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Why are fields and electron dynamics near a MITL 
load so important?

• Z machine is the largest pulsed power machine in the world 
capable of delivering < 30 MA of current.

• The inner MITL conducts power to the load which is located at the 
center of the machine.

• The following analysis can be used to directly understand 
fields/electron dynamics near the load.  The fields/electron 
dynamics from this analysis are checked using the fully 
electromagnetic code EMPIRE developed at Sandia National 
Laboratories.
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Assumptions*

1. The MITL is cylindrically symmetric.

2. The magnetic field is specified by Ampere’s Law in the limit c → 
∞ (no displacement current) for a time-dependent MITL current 
I(t).

3. The MITL surfaces are perfect conductors.

4. The load, which defines the “end” of the MITL, is also 
represented as a perfect conducting surface.
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*The following work can be found in M. H. Hess and E. G. Evstatiev, 
"Electron Dynamics Within a MITL Containing a Load," in IEEE 
Transactions on Plasma Science (2021) doi: 10.1109/TPS.2021.3116486. 
(SAND 2021-11933 J)



Electric Field Equations

• The electric fields, which are in the radial and axial directions, 
can be solved using Maxwell’s Equations.
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Gauss’s Law:

Faraday’s Law:

Boundary 
Condition at MITL 
Surface and Load:



Types of MITLs Examined5

• We examine two different types of MITLs: radial and 
spherically curved.

Radial MITL Spherically Curved MITL



Full Kinetic Lagrangian Description of Electron 
Dynamics6



Full Kinetic Radial MITL Particle Trajectory 
Equations
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In order to simplify our 
discussion, we assume



Full Kinetic Spherically Curved MITL Particle 
Trajectory Equations
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In order to simplify our 
discussion, we assume



Drift Kinetic Approximation

• The guiding center drift motion for a particle in an inner MITL can 
be described by a combination of ExB and grad B drifts.  Since we 
assume the particle’s azimuthal velocity is zero at emission, 
curvature B drift is also zero.
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Guiding Center 
Equation*:

Relativistic Adiabatic
Invariant 
(Magnetic Moment)**:

*R. J. Goldston and P. H. Rutherford, Introduction 
to Plasma Physics (1995) p. 51.

**A. J. Brizard and A. A. Chan, Phys. Plasmas 
8 4762 (2001).



Full Kinetic vs. Drift Kinetic (Radial MITL)

• We use a 20 MA peak current 
with 120 ns pulse length 
current drive.

• We compare a full kinetic 4th 
order R-K scheme using dt=10
-15 s and the drift kinetic 
equations solved with a 2nd 
order R-K scheme with dt=10-
12 s.

• The initial drift kinetic axial 
position is set to half the 
initial cycloidal orbit size of 
the full kinetic trajectory.

• Electron emission is at 24 
MV/m. 
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Full Kinetic vs. Drift Kinetic (Spherically Curved 
MITL)

• For the spherical MITL, electrons are 
emitted at different initial MITL angles.

• For smaller initial angles, the initial 
electric field is smaller → smaller 
magnetic moment → smaller grad B 
drift. 

• For larger initial angles, the initial 
electric field is larger → larger 
magnetic moment → larger grad B 
drift.
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How good is the comparison of Full Kinetics vs. 
Drift Kinetics?

• In general, the smaller the ratio rl/le = Larmor radius/electric field 
gradient length where

       the better the drift kinetic model agrees with the full kinetic 
model.

• Since smaller initial emission angles → smaller Larmor radii, then 
the drift kinetic model at smaller initial angles agrees better with 
the full kinetic model.
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Theory vs. EMPIRE** (Radial MITL Fields)

• We use the radial MITL 
example with a 20 MA 
peak current to test the c 
 ∞ limit model against 
the fully EM code EMPIRE 
developed at Sandia.

• We get excellent 
agreement with the spatial 
dependence of the voltage 
and electric field.
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**D. A. S. Brown, S. A. Wright, and S. A. Jarvis, Electronic Notes in 
Theoretical Computer Science 340, 67 (2018). 



Theory vs. EMPIRE (Spherically Curved MITL)

• We include an axial 
extension into the EMPIRE 
simulation to provide the 
correct field BCs into the 
spherical MITL section.

• Er has excellent agreement 
between theory and EMPIRE.

• There is disagreement at 
larger angles for Eq due to 
either the difference in the 
mode structure supported by 
the fully EM model vs. the c 
 ∞ model or a boundary 
constraint due to the MITL 
extension.
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Full/Drift Kinetic vs. EMPIRE-PIC (Radial MITL 
Trajectories)

• In order to better resolve cyclotron orbits near the load, we lower the 
peak current to 2 MA.  We also lower the electric field threshold to 2.4 
MV/m.

• We get excellent agreement with full kinetic simulation of particle 
trajectories.
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Full/Drift Kinetic vs. EMPIRE-PIC (Spherically Curved 
MITL)

•  The agreement between the theoretical model and the fully 
electromagnetic model trajectories is excellent.  (E-field threshold is 2.4 
MV/m).
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Summary

• We have analyzed the fields and electron trajectories for radial and 
spherically curved MITLs.

• A drift kinetic model that incorporates ExB and grad B drifts provides 
an overall excellent approximation to the full kinetic electron motion.
• The drift kinetic model shows differences with the full kinetic 

model when the Larmor radius grows relative to the electric field 
gradient scale length.

• The fields/full kinetic/drift kinetic dynamics for the two MITL problems 
have been tested against the electromagnetic code EMPIRE.
• We get excellent agreement between theory/EMPIRE for 

fields/trajectories in the radial MITL case.
• We get excellent agreement for Er in the spherically curved MITL, 

and some disagreement with Eq at large angles between the full 
EM model and the c∞ model.

• Small differences in trajectories between the full/drift kinetic and 
EMPIRE are also observed. Overall, both the c∞ and the drift 
kinetic approximation provide excellent representations of 
electron trajectories when compared with EMPIRE results.

17


