity and void ensemble
analysis (Figure @) For example, the values of the parameter k{ have an interquartile range (IQR) of 3.00 - 10~2 for
the carbon monoxide surface variation, while it is 1.66 - 10° for the pulse intensity and void ensemble. k! is the only
parameter to have a significantly wider distribution for the carbon monoxide surface ensemble than the void and pulse
intensity ensemble, with an IQR of 2.41 - 10°, which is consistent with k% being the parameter with the highest relative
sensitivity to carbon monoxide coverage. The parameter distributions are also highly skewed, unlike those found in the
void and pulse intensity distribution, which follow a generally normal distribution. This can be directly explained by the
shape of the initial state distribution (Figure [5)). Most parameters are skewed with small variances, similar to the shape
of the initial distribution, which indicates a linear response to variations in the CO* coverage. The notable exception is
k%, which has a much broader distribution than the CO* distribution. This indicates a that k% is highly non-linear in
the CO* coverage, which is not surprising since k% controls CO* desorption. With these non-linear characteristics,
the linearity assumption made in the sensitivity analysis may lead to a significant underestimation of the uncertainty

associated with this parameter.

Next, the molecular oxygen coverage probability distribution was propagated through the ensemble approach. Similar
to the carbon monoxide propagation, some kinetic parameter distributions were found to be narrower or comparable
to the void and pulse intensity ensemble. These parameters include k!, k% and kf: , which were found to be relatively
insensitive to molecular oxygen coverage (Table2). The other parameters related to oxygen adsorption and dissociation
were found to vary significantly based on the molecular oxygen coverage. For example, the IQR of the molecular
oxygen ensemble for k:%c is 5.90 - 10~ ! as compared to 1.13 - 10~ for the void and pulse intensity ensemble. Again,
the skewed nature of the initial state probability distribution is observed in the kinetic parameter histogram, and strong
non-linearities are apparent from the difference in the shape of the distributions, particularly for k% and k?f . Notably, the
non-linearities also lead to a shift in the mean of the distributions, suggesting that initial state uncertainties can affect

the expectation values of kinetic parameters.

Last, the atomic oxygen coverage distribution was propagated through the ensemble approach. Of the kinetic parameter
histograms, k%, k5 and k; were found to have a narrower or comparable range of values compared to the void and
pulse intensity ensemble. Based on the sensitivity analysis, the atomic oxygen coverage was expected to have a small
influence compared to the other initial coverages. However, the results of the ensemble approach show that the resulting
k{ distribution has a higher variance than for any other initial conditions, including the void fraction. This observation
illustrates that the sensitivity analysis does not account for the overall variance in the initial conditions. The variance
of the O* coverage distribution was determined to be larger than CO* or O5* based on the objective function values
from the continuous parameter variation analysis (Fig. [3). For atomic oxygen, the variance of the coverage distribution
was selected to be 5.0 - 1073 ML, which is far larger than the variance of carbon monoxide and molecular oxygen

coverages (3.6 - 1075 ML). This larger variance, rather than the local sensitivity, then results in a larger impact of the
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O* coverage on the kz{ parameter. This results of the ensemble analysis reveal the complex interplay between initial

condition uncertainty, non-linearities in the model, and the ultimate uncertainty on kinetic parameters.

Merged ensemble analysis

The ensemble approach provides a convenient route for simultaneously propagating the uncertainty of all initial
conditions to the kinetic parameters. For the merged analysis, each run involves randomly sampling from all initial
conditions based on their probability distributions and refitting the kinetic parameters based on the output. The resulting
distributions of kinetic parameters are presented in Figure [6] as black lines. The variance of the resulting merged
parameter ensembles is highly correlated with the broadest individual ensembles. This is consistent with the fact that
the total ensemble median and IQRs in Table [I6are approximately equal to the median and IQR based on the initial
state with the largest IQR, and suggests that there is typically a single initial state that dominates the uncertainty of a
given parameter. However, the initial state that is most important varies between different parameters, meaning multiple
initial state uncertainties need to be considered. This makes the merged ensemble approach powerful, since it allows for

accounting for the uncertainty of all of the most impactful initial states in a single run.

Discussion

The ensemble approach is the most direct method of analysis and has the most flexible assumptions. With the approach,
the influence of complex initial state distributions (i.e. non-Gaussian) on kinetic parameters can be observed, multiple
initial state uncertainties can be propagated simultaneously, and covariance information is provided. However, a
challenge with the ensemble approach is the need to specify an initial distribution, and the computational resources
necessary to perform the full ensemble of simulations. The sensitivity analysis is an alternative approach that provides
insight into the local sensitivity at a reduced computational cost. This method only requires a single additional
calculation per initial state of interest (as opposed to the thousands of calculations necessary for the ensemble approach).
However, it is restricted to the assumptions that the uncertainty in the initial states follows a normal distribution, that
the uncertainties on parameters from different initial conditions are independent, and that the objective function is
linear in the parameters over the range of initial conditions. When the sensitivity approach is applied to the problem,
moderate agreement between the IQR from the sensitivity analysis and the ensemble approach are observed (see Table
[6). Although exact matches are not obtained, the values fall within the same order of magnitude in most cases. Cases
where the sensitivity approach over-estimates the uncertainty can be explained by correlations in the parameters with
respect to initial conditions (Fig. [4)), while the ensemble estimates are higher due to nonlinear dependencies between

initial conditions and parameters.
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Figure 6: The density plots for each of the kinetic parameters (A-F) using each of the initial conditions ensembles
(pulse intensity and void (blue), surface coverages of carbon monoxide (green), molecular oxygen (red), atomic oxygen
(pink) and the merged values of A-E (black). Probability densities are plotted using kernel density estimation with

specific bandwidths provided in the supplementary information (Section 11).
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Table 5: The interquartile range (IQR) for the parameters in the kinetic model found through ensemble based sampling
of different sets of individual initial conditions, as well as the total ensemble (TE), the signal noise (SN) and merged

covariance calculation (AE & SN calculated with Equation @

Source P &vw Oco fo, 6o TE SN TE & SN
y Median  2.79- 10! 2.80- 10* 2.76- 10 2.80- 10* 2.76- 10 2.80- 10* 2.80- 10*
! IQR 1.66-10°  3.00-1072  3.47-107'  3.96-10° 4.23-10°  3.77-107'  4.39-10°
, Median  1.06-10" 8.10-10° 1.02-10* 1.06- 10" 7.75-10° 1.06- 10" 1.06- 10"
& IQR 5.16- 1071 2.41-10°  3.87-107'  1.47-1072 2.36-10° 1.38-107'  2.15.10°
o Median ~ 9.65-107'  9.72-107'  1.39-10°  9.64-10""  1.46-10° 9.63-107* 9.63-107"
2 IQR 1.13-107%  1.17-107%  5.90-107*  1.34-107'  6.40-107'  9.03-107%  6.65-107"
, Median 6.5 10° 6.51-10° 7.61-10° 6.56- 10° 7.60- 10° 6.56- 10° 6.56- 10°
& IQR 2.86-1071  4.00-1072  1.14-10°  4.13-1072 2.36-10°  1.01-107'  2.10-10°
W Median  9.05-107*  9.07-107*  1.27-107%  9.05-107®  1.31-1072  9.05-107%  9.05-1073
2 IQR 3.97.100*  6.66-107° 3.33-107® 1.18107% 3.66-107% 1.90-107* 2.22.107*
- Median  4.45- 10° 4.43-10° 4.40-10° 4.44-10° 4.36-10° 4.45-10° 4.45-10°
4

IQR 3.15-1072  1.40-1072 5.50-107%  6.13-107'  6.03-107' 3.43-107%2  6.26-107'
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Table 6: Values of the IQR for the pulse intensity and void uncertainties calculated through the sensitivity (using

Equation@ and ensemble approaches.

Method kd Kb k] kS kj K4
Sensitivity ~ 1.65-10°  5.25-107'  1.10-10~'  5.96-10"!  4.02.107*  3.18-1072
Ensemble  1.66-10° 5.16-10~' 1.13-107! 2.86-10°' 3.97.107* 3.15-10?
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Of the initial conditions explored, the pulse delays and intensities appeared to have the least impact on the kinetic
parameter values. Although increasing the uncertainty in these initial states would increase their impact, they are
relatively well-defined experimentally. The void fraction was found to have a much higher sensitivity (Table [2) than the
pulse delay and intensity. Like the delays and intensities, the void fraction is a well-defined quantity with a normal
distribution and a small standard error, so propagating the uncertainty is easily performed and cheap (if the sensitivity
approach is used)®% The catalyst location was found to have a sensitivity in the range of pulse intensities and delays,
but the precision of the catalyst location is dependent on the preparation procedures. Assuming the bed is prepared such

that the location is well defined, the location uncertainty will not significantly impact the model parameters.

The most important initial conditions to consider are the surface coverages, which were found to generally have the
highest sensitivities of the initial conditions. Furthermore, these are the most challenging initial conditions to define,
leading to wide distributions and potentially complex shapes. The global sensitivity analysis can provide insight into the
uncertainty on the initial surface coverages by evaluating the objective function value with respect to each coverage. If
the objective function is sensitive to the coverage it is reasonable to assume that the relevant surface coverages are those
near the minimum of the objective function. However, as the number of adsorbed species increases, it is likely that
the objective function will be insensitive to more initial coverages. Moreover, the computational cost of propagating
uncertainty will also increase with the number of adsorbed species and the variance associated with their initial coverage
uncertainty, since the fitting procedure converges more slowly in higher dimensions and when the initial guess is farther
from the solution. For this reason, careful experimental characterization of the initial state of the catalyst surface, or
operando spectroscopic techniques that directly measure the concentrations of surface species, may be required to

reduce the uncertainty of parameters extracted from TAP experiments on complex reaction networks.

A common goal in surface science and catalysis is determining free energies of activation for elementary steps. This
is commonly achieved using DFT, which has a standard error of around 0.2 eV 2>*33 To compare the uncertainty of
TAP-derived parameters to DFT energies, we convert the rate constants to free energies of activation (AG?) via the

Eyring equation

I
k= kb—T exp (—AG> 17)

where ky, is the Boltzmann’s constant, 7 is temperature, h is Planck’s constant, AGH is the free energy of activation
and R is the ideal gas constant** The lower and upper quartiles of the activation energies corresponding to each rate
constant are presented in Table . The IQR due to initial state uncertainty is generally <0.02 eV, or an order of magnitude
lower than DFT. The IQR from experimental noise is also generally small (IQR of <0.002). An exception to this
trend is parameter SGI*, where the IQR includes an imaginary number (due to the lower bound of the IQR for kinetic
parameter k; falling in the negative domain). This arises from the combination of a Gaussian (from signal noise) and
non-Gaussian distribution (from the ensemble analysis), where the non-Gaussian distribution skews heavily in a positive

direction. When the two covariance matrices are merged (using Equation [T6), it is assumed that they have the same
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mean value. This assumption works for the other kinetic parameters, but fails for Gt i, which has a much broader IQR
relative to the assumed mean value of the parameter. Nonetheless, the low uncertainty values for each separate analysis

(0.01 - 0.001 eV) suggest that the error on this parameter is also small.

The low uncertainties in this study are encouraging for the use of TAP as a route to extracting kinetic parameters, but
there are several important caveats. First, this case study is based on a relatively simple and well-studied reaction and
catalyst (carbon monoxide oxidation over platinum). The results may not generalize to more complex reaction systems,
indicating that uncertainty quantification studies should be performed whenever kinetic parameters are extracted from
TAP data. Moreover, without good estimates of the uncertainty on initial conditions, it is impossible to get good
estimates of the uncertainty on the kinetic parameters, therefore it is important to continue to develop numerical and
experimental techniques to improve the precision of initial conditions and flux data obtained from TAP experiments.
Finally, there is the challenging but important issue of structural uncertainty arising from the assumed mechanism
and active site(s) used in the kinetic model. This uncertainty is difficult to quantify, but likely has a more significant
influence than initial state or experimental noise uncertainty. However, the same issue exists in DFT calculations, but
manifests differently as the assumptions around the atomic structure of the active site. The fundamental differences in
the sources of structural uncertainty suggest that TAP (or other transient kinetic measurements) and DFT should be
viewed as complementary techniques, where agreement between the two is strong evidence supporting the hypothesized

mechanism and active site structure.

Conclusion

In this article, we introduced two methods for exploring the impact of uncertainty on TAP initial states on the rate
constants obtained from PDE-constrained optimization using TAP experimental data. First, a sensitivity-based approach
was introduced, which involves changing the initial states independently and observing shifts in the parameter values.
Second, an ensemble-based approach was developed, which involves drawing random samples from probability
distributions defined around the initial states. We apply these techniques to a case study of carbon monoxide oxidation

on platinum, and compare the initial state uncertainty to experimental noise uncertainty.

The results indicate that the two uncertainty quantification techniques are complementary. The sensitivity analysis
provides computationally efficient estimates of which initial conditions are most important, and a global sensitivity
analysis can be used to identify the ranges of initial conditions where the objective function is near its minimum. The
ensemble approach enables a more comprehensive evaluation of the uncertainty, including the covariance between
parameters and the impact of initial conditions that do not follow normal distributions. In the case study presented, the
results of both approaches were qualitatively similar and indicate that the uncertainty in initial surface coverage is likely

the dominant source of initial state uncertainty.

A comparison of uncertainty from initial states and experimental noise indicates that in this case study the initial state

uncertainties are dominant. However, this conclusion may not be general to more complex reactions, and the tools
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presented provide a practical route to evaluating both experimental noise and initial state uncertainty in other studies.
Moreover, in this case study the uncertainty in activation free energies from both initial states and experimental noise
(£0.02 eV) is more around one order of magnitude lower than that of typical GGA DFT calculations (~ 0.2 eV). This
suggests that rate constants derived from TAP experiments are a promising complement to DFT calculations, although

structural uncertainty remains a challenge for both techniques.
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Table 7: The IQR of the free energies of activation for each parameter calculated with the Eyring equation for each
of the ensembles calculated. These distributions fall well below those typically found in DFT and point toward the
potential utility of TAP experimental analysis. The free energy IQR for AE & SN in parameter kg was found to have an

imaginary value (due to the left bound of the IQR being negative), and is therefore labeled with a dash.

Uncertainty Source ~ GJ*(eV) G (eV) GI*eV) G5HeV) GI*eV) G (eV)

P &w 2.93-107%  241-107® 5.79-107% 2.21-107* 2.17-107®  3.50-10"*
Oco 5.30-107°  1.50-1072  5.93-10"* 3.03-107*  3.62-107*  1.56-107*
6o, 6.21-107* 1.86-107® 2.02-107% 7.37-107% 1.28-107% 6.18-10~*
o 6.98-107%  6.87-107°  6.89-107®  3.11-107* 6.41-107* 6.78-107°

All Ensemble (AE)  7.54-107°%  1.54-1072  2.14-1072 1.54-1072 1.39-1072 6.80-10°
Signal Noise (SN)  6.59-10"*  6.36-10"*  4.60-10~* 7.54-107* 1.03-107® 3.78.10"*
AE & SN 7.75-107%  1.00-1072  3.56-1072  1.59-1072 - 6.96-1073
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