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A case for Zn-based batteries Zn 10 Alkaline Zn/MnO, as
VARGl 2020 Global Reserves of Zinc an exemplar
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* EPA certified for disposal (safe)
* High achievable energy density
www.statista.com * Zn/MnO, ~ 400 Wh/L I
USGS Mineral Commodity summaries, 2020 e« Zn/Air ~ 1400 Wh/L
;  Zn/Ni~ 300 Wh/L

https://www.usgs.gov/ centers/nmic/zinc-statistics-and-information ¢ Zn/ CuO ~ 400 Wh / L.
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Low Cost, readily available ~ Energy Equity High Energy Density ~ Long Duration Energy Storage I



Zn-CuO Batteries

Edison-LaLande Battery. I

Primary Alkaline Zn/CuO Battery PAT. Mar. 20, 1883,
OTHER PATENTS APPLIED FOR
Anode: Zn0 + 40H- -> [Zn(OH4)]* + 2e- E°=1.285V
Cathode: CuO + H,0 + 2e- -> Cu® + 20H-  E°=-0.29V
Zn% + CuO + H,0 + 2 OH- -> [Zn(OH,)]# + Cud Cell Voltage: 0.995V

1st electric submarine with
torpedoes - 2 x 355 mm (14 in)

55 horsepower (41 kW) at
200V and 200A

Edison-Lalande

Gymnote in 1889 564 Primary Alkaline Zn/CuO Cells Battery (Primary Cell) I
(Lalande-Chaperon Patent) Low but stable voltage ~ 0.75 V
The name "Gymnote" refers to High current battery
the Gymnotids, the "electric eels” Railway signaling,
www.wikipedia.com Powering Edison's electric fans

and phonographs
In use until the 1960’s


https://en.wikipedia.org/wiki/Gymnotid

Zn-CuO Batteries

- Zn/CuO (674 mAh/g) vs.
Zn/MnO, (617 mAh/g)

but lower voltage

» History books say higher
power capabilities

» Zn and Cu both highly
recyclable

» Expected to be low cost

» Expected to be safe

Alkaline Zn
Batteries

250 Wh/L already achieved
in rechargeable R&D Batteries

Developing New

Chemistries for

Zn-CuO Batteries

No additive —l l— With Bi,0;

N. B. Schorr et al. ACS Appl. Energy
Mater. 2021, 4, 7, 7073-7082



Cycling Zn-CuO

Independently CuO does not make a suitable cathode for a secondary cell, but
by using additives reversibility is achieved.

Comparing Zn/CuO vs Zn/(Cu0O-Bi,05) cells Cycling of Zn/(Cu0O-Bi,05)
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Why does Bi,O3 improve reversibility and what is happening during cell cycling?
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Operando Synchrotron Cycling Studies
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EDXRD data allows us to see what crystalline phases exist at certain potentials
Zn/CuO Zn/(Cu0-Bi,05)
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Prof. Joshua Gallaway
Andrea Bruck, Matthew Kim

peak intensity

Crystalline CuO is not observed upon re-charging

During second discharge the high voltage causes
the formation of more Cu,0, indicating there is a
non-crystalline Cu(ll) species not detectable by

EDXRD.



Cathode Morphology

If seeing is believing, what does SEM and EDS tell us about CuO cathodes
without any bismuth additive?

CuO 10x Charge CuO 10x Discharge
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Identical morphology in a charged and discharged Zn/CuO indicates that the
imaged phase is stable and electrochemically inactive (bad news for a battery).
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Cathode Morphology with Additive
What does SEM and EDS tell us about CuO cathodes with bismuth additive?

When cathodes are made with Bi,O; similar octahedral seen on charge
indicative of Cu,0 formation.

Bi distributed throughout as well a some concentrated areas



Cathode Morphology with Additive
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If seeing is believing, what does SEM and EDS tell us about CuO cathodes
with bismuth additive?

CuO/Bi,05 10x Discharge
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When cahodes are made with Bi,O; we now see a different morphology on 1
discharge

Some remnants of the octahedral that are seen on charge
[and in CuO (no additive) ] still appear.



Impact of Bi Additive
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Cyclic voltammetry allows us to see at what potentials are electrons being
supplied from or delivered to the system
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Two big differences between when Bi additive is included with CuO:
1. Reduction peak is shifted positive (easier to put electrons into the material)

2. Smaller 2" oxidation peak *. RRDE confirms Bi reduces Cu(ll) solubility



13 Cu Oxidation Under Alkaline Conditions with Bi Additive

Rotating Ring Disk Electrode (RRDE) studies allows us to examine soluble I
species upon oxidation
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2. Cu to Cu;0 is a sold state transition
3. Cuy0 (or Cu) to Cu(ll) results in soluble species
4

Bi additive lowers the observed Cu(ll) species




Zn-CuO Batteries
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Two strategies for modifying performance show promising paths forward.

1. Partial depth of discharge of CuO-Bi,0O3

cathode causes increased lifetime

Eenergy Density (Wh/L)
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~140 Wh/L demonstrated

30% CuO DOD and 1-3% Zn DOD

Wh/L calculated using volume of electrode pack
including current collectors

250 cycles: 30% DOD¢,o (200 mAh g-! cathode)
Average areal capacity 19 mAh cm-2
Coulombic Efficiency above 99%
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Zn-CuO Batteries

Two strategies for modifying performance show promising paths forward.

2. Using Cu as an additive improves
capacity retention and energy density
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Cycle Number
80 cycles: 100% DOD¢,o (674 mAh g! cathode)
Average areal capacity 46 mAh cm-2
Average energy density 186 Wh L1 (1% Zn)
Average energy density 263 Wh L1 (10% Zn)

~ 100% CuO DOD can be achieved

CuO is ‘tolerant’ of zincate but Zn/Cu0 is
prone to shorting (soluble Zn and Cu)

Tens to hundreds to thousands (?) of cycles
depending on DOD, rate etc.

Could cover from microsecond to day-long outages.

Shorting can be mitigated with separators or
polymer gel electrolyte

Technical Challenges with Zn still apply



Commercial Partner
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Gel Batteries for the Future

Zn/CuO gel batteries are the focus of a DOE Office of Technology Transitions -
Technology Commercialization Fund Award

Alkaline Zn/CuO Battery utilizing
Cycle Number
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» Polymer gel electrolyte (PGE) minimizes shorting,
0.6 extends cycle life, non-spillable
0l Cu(0) « ~Full 1e- equivalent at cycle 150 already demonstrated
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Specific Capacity (mAh/g)
Acrylate-KOH based gel serves as a quasi-solid state electrolyte

 10Ah, 100Ah @200 Wh/L for 100 cycles
« Use COTS power converters

benefits over competing battery technologies

URBAN =
ELECTRIC :
POWER ' sy Zn/CuO manufacturing.

Gabe Cowles Gautam Yadav  Sanjoy Banerjee

 Demonstrate power, energy, lifetime and/or cost

* Robust commercialization roadmap for large scale
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