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Abstract—In this paper, a bilevel electricity pricing and
demand response game between a distribution system operator
(DSO) and load aggregators (LAs) is considered, and a robust
decision model is proposed for the DSO to deal with the
uncertainties from the wholesale market prices and demand
consumptions of LAs. With the max-min objective at the
upper level, the robust bilevel model is converted into a single
level model by the Karush-Kuhn-Tucker (KKT) conditions and
prime-dual transformation. Several groups of experiments have
been conducted based on different preferences on uncertainty
gaps and peak load reductions to show its effectiveness. After-
the-fact scenario analysis has indicated that the robust solution
is more beneficial in reducing the risk of inaccurate predictions
as compared to the risk neutral strategy.

Index Terms—Stackelberg game, Demand response, Robust
solution, Dual transformation, Load aggregator.

NOMENCLATURE

Indices
T, t, n Total hours, index for hours, LAs
Parameters
Ct, P Marginal cost, price upperbound
Hn,t, Hn,t Lower & upperbound of thermal demand
Ln,t, Ln,t Lower & upperbound of non-thermal demand
Dhn,t, Ddn,t Nominal thermal, non-thermal demand
αn,t, θ Satisfaction preferences of LAs, penalty coef.
BI, ε Initial level, Dissipation rate of virtual battery
Bn,t, Bn,t Lowerbound, upperbound for virtual battery
Variables
pt, dln,t Electricity price, total electricity load
hrn,t, drn,t Resulted thermal load, non-thermal load
m, bn,t Peak load, storage level in virtual battery

I. INTRODUCTION

With the profound transformation of smart grids, new
challenges arise for DSOs to manage the network in a

Y. Chen is with the Environmental Sciences Division, Oak Ridge
National Laboratory, Oak Ridge, USA (email: cheny2@ornl.gov)

K. Amasyali, M. Olama, and B. Park are with the Computa-
tional Sciences and Engineering Division, Oak Ridge National Laboratory,
Oak Ridge, USA (email: amasyalik@ornl.gov, olamahussemm@ornl.gov,
parkb@ornl.gov)

This manuscript has been authored by UT-Battelle, LLC, under contract
DE-AC05-00OR22725 with the US Department of Energy (DOE). The US
government retains and the publisher, by accepting the article for publication,
acknowledges that the US government retains a nonexclusive, paid-up, irre-
vocable, worldwide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for US government purposes. DOE will
provide public access to these results of federally sponsored research in accor-
dance with the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan)

safe and cost efficient manner. The flexibility of demand
side management has offered an increasingly important and
valuable resource to maintain system stability in an interactive
and decentralized electricity grid [1]. In the United States,
the combined wholesale demand response (DR) capacity of
all regional system operators grew to 27 GW (around 6%
of peak demand) in 2018, with an additional 5 GW offered
through retail programs. Progress was particularly strong in
California, where the capacity under auction doubled to 373
MW. Load control, interruptible services, and reserve markets
also expanded elsewhere in the country [2].

Extensive research has been conducted to model the op-
erational flexibility of DR at different levels, including a
large body of studies in modeling the negotiation interaction
between DSOs and LAs at the distribution level. In the
negotiation game, the upper level DSO is generally set to
have the privilege of setting the electricity price, while the
lower level entities respond to the price and settle down
the optimal demand. For instance, a Nash-bargaining based
cooperative model is formulated for the DSO and LAs [3]; a
tri-level DR model is developed for a grid operator, multiple
service providers, and the corresponding customers [4]; a
bilevel framework is also adopted for such pricing-demand
negotiation [5] [6]; and a reinforcement learning algorithm
is designed to obtain an optimal incentive strategy under
incomplete information scenario in an edge-cloud framework
[7]. In addition, to deal with uncertainties from renewables
and demand, several scenario-based stochastic bilevel pro-
gramming models are developed. In [8], a two-stage stochastic
bilevel model is formulated, where an upper level system
operator minimizes the total operation cost, and lower level
LAs determine the DR trading shares through three DR
options: load curtailment, load shifting, and load recovery.
With the uncertainties from the market price and demand, a
risk-constrained scenario-based stochastic bilevel framework
is presented [9], where the upper level represents decisions
from LAs, and the lower level models the customers’ behav-
iors. The risk-aversion attitude of LAs is modeled using the
conditional value at risk method.

In the authors’ previous works [10] [11], deterministic and
scenario-based stochastic bilevel models have been proposed
for a DR game between a DSO and LAs with the consid-
eration of the building customers’ temperature preferences.
However, the prediction error and risk attitude of the DSO
were not considered. In this work, a robust decision approach
is adopted to model the risk-aversion attitude of a DSO
towards uncertainties on the electricity market price and



demand profiles from LAs. In the upper level, the objective
of the DSO is in max-min form to maximize the minimum
payoff, while the LAs at the lower level maximize their own
utility values.

II. PRICING-DEMAND RESPONSE

In the investigated DR game here, the DSO is the leader that
makes decisions on the electricity price by taking into account
the demand responses from the LAs, which are followers in
the lower level. The objective of the DSO is to maximize
its overall utility, which includes its profit (first two terms
in Eq.(1)), peak load penalty (fourth term in Eq.(1)), and
the overall customer satisfaction (third term in Eq.(1)) that
represents its social obligation.

DSO : maxUo =
∑
n,t pt · dln,t−∑

n,t Ct · dln,t +
∑
n,t S(Dl, dl)− θ · T ·m

(1)

Ct ≤ pt ≤ P , ∀t (2)

m ≥
∑
n dln,t, ∀t (3)

The constraints for the DSO optimization are the price
range in Eq.(2) and the peak load calculation in Eq.(3).

At the lower level, each LA also tries to maximize its
own utility, which consists of its consumption satisfaction
and the electricity bill payment in Eq.(4). The resulted load
profile is the summation of the thermal load hr and the non-
thermal load dr in Eq.(5). Eq.(6) defines the range for the
non-thermal load in each time step, and Eq.(7) defines its
overall shifting flexibility for the considered decision period.
Eq.(8) defines the range for thermal load. The virtual battery
constraints in Eq.(9)-(11) are derived based on the building
thermal characteristics and are used to guarantee a pre-defined
temperature band of each aggregatred building. The difference
between the actual power consumed hr by a thermal appliance
and its nominal thermal load Dh determines whether the
virtual battery is being charged or discharged. ε is the virtual
battery dissipation rate, which depends on the properties of
the thermal load (e.g., insulation characteristics) and can be
determined empirically. More details on the virtual battery
development can be found in [10]. Eq.(12) ensures that the
virtual battery level at the end of the day equals to its initial
level.

LAs : maxUn =
∑
t S(Dl, dl)−

∑
t pt · dln,t (4)

dln,t = hrn,t + drn,t : λc3n,t (5)

Ln,t ≤ drn,t ≤ Ln,t : λc4n,t, λ
c4

n,t (6)

0.9 ·
∑
tDdn,t ≤

∑
t drn,t ≤ 1.1 ·

∑
tDdn,t : λc5n,t, λ

c5

n,t (7)

Hn,t ≤ hrn,t ≤ Hn,t : λc6n,t, λ
c6

n,t (8)

Bn,t ≤ bn,t ≤ Bn,t : λc7n,t, λ
c7

n,t (9)

bn,t = ε · (BIn + hrn,t −Dhn,t) : λc8n,t=1 (10)

bn,t = ε · (bn,t−1 + hrn,t −Dhn,t) : λc8n,t≥2 (11)

bn,t=T = BIn : λc9n (12)

The consumption satisfaction function S(Dl, dl) is defined
as S(Dl, dl) = Dln,t · wn,t · f(

dln,t
Dln,t

) [12] [13] [11]. The
f(x) = xα curve is shown in Fig. 1. Note that Dln,t =
Dhn,t +Ddn,t is the total nominal load; w is a user defined
parameter; and α represents the sensitivity of demand shifting.

Fig. 1: The f(x) value (y-axis) for different α (x-axis: dl
Dl

)

To reduce the computational burden and guarantee optimal-
ity, the satisfaction function S is linearized into two linear
segments at intersection point x0 where f

′
(x0) = 1, thus

x0 =
(

1
α

) 1
α−1 . Since α is also a step dependent parameter,

x0 is different for each time step. Hence, the first linear
segment passes through the two points (0, 0) and (x0, xα0 ), and
the second linear segment goes through the two points (x0,
xα0 ) and (1, 1). Thus, the following two satisfaction function
constraints need to be added to the lower level model. The
lower level model for LAs in the DR game becomes Eq.(4)-
(14), where the dual variable of each constraint is presented
following a colon.

Sn,t ≤ wn,t · x
αn,t−1
0 · dln,t : λc1n,t (13)

Sn,t ≤ wn,t · dln,t ·
1− xαn,t0

1− x0
+

wn,t ·Dln,t ·
x
αn,t
0 − x0

1− x0
: λc2n,t

(14)

The developed bilevel model in this section is a determin-
istic model, which corresponds to the risk-neural strategy for
the DSO. In the next section, a robust bilevel optimization
model is derived based on this deterministic model to cope
with the parameter uncertainties.

III. ROBUST OPTIMIZATION MODEL

A. Bilevel robust model

In this section, the robust decision is made from the
perspective of the DSO. To consider the related risk of the
forecasted parameters C̃t, D̃hn,t, D̃dn,t, a new variable set
∆ = {∆Ct,∆Dhn,t,∆Ddn,t} is introduced to represent the
deviation of the forecasted parameters. The robust factors
γc, γh, γd are defined by the decision makers to evaluate the



length of the uncertain gap around the forecasted parameters.
Since robust optimization stands at the risk-averse view point,
the worst case of uncertainties occurrence in the allowable un-
certain range is evaluated [14]. The robust bilevel optimization
model for DSO is formulated based on Eq.(1)-(3) as:

DSO : max
p,dl

min
∆

Uo =
∑
n,t pt · dln,t −

∑
n,t(C̃t+

∆Ct) · dln,t +
∑
n,t S(D̃l, dl)− θ · T ·m

(15)

C̃t + ∆Ct ≤ pt ≤ P , ∀t (16)

m ≥
∑
n dln,t, ∀t (17)

−γc · C̃t ≤ ∆Ct ≤ γc · C̃t, ∀t (18)

−γh · D̃hn,t ≤ ∆Dhn,t ≤ γh · D̃hn,t, ∀n, t (19)

−γd · D̃dn,t ≤ ∆Ddn,t ≤ γd · D̃dn,t, ∀n, t (20)

As observed in the robust model for the DSO, its objective
is maximized with respect to its main decision variables p, dl
and minimized by the uncertain parameter set ∆. The length
of the uncertain gap can be adjusted by the robust factors.

Similarly, the constraints Eq.(7), Eq.(10), Eq.(11), Eq.(14)
in the lower level model are updated as:

0.9 ·
∑
t(D̃dn,t + ∆Ddn,t) ≤

∑
t drn,t

≤ 1.1 ·
∑
t(D̃dn,t + ∆Ddn,t)

(21)

bn,t = ε · (BIn + hrn,t − D̃hn,t −∆Dhn,t) (22)

bn,t = ε · (bn,t−1 + hrn,t − D̃hn,t −∆Dhn,t) (23)

Sn,t ≤ wn,t · dln,t ·
1− xαn,t0

1− x0
+ wn,t · (Dln,t+

∆Dhn,t + ∆Ddn,t) ·
x
αn,t
0 − x0

1− x0

(24)

The resulted robust bilevel model now becomes the upper
level model Eq.(15)-(20) and the lower level model Eq.(4)-
(6), Eq.(8)-(9), Eq.(12)-(13), Eq.(21)-(24).

B. Single level robust model

To be able to solve the problem with commercial solvers,
the equivalent single level optimization model needs to be
obtained. The process to transform the proposed bilevel robust
model into a single level model has two main steps: KKT
transformation and prime-dual transformation.

In KKT transformation, since the variables in the upper
level are treated as parameters in the lower level model of
LAs that is then linear and convex, it can be substituted
into the upper level model by its equivalent KKT optimality
conditions. This process has been conducted in related works
frequently [15] [16], for the sake of conciseness, we avoid
repeating it here. In this transformation, the strong duality
theorem in Eq.(25)-(27) is used to replace the bilinear term
pt ·dln,t in objective Eq.(15). Assume Λ is the prime variables
set in the lower model of LA, then

∑
t Sn,t −

∑
t pt · dln,t = G(Λ) +G(∆) (25)

G(Λ) =
∑
t

[
wn,t · (D̃hn,t + D̃dn,t) · x

α
0 −x0

1−x0
· λc2n,t−

Ln,t · λ
c4
n,t + Ln,t · λ

c4

n,t −Hn,t · λ
c6
n,t +Hn,t · λ

c6

n,t−

Bn,t · λ
c7
n,t +Bn,t · λ

c7

n,t

]
−
∑
t 0.9 · λc5n · D̃dn,t+∑

t 1.1 · λc5n · D̃dn,t −
∑
t ε · λc8n,t · D̃hn,t+

ε ·BIn · λc8n,t=1 +BIn · λc9n

(26)

G(∆) =
∑
t

[
wn,t · (∆Dhn,t + ∆Ddn,t) · x

α
0 −x0

1−x0
·

λc2n,t −
∑
t 0.9 · λc5n ·∆Ddn,t +

∑
t 1.1 · λc5n ·∆Ddn,t

−
∑
t ε · λc8n,t ·∆Dhn,t

(27)

After the KKT transformation and pt · dln,t replacement
in the upper level, the robust bilevel model becomes a
single level max-min optimization. Since the minimization
in Eq.(15) is with respect to ∆, the objective of the final
single level optimization can be rewritten as in Eq.(28)-(29).
Together with other related constraints, the final single level
max-min model is given as:

DSO : max z (28)

2 ·
∑
n,t Sn,t −

∑
nG(Λ)−

∑
n,t C̃t · dln,t − θ · T

·m−min
∆

{∑
nG(∆)−

∑
n,t ∆Ct · dln,t

}
≥ z (29)

Eq.(16)− (24), Eq.(5)− (6), Eq.(8)− (9), Eq.(12)− (13),

KKT conditions of the lower level

In order to unify the problem as a final max optimization,
the duality theorem is used to convert the inside min op-
timization to a max optimization by replacing the original
min optimization with its max dual optimization problem.
The method is well described in [14] [17]. After applying
the above transformation, the final single level mixed inte-
ger programming model is obtained. The commercial solver
CPLEX is used to solve the final model.

IV. NUMERICAL EXPERIMENTS

In this section, the developed robust bilevel optimization is
demonstrated by several groups of experiments. Five LAs are
considered in the case study, and the nominal thermal load Dh
of each LA consists of residential & commercial HVACs and
water heaters, see Fig. 2. The detailed process to generate the
data refers to [10] [18]. The nominal non-thermal load Dd in
Fig. 3 is adopted from [19] and mixed based on a commercial
building reference load. The marginal cost Ct is the same as
in [12]. αn,t is assumed the same for all LAs as shown in
Fig. 4.

Based on different robust gap length settings γ (= γc =
γd = γh) on the uncertainties in Eq.(18)-(20) and the peak
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Fig. 2: Nominal thermal load of LAs
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Fig. 3: Nominal non-thermal load of LAs

load penalty θ in Eq.(15), the objective value of the DSO and
the resulted peak load from the robust bilevel optimization
are illustrated in Fig. 5. As observed, the DSO objective
decreases when the penalty θ increases with the same gap
level, since the overall satisfaction term and penalty term
in the objective function both move against maximization.
Furthermore, the DSO objective also drops when the robust
gap length increases from 0 to ± 20%. This is because the
robust optimization targets the worst case scenario in the
uncertainty range. The peak load has a similar trend, and it
is stabilized with max γ despite of the different θ levels due
to the flexibility limitation of the load profile.

Take the peak penalty θ = 60 as an example, the resulted
electricity prices and load profiles under different uncertainty
gap lengths are shown in Fig. 6 and Fig. 7. To optimize against
more uncertainties from the wholesale marginal cost and

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

hour

Fig. 4: α preference in satisfaction function
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Fig. 5: DSO objective and peak load of the robust optimization under
different cases

customers’ overall consumption, the DSO tends to increase
the prices until the allowable upper bound, especially in the
high load range hour 8-21, see the nominal load profile in
Fig. 7. The load shifting from peak hours to off-peak hours
and peak load reduction can also be observed in Fig. 7.
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To illustrate the impact of considering uncertainty in
the studied problem, after-the-fact analysis is conducted to
compare the risk neutral strategy and the proposed robust
strategy. After-the-fact scenarios are generated by adding
± 20% random noise to the three considered uncertainty
parameters Ct, Dhn,t, Ddn,t. 200 scenarios are generated for
the analysis. In Fig. 8, the DSO objective from the robust
bilevel model is $194703 which is the guaranteed lower bound
with uncertainty gap ± 20%, and the objective value from the



neutral model without uncertainty (γ = 0 assume prediction
is accurate) is $259019. However, after the resulted price de-
cisions from the robust and neutral models are fixed and used
to solve the lower level models (Eq.(4)-(12)) over the 200
scenarios, the expected DSO objective value of robust price
strategy ($255185) is higher than the expected objective value
of the neutral price strategy ($231755). These results show
the effectiveness of the proposed robust decision approach
and thus indicate the importance of modeling uncertainties
for risk aversion decision making. The comparison also shows
the advantage of robust optimization in guaranteeing a specific
level of objective value at certain uncertainty levels.

0

50000

100000

150000

200000

250000

300000

optimization result after fact analysis

o
b

je
ct

iv
e 

v
al

u
e

robust model (γ=0.2, θ=60) neutral model (γ=0, θ=60)

Fig. 8: DSO objectives of robust and neutral strategies in after-the-fact
analysis

V. CONCLUSION

The electricity pricing problem of a DSO is presented
in this work with the consideration of DR from LAs and
modeled as a bilevel problem. The uncertainties on LAs’
energy consumption and the electricity marginal cost are dealt
with using a robust optimization with the attitude of risk-
averse. Based on the KKT optimality conditions, the lower
level model is substituted into the upper level model, and
dual transformation is used to convert the nested max-min
objective of the DSO into a single level maximization form.
The experimental results have shown that the DSO tends
to raise the price when the risk of demand uncertainty is
higher. Large-scale experiments will be explored in future
work with a large number of load aggregators, and possible
distributed solution methods will be investigated. Moreover,
the robustness of the price strategy from the proposed robust
bilevel model is tested against random after-the-fact scenarios
and compared to the risk-neutral model. Although the risk-
neutral strategy has higher objective value than the robust
optimization (worst case), the robust strategy has higher
expected objective value than the risk-neutral strategy by
taking the actual prediction errors into account, and thus it
is more immune to the related risk of predictions.
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