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Background




/" Explainability with Machine Learning Models
/ Layer 3

« Non-interpretable (“black-box") models may
provide great predictions, but in the context of the
application, how to...

- Understand and explain the predictions?
- Motivate and assess the model?

+ Explosion of research in “explainability”

- Try to gain insight into black-box models

- Explainability methods

- Feature importance

- Surrogate models

+ Visualization techniques

* Interpretable machine learning models
- Etc.




with Functional Data Inputs

/ Explainability with Machine Learning Models
/4
/

« Functional data

« Each observation is a curve

0.04

« National security example: H-CT scans of materials

- Cross-sectional approach

- Each time/frequency/etc. is a feature in model and existing explainability methods applied
«  Does NOT account for correlation

« Correlation shown to negatively affect explainability methods

* Functional data approaches

- Little previous research




My Research at Sandia



/ Research Objectives
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« Understand how predictions are made .
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- Assess the model
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« Motivate model to scientists and decision makers
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- Motivated by prediction applications with functional _Oios_ | ‘ |
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«  Example: H-CT scans of materials
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My Previous Work: VEESA Pipeline

.
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£ . Variable importance Explainable Elastic Shape Analysis Pipeline

« Accounts for functional nature of data
« Incorporates explainability through variable importance (without bias from correlation)

« Model-agnostic

1.0

«  Makes use of two previously developed techniques: >

0.5

0.0 1

- Elastic shape analysis (ESA) framework for functional data

« Permutation feature importance (PFI)




/" VEESA Pipeline
“

/o Pre-processing (elastic
shape analysis techniques)

« Separate functional
variability into vertical and
horizontal parts

« Obtain joint functional

principal components (jfPCs)

« Modeling

« Use jfPCs as features in
machine learning model
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VEESA Pipeline (continued)
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Going Forward




/7~ Challenges and Limitations
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How to best assess explanations?

- Models are black-boxes, so we don’t know the “true” explanations

- Possible route: Develop index for high/low explainability based on number of PCs needed to
capture model “mechanism”

How to implement PFl with large datasets?

How to best perform feature selection based on PFI?

How to best interpret jfPCs when many are “important”?




P Ideas for Future Work

«  Check for important interactions (not only main-effects)

- Try incorporating other explainability methods such as:

«  Shapley values

- Partial dependence plots

- Explore other avenues for modeling functional data with machine learning models in
ways that allow for explainability




Questions?
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