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Abstract— Highway on-ramp merging can be a challenging
task for human drivers due to the complex vehicle negotiations
and interactions in limited time and space. Connected and
automated vehicles (CAVs) have great potential to address the
problem and offer many benefits in terms of safety, traffic effi-
ciency, and fuel economy. However, real-time optimal control of
CAVs still faces many challenges, including nonlinear dynamics,
complex inter-vehicle interactions, and a highly dynamic and
uncertain traffic environment. To address these challenges, we
develop a novel control approach that balances the solution
optimality and computational efficiency to determine optimal
merging speed profiles in real time. Specifically, by employing a
pseudospectral method and a sequential convex programming
approach, two algorithms are proposed and implemented within
the model predictive control (MPC) framework to enable real-
time generation of optimal solutions for potential on-vehicle
applications. The convergence and optimality of the proposed
algorithms are validated by comparing with a general-purpose
solver under different traffic scenarios.

I. INTRODUCTION

The latest developments in connected and automated
vehicles (CAVs) have opened up new opportunities for
the revolution of future transportation systems. The U.S.
Department of Transportation is actively preparing to lead
the advance in CAV technologies, and four main potential
benefits of introducing CAVs to transportation systems have
been spotlighted [1]: road safety, economic and societal
benefits, efficiency and convenience, and public mobility. A
number of studies have been conducted to investigate the
challenges and opportunities involving CAVs [2], [3], [4].

According to the National Highway Traffic Safety Ad-
ministration (NHTSA), motor vehicle crash fatalities are
higher on urban highways compared to rural roads since
2016. As a comparison, urban fatalities increased 48% since
2011 and the rural fatalities decreased by 6.2%. In 2020,
the number of urban fatalities is 30% higher than the rural
areas [5]. As one of the most challenging scenarios on urban
highways, on-ramp merging has attracted wide attention from
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many researchers. The merging process involves complex
vehicle negotiations and interactions, and drivers have to
perform situation assessment, decision-making, and vehicle
operations within a limited distance and time. One of the
conventional methods to improve merging safety is ramp
metering [6]. However, ramp metering suffers disadvantages
such as increased travel delay and emissions [7].

On-ramp merging aims to coordinate the vehicles on the
mainline and the ramp to pass through the merging area
safely and as smoothly as possible. In the CAV environment,
vehicles are able to communicate with each other (V2V) and
with the infrastructure (V2I) about their current and planned
trajectories (position, speed and acceleration) and other infor-
mation, with which the vehicles can be coordinated to make
smooth merging maneuvers for safety, mobility, and fuel
efficiency purposes. Many studies have demonstrated that
trajectory optimization of vehicles can reduce travel time and
fuel consumption, increase throughput, and improve safety
[8], [9], [10]. The basic idea is to find or create a suitable
gap between mainline vehicles for the on-ramp vehicles to
merge, and to avoid or minimize the braking caused by
the merging maneuver. However, most existing approaches
are not suitable for real-time implementation due to high
computational cost and and inability to cope with non-convex
motion constraints and dynamic environments.

In this paper, we develop a new merging control frame-
work that balances the solution optimality and computational
efficiency with guaranteed merging safety. Specifically, a
pseudospectral convex optimization formulation is proposed
for the merging of CAVs at highway on-ramps. In addition,
the proposed algorithm is combined with the model predic-
tive control (MPC) strategies to cope with uncertainties and
improve inter-vehicle coordination.

II. PROBLEM FORMULATION

The goal of this study is to develop an optimal speed con-
trol model that minimizes fuel consumption, avoids collision,
and reduces congestion for CAVs merging at highway on-
ramps. As shown in Fig. [I] a typical single lane highway
merging scenario is considered. After entering a control zone,
CAVs are assigned a target traveling speed by the centralized
controller. Then, the speed profiles are computed in real-time
by each vehicle to regulate its movement with minimum
acceleration/deceleration maneuvers. We assume that the
planned speed trajectories of all vehicles in the control zone
are available to other vehicles through V2V communication.
This section details the vehicle dynamic model and the
formulation of the speed optimization problem.
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Fig. 1. Schematic of CAV-based on-ramp merging.

A. Vehicle Dynamics

In this paper, the longitudinal dynamics of the vehicle are
considered as [11]:
Te
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with mass m, velocity v, and engine torque 7.. The term
74 is defined as the wheel radius divided by total gear ratio
and is assumed to be constant in this paper. Fj represents
the braking force at the wheels, and F, is the force due to
aerodynamic resistance, as given by:

1
Fiero = ipACDfU27 ()

where Cp is the aerodynamic drag coefficient, A denotes
the frontal area of the vehicle, and p represents air density.
F, is the resistant force due to the road grade and rolling
resistance, as given by:

Fy = mg(pcosf + sin 6), 3)

where ¢ is the gravitational constant, p denotes the rolling
resistance coefficient, and sin 6 represents the road gradient,
which is assumed to be constant in this paper.

The fuel consumption model is adopted from [12], where
the fuel consumption rate 7 is approximated by:
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where a is the vehicle’s acceleration, «; and [3; are constants
of the third order polynomial function determined by fitting
the experiment data. When vehicles are braking or idling,
the fuel consumption is a constant cg. The selected values
of the above parameters are summarized in Table [I}

TABLE I
PARAMETERS OF VEHICLE DYNAMICS.
Parameter (Unit) Value  Parameter (Unit) Value
m  (kg) 1200  uM™™ (m/s?) 3
p  (kg/m?) 1.184 umax (m/s?) 3
A (m?) 2.5 o™ (m/s) 20
Cb 0.32 vm‘“ (m/s) 0
g (m/s?) 9.8 0.015
ap (mL/s) 0.1569 Bo (mLs/m) 0.07224
a1 (mL/m) 2450e-2 31 (mLs%/m?) 9.681e-2
s (mLs/m?) -7415e-4 B2 (mLs3/m3)  1.075e-3
az (mLs?2/m3)  5975¢-5 Ry (m) 25

tha (8) 1.3

B. Optimal Control Problem Formulation

In this paper, novel rules (see Fig. [2)) are designed to
determine the merging sequence considering different control
goals for the vehicles on the mainline road and the on-
ramp. To increase the road capacity and traffic efficiency,
the on-ramp vehicles should avoid the “stop-and-go” pattern
and merge to the mainline road at the earliest available
gap. Meanwhile, the vehicles travelling on the mainline road
should avoid sudden braking caused by the merging vehicles,
which could lead to collisions, congestion and additional fuel
consumption. Thus, when there are on-ramp vehicles seeking
to merge, the mainline vehicles need to actively create gaps if
acceleration is possible. In addition, when there is no conflict
between mainline vehicles and on-ramp vehicles, they can
both travel at the fuel-optimal speed.

After the merging sequence is determined, the arrival
time of the newly detected vehicle to the merging zone is
scheduled, and a target speed is calculated correspondingly.
To summarize, Table [II] lists all the cases for calculating the
arrival time to the merging zone. The calculation starts from
the newly detected vehicle and passes forward or backward
to the affected vehicles in the control zone. The arrival time
of the preceding vehicle is denoted as ¢ and the arrival

arrival
time of the following vehicle is t22k #,, is the time headway

arrr

requirement for safety considerations. When no arrival time
needs to be assigned, the vehicle can travel at the fuel-
optimal speed or the same speed as the preceding vehicle.

Once the merging sequence and the arrival time are
determined, a speed profile will be computed to guide the
vehicles passing through the control zone. The optimal speed
control is formulated as a nonlinear optimal control problem
that minimizes cost functions for fulfilling multiple driv-
ing requirements, such as safe distance with the preceding
vehicle, passenger comfort, and desired speed. Instead of
imposing a terminal time to the problem, we convert the
arrival time into a reference speed for the vehicle to track.
As such, the speed profile can be generated iteratively over
a short rolling time horizon. The problem is as follows:
Problem 1:

t+T
minimize.J = / wo R(t)? + w3 (v — vg)?
z,v,u ¢

+wa(u(t) — ua(t))*dt (5)
std=uv (6)

A 2
V= Ue — Up — ﬂ — (ucosf +sinf)g (7)

2m
2

uq(t) = ,0/12% — (ncosf +sind)g (8)
R(t) = Ry + vtpa + = — x 9)
xp — 2 R (10)
0<ue<u?ax (11)
0 < up <y (12)
dmn <y < v (13)

In this problem, the control inputs u include the vehicle’s
acceleration u, and deceleration u4. The first term of the
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Fig. 2.

A rule-based cooperative merging strategy.

TABLE II
LIST OF CASES FOR CALCULATING THE ARRIVAL TIME TO THE MERGING ZONE.

: accelerate to merge into a gap created by acceleration of the mainline vehicles

: accelerate to merge together with the preceding on-ramp vehicle without adjustment of the mainline vehicles

back

Vehicle Case Arrival time
1: no need or not able to accelerate —
mainline | 9. peed to accelerate to catch up to preceding vehicle tiront 4 g
3: need to accelerate to make a gap E;‘rjlv‘dl — thd
1: no need or not able to accelerate —
Ramp 2: accelerate to merge into a gap without adjustment of the mainline vehicles tflr‘f;i“\fal + tha
3
4
5

together with the preceding on-ramp vehicle

: accelerate to merge into a gap created by acceleration of the mainline vehicles

arrival thd
front

tarrival + tha
back __
tarrival thd

cost functional J is to keep a safe distance with the preceding
vehicle. R is the deviation from this safety distance and given
by Eq. (9), where Ry is the minimum safe distance between
the vehicles, tpg is the headway requirement measured in
time, and z, is the position of the preceding vehicle. The
second term of J is to make sure that the vehicle tracks the
desired traveling speed. The last term of J is a penalty for
reducing control efforts and avoiding jitters. Since the vehi-
cles need to consume fuel to maintain speed, a compensation
value uq4(t) is included for better optimization performance.
Each term is multiplied by an adjustable weight to facilitate
behavioral decision-making. The weight wo for maintaining
inter-vehicle distance is defined as wo = 'yeo‘(m*%) [13],
where v and « are adjustable parameters. When the vehicle
is close to the preceding vehicle, wy grows exponentially to
avoid collision. While the relative distance between vehicles
exceeds the desired value, the whole penalty term will
increase, such that the vehicles can maintain a small gap for

better fuel efficiency and traffic mobility. When the preceding
vehicle is far away, wo, becomes negligibly small. Constraints
in Egs. (II) to (I3) define the lower and upper bounds of
the control variables and the speed range of the vehicle.

The goal of Problem 1 is to track a reference velocity
while keeping a safe distance with the preceding vehicle and
having comfort driving maneuvers. The reference velocity vg
is computed as the distance to the merging zone divided by
the scheduled arrival time. If the vehicle is not assigned with
an arrival time, it can use the fuel-optimal speed or the same
speed as the preceding vehicle, depending on which one is
smaller. In addition, based on the fuel consumption model
in Eq. (@), the optimal cruising speed v* can be obtained at
the minimum fuel consumption rate per unit distance as a
solution of

~ 20 4 2050 + a3 = 0. (14)
v



III. OPTIMAL CONTROL METHOD

Problem 1 is a nonconvex optimal control problem due
to the nonlinear dynamics and the nonconvex terms in the
cost functional. To allow optimal solutions in real time, we
develop a pseudospectral convex optimization method for
the considered merging control problem. Specifically, the
pseudospectral method is used to discretize the problem, and
then the nonconvex structures are transformed into tractable
formulations to find approximate optimal solutions using
sequential convex programming (SCP).

To formulate a convex optimization problem, the equality
constraint functions in Problem 1 must be affine. In partic-
ular, the nonlinear terms in Eq. (E]) need to be linearized
by a first-order Taylor series expansion with respect to a
reference speed trajectory, v*~!(t), which is the solution
of the previous SCP iteration. The successive linearized
dynamics for the k-th iteration are as follows:

AC
0~ p27D((vk_1)2 — 20" 1v) — (ucosf +sinf)g (15)
m
Similarly, the nonlinear term u4 in Eq. can also be
linearized about the previous solution v*~1(¢) as follows:

- pACD

2 (20" o= (0" 1))+ (pcos O+sinf)g (16)
m

Uq (t)

With the above successive linearizations, Problem 1 was
converted into the following convex optimal control problem:
Problem 2:

minimize Eq. (§)

z,v,u

subject to  Eq. (), Eq. @), Eq. (10), Eq. (T1),
Eq. (12), Eq. Eq. (13), and Eq. (I6).

Two algorithms were developed to obtain an approximate
optimal solution to Problem 1 by solving a sequence of
Problem 2 with discretized state variables.

Algorithm 1: Line-search SCP:

1) Set k£ = 0. Generate an initial vehicle trajectory 2" for
the solution procedure by propagating the equation of motion
in Egs. (6) and with a specific constant control from the
current state of the vehicle, z(tg) = x¢ and v(tg) = vy. Set
k=k+1

2) For k > 1, parameterize Problem 2 using 2’“71, solve
Problem 2 for a solution 2% = {a*, v¥, u¥}.
3) Check the convergence criteria:
sup ‘:L'k — xk_1’ < e
to<t<tr k
>1 17)
sup ‘vk — vk*’ <e
to Sttty

where €1 and e, are prescribed tolerances for the convergence
criteria. If the above criteria are satisfied, the algorithm goes
to step 5; otherwise to step 4.

4) Compute the search direction p* = zF — 2! for
the next iteration. Find a suitable step length o by starting
from a® = 1 and decreasing it with a contraction factor
1, such that o = ¢3!, until sufficient decrease in the

objective functional J is achieved with a specified constant
c2, as described by the following inequality :

J(zF +aFp*) > J(2F) + (1 — c2)aPV I p* (18)
J(2F + aFpP) < J(2F) + 2 VI pF

subject to 0 < co < 1/2 (19)

Then, update the reference trajectory 2° = 2* 71 +a*p¥, set

k =k + 1, and go back to step 2.

5) The iteration is terminated and a solution is found as
z* = {z*, v, u*} = {xk,vk,uk}.

Step 4 of Algorithm 1 is a line-search algorithm used to
find a feasible search step that facilitates stable convergence
of the SCP. In addition, the inequality condition in Eq. (I8)
is called the Goldstein condition, which ensures that the step
length, ok, generates a sufficient but not too small decrease
in the cost function [14, p. 36].

An alternative approach proposed in this paper is based
on trust-region methods, which have the same purpose of
improving the convergence of SCP as line-search methods.
Trust-region methods first define a trustworthy region around
the initial guess then compute the step as an approximate
solution in this region. If the step does not meet the criteria,
the size of the trust-region is reduced and another iteration
is performed. If the step makes sufficient progress, the trust-
region radius can be enlarged or remains the same. In
this paper, a trust-region SCP method is designed for the
considered speed control problem as follows.

Algorithm 2: Trust-region SCP:

1) Set k = 0. Generate an initial vehicle trajectory 29 for
the solution procedure by propagating the equation of motion
in Eqgs. (6) and (7) with a specific constant control from the
current state of the vehicle, z(tg) = o and v(tg) = wvo.
Select appropriate values for trust-region radius § = Jy and
constants 0 <7 < 81 <1< fBs. Set k =k + 1.

2) For k > 1, parameterize Problem 2 using 2R solve
Problem 2 subject to the trust-region constraint Eq. (20) for
a solution z* = {xk,uk,uk}.

1

|zF —2F 1 <o (20)
3) Check the convergence criteria:
sup ‘xk — xk*1| <e
to<t<tr
Osu “k_ k_1}< ,k>1 21
p [v°—w < €
to<t<ts

where €; and €5 are prescribed tolerances for the convergence
criteria. If the above criteria are satisfied, the algorithm goes
to step 5; otherwise to step 4.
4) Use z* to compute the model ratio v/* as:
o JET I o
J(Fh) — J1(2F)

where J(2*) is the original objective functional defined
in Eq. with nonlinear dynamics, and J'(z*) is the
parameterized objective functional with linearized dynamics.
The model ratio is a quality measurement of the approximate




solution, in which the numerator of Eq. @ is the actual
reduction of the objective functional, and the denominator
is the predicted reduction of the objective functional. If
vk < 0.25, then the trust-region radius ¢ is reduced such
that 6 = B19; if v > 0.75, ¢ is enlarged by § = f26;
otherwise, § remains the same. Next, if v* > 7, then update
the reference trajectory 2F = 2% setk =k+1, and go back
to step 2; otherwise, discard the solution zk and go back to
step 2 to resolve Problem 2.

5) The iteration is terminated and solution is found as
z* = {a*, v u*} = {mk,vk,uk}.

Step 4 is the process of finding a suitable trust-region
radius for the next iteration. The size of the trust-region § is
critical to the speed of convergence. When ¢ is too large, it
is unlikely to find a step that is close to the optimal solution.
If 6 is too small, it may take many extra iterations to reach
the optimal solution. Detailed discussion of the trust-region
methods can be found in [14, p. 66]. Compared to the line-
search method in Algorithm 1, the trust-region method does
not need to calculate the derivative of the objective functional
J, such that the computation cost could be reduced. However,
in some cases, it may take more iterations to converge due
to the large model errors or strong artificial infeasibility.

Furthermore, the developed SCP algorithms were imple-
mented under an MPC framework. MPC solves the control
problem over a fixed time horizon and only applies a short
interval of the control solution to the vehicle [15]. The
proposed convex optimization-based real-time speed control
framework consists of three major components: 1) MPC
that enables online control with instant response to the
environment, 2) Pseudospectral discretization that improves
the accuracy and convergence of the numerical optimization
algorithms, and 3) Convex optimization that enables real-
time computation. At each time step, the algorithm produces
the control commands and the predicted trajectory for each
vehicle in the control zone. After the execution of the control
commands, the new states and predicted trajectories are
shared with other vehicles via V2V communications. Then,
a new iteration is performed in the next time step.

IV. SIMULATION RESULTS

In this section, a series of simulation results are presented
to demonstrate the effectiveness and performance of the pro-
posed on-ramp merging method. The optimization algorithms
were implemented in YALMIP [16]. The convex solver was
Gurobi [17], and the nonlinear optimization solver used for
comparison was IPOPT [18].

In the following simulations, all vehicles are considered to
be identical with the same parameters listed in Table [} The
slopes for highway and ramp are assumed to be constant at
0%. The fuel-optimal speed is v* = 13.46 m/s obtained by
solving Eq. (T4). The maximum speed limit of the highway
is set to v™* = 30 m/s, while the minimum allowable speed
is v™" = 0 m/s.

A. Convergence Analysis

First, we considered a simple example where an on-ramp
vehicle travels 400 m to merge at ¢ = 20 s. As shown

in Fig. 3] the blue and green lines with markers are the
trajectories computed by Algorithm 1 and 2, respectively.
The red lines are the baseline results from IPOPT. It can
be seen from the comparison that the control profiles are in
good agreement, which validates the optimality and accuracy
of the solutions from the proposed SCP algorithms. In
particular, the absolute errors of the terminal point were
1.27e — 2 m and 3.20e — 5 m/s for the position and velocity,
respectively. The convergence of the SCP algorithms is
displayed in Fig. 4] The convergence tolerances are set to
€1 = le — 6 and €5 = le — 6. As shown in the figure, it
takes 3 iterations to converge for both SCP algorithms. The
convergence processes are very similar.

—IPOPT
—+Algorithm 1
Algorithm 2

Control (m/sz)
o

-3

0 5 10 15 20
Time (s)

Fig. 3. Comparison of optimal control profiles.

In regard to the computational cost, it takes [IPOPT about
127 s to solve for the baseline trajectory in MATLAB on a
MacBook Pro with a 64-bit Mac OS and an Intel Core i7
2.2 GHz processor. In contrast, it costs Gurobi less than 0.1
s to solve Problem 2 at each iteration in the above example.
Additionally, the CPU time cost of the SCP algorithms can be
decreased for fewer discretization nodes or higher tolerances.
The computational efficiency could be further improved if
the algorithms are implemented in compiled programming
environment or on a more powerful computation devices.

B. Case Study: Coordination of 20 Vehicles

The SCP algorithm was then implemented within the MPC
framework. The rolling time horizon of MPC was set to
be 10 s. All the vehicles started from position 0 with a
random initial speed ranging from 10 to 20 m/s. Each vehicle
joined the simulation randomly with a probability based on
the traffic volume. In this case, the traffic volume was 900
vehicles per hour with a probability of 25% for each second.
The purpose of this case study was to validate that the
proposed method was able to coordinate the merging process
continuously. Fig. 5] displays 20 trajectories obtained by the
proposed algorithms. It can be seen that all the vehicles enter
the merging zone with a safe distance between each other.
The results indicate that all the vehicles are able to travel at
a fuel-optimal speed of 13.46 m/s without conflicts.

V. CONCLUSION
In this paper, a CAV-based optimal speed control approach
was developed for highway on-ramp merging with guaran-
teed safety, real-time performance, and high fuel efficiency.
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Specifically, by leveraging the pseudospectral discretization
method and the sequential convex programming method, the
proposed algorithms had high computational efficiency that
enables potential real-time applications. To avoid collision
and improve inter-vehicle coordination, the safety distance
constraint was considered in the problem formulation. In
addition, the MPC framework was applied to perform the
real-time update of maneuvers for instant response to dy-
namic traffic environments. The convergence and optimality
of the proposed algorithms were validated by comparing with
IPOPT under different traffic scenarios.
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