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Calculations of the requirements for future high gain MagLIF
indicate that for 40 MA drivers, >20 kJ of pre-heat will be required

P. Knapp BI01.00004
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NIF is uniquely capable of addressing preheat scaling to next-gen 
pulsed power facilities for MagLIF

1: Magnetization 2: Laser Heating 3: Compression

30 T 25 kJ >40 MA

> MJ 
yields

§ Achieving high level goals reduces risks for scaled MagLIF:
§ Assess viability of laser preheating as a scaling path for magnetized liner inertial fusion 

(MagLIF)
§ Determine laser requirements for next-gen pulsed-power facility
§ Assess our capability to model preheat “at-scale” and address deficiencies in our codes

§ This project is called out in the 2020 ICF report as key to addressing MDD scaling risks

MixCryo D2
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The extensive suite of NIF diagnostics enables experimental 
studies of many physics processes relevant to MagLIF
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§ LPI and laser energy coupling
— BS and laser propagation
— Laser transmission
— Visar

§ Thermal conduction and heat 
transport
— X-ray imaging 
— Spectroscopy
— OTS

§ Impurity transport
— Spectroscopy

Visar

SBS
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These full-scale gas pipe targets are driven by a single quad of NIF, 
delivering ~35 kJ of laser energy to the target

View from GXD in 90-315

Q31B

§ 1 cm-long epoxy gas pipe cylinder

§ 150 um wall thickness

§ 1-1.4 atm C5H12/C3H8 (with 1% Ar)

§ 1.5 um thick kapton windows

§ 1.2x1.6 mm laser spot from CPP

§ Emission imaged onto x-ray framing 
camerasTime (ns)

Po
w

er
 (T

W
)

N200310-001
(11.5% crit)
N200310-002
(15% crit)



LLNL-PRES-xxxxxx
6

The laser propagation at 11.5% ncrit in C5H12 is in good agreement 
with 2D HYDRA simulations
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Experiment
Q31B

A. Sefkow

§ Measurements of the time required 
for the laser to burn through the 
target bound the energy coupled

§ For these conditions, the laser 
burnthrough is ~10.8 ns, and the 
energy coupling is ~24 kJ

§ This includes energy into the plasma 
and the entrance window
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At 15% ncrit the measured propagation length is greater than in the 
simulations for all times

§ Experiments at two 
different fill densities 
allows testing of the 
model scaling

§ At this density the laser 
burnthrough is delayed 
to 12.9 ns, with ~31 kJ 
of energy coupling

[mm] [mm] [mm] [mm]

6 ns 8.5 ns 11 ns 13.5 ns
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Laser 1 cm

1.3 mm 2 mm 2 mm

The choice of flux limiter alone is unable to compensate for these 
discrepancies

Model

Experiment
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Recent 3D simulations better match the propagation at high 
density, but not at low density
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M. Weis
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§ Effects of flux limiter
choice, ray density, and
conductivity model are
being investigated to
improve agreement at
both densitiesz (mm)

z (mm)
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Pre-imposed axial magnetic fields up to 24 T have also been 
applied for both fill densities

Q31B

90-146.25

N190512 (B=12 T)

N181230  (B=0)

Q31B

Q31B

Gas pipe entrance

8.3 ns
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The emission profile becomes more cylindrical with B-fields 
applied, consistent with 2D r-z and 3D Hydra simulations

Vacuum 
spot 
size

M. Weis
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Emission profiles for T~1 keV from 2-8 keV at 8.3 ns

M. Glinsky
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The laser burnthrough time is appreciably reduced with increasing 
B-field at 11.5% ncrit, but less so for 15% ncrit
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The laser burnthrough time is appreciably reduced with increasing 
B-field at 11.5% ncrit, but less so for 15% ncrit
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The at-scale MagLIF pre-heat experiments at NIF are showing good 
energy coupling in warm hydrocarbons

§ Additional measurements of energy coupling 
using Visar with and without B-fields are 
underway (Glinsky CO05.008)

§ Studies of material mixing from the windows 
and the walls are also being performed 
(Tubman CO05.007)

§ In FY22 we will be emphasizing a cryogenic 
version of the target with D2 fills up to 5 mg/cc

§ The combination of B-fields and cryo targets at 
NIF is being developed, likely available in FY24

Cryogenic targets 
with D2 fills




