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Power Distribution Systems have a Diversity of Voltage and Power Needs Battery

Several systems that rely on power electronic power delivery and "
conversion demand multiple voltage rails.

115V AC Bus

i ower us 5V
Satellite and Space;raft power systems K e M 7 — g
All and More-electric aircraft power systems - — | [
Data Centers
Distributed sensing Load
To meet voltage and power needs, large systems may contain many A .
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The Fly-Buck converter is a buck converter with a
coupled inductor

It provides isolated multi-output voltage rails.
—'7
Simple control feedback, small footprint, no : :

isolation requirement for control signal. H s

Interval | (t;-ty): when HS switch, Q4 is ON and
LS switch, Q, is OFF; same as the buck
converter.

Interval Il (t,-t;): when both Qg and Q, are OFF,
inductor current resonates between the
output capacitances,C,.., C1, and L,,, + L.

Interval lll (tz-t5): Q, is ON and Qg switch is OFF
and D is forward biased; current resonates
between C;, C, and L.

Interval IV (t,-t3): Qy and Q, are OFF. If
inductor current is negative zero-voltage-
switching (ZVS) can be achieved on Q,,.
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* To analyze ZVS on Q. derive proper e L
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 Primary side current through the inductor can be  The derived equation validated through LTSpice
derived by solving the following equivalent circuit. simulation comparison at different leakage inductance
« The equation is in terms of leakage inductance and and secondary output current.

output currents given that other parameters are fixed. . : :
Primary Inductor Current During OFF Time

- lek + - va + 3 [T T T T T 5 T T T T
\ le,sim = OQMH IQ,S-im =14
25+ le,sim = 0.5uH . Iy sim = 34
]] ]Z/N le,model =1uH 4r Izrf"'im =54 |
* i 2r -7 le’,modei = 0.2uH - — = = DLmoder = 1A
N' \Y% === Ll.’f.'ﬂwdei = 05MH = IZ,mod.'t:I = 3A
V] 2 le,mod(ii — ].,U/H 3 A\ IQ.,modclf = 0A| ]
- - 151

< <
, _at t-r ‘ t-m\(y-a+22e+a-9d) g 097 =
ip=e 2 (cosh(T)(y+6)+smh( > ) " )—y g | %
@) )
R 1 I, 0.5
“= TP T Inc ‘yz(“_ﬁ) |
lk lk*™eq 1
I VilV, =V
=1, +=+ (1 = V) = i(t,) 15¢
N Z'Vg'fsw'l‘m
Dk -3r
N.V +N.V _V_(S'.R L | | | | | I | L |
g =—2 Ld”c ! P =i (ty) 1 Time 1
r=+a?—4p



Pdﬂs Fly-buck ZVS Operation Conditions @lEEE

. Powering a Sustainable Future

1 11 r 4 o 1 3 il o |
I 5 — | | | |
| | |
Qu | I
| I I | | | |
! | | : ' ,Jl‘ — LargeLy :
: : | ANSEA |
I I ZVSis | == Largel, | | | \ |
| C e~ Small I |
| XN | g | R
| ~~" | N I o~ | o /
o O N P o I |
Y \:O : o : : < Hard-switched | | L |
~
o Se L 2V SHs Ty |
~ ) x~ I Y Soft-switched |
' | ] W Y 4 |
! o . | l |
! | O | | v | |
I | | | | -2 | |
7 t 1 6ot | O~ | |
« The total charge, Q,, needs greater than or equal to the output capacitances, ) £ Iy

eqgn (1)-(2).
« Small I, affect current magnitude, affecting ZVS operation
« The current slope during IV can be approximated by egn (3)

Qv > [;72Co5s(0)d@) = 2Q4s (1)

« Small L;; may not have enough energy to discharge
the output capacitance.
« [, current direction during t;y is critical for ZVS.

i (t—1ty) = M mll (t —ty) —ip(t3) (4)

Lk

t .
vamm = fta IL(T'-) dr = ZQDS.S‘ (2) Vg—NVd
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4.5 Fly-buck Secondary Ontput Voltage
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« The secondary side voltage drop also depends on the leakage

« Whether Q, can turn-on at ZVS depends on leakage inductance and , )
inductance and output current ratio.

output current ratio.

* Thus, very high coupling coefficient can inhibit ZVS operation even at
large current ratio.

« The inoperable region is determined by the secondary side voltage drop.

« The inoperable region is when the secondary side voltage is zero.
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LTSpice Simulation Validation Results
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Hard-Switching Case

Soft-Switching Case

Experiment Validation of ZVS Operation @lEEE

Experimental Validation Results
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* Fly-buck converter is an attractive solution for multi-output voltage rails

Both LS and HS switches can turn-on at zero voltage and highly dependent on the
leakage inductance and current ratio.

 The ZVS boundary iIs also determined by the secondary side voltage drop.

* High coupling coefficient inhibit ZVS while small coupling coefficient increases the
secondary voltage drop.

« ZVS operation has been validated and evaluated through simulation and experiments.

Future work includes multi-dimensional ZVS analysis with more than 2 output voltages
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