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s | Bayes’ theorem provides us with a way to extract information from
data with rigorously quantified uncertainties

P(mx, A)P(x|A) = P(xXjm, A)P(m|A)

P(ml|x, A)

L> Posterior (

Likelihood: How well does a set

of model parameters match the
available data?

P(x|m, A)

P(m|A)

PEA) [

AKA the answer)

Prior: AKA the stuff we
already know

(e.g. pressure and
temperature must be
positive.)
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The posterior distribution is much more than a point estimate of the m

parameters of interest

Mix Fraction [%]

9, @, @y 7
% % % % % Y Y Y

10 1 T T T
w/0 n-Img
gl w/ n-Img
6 -
4 -
2 =
0 —- '

06 08 10 1.2 14 16 1.8

Pressure [Gbar]

|

femperature

liner_rhor

scale ¢

total_output

The full distribution provides
estimates of the mean/median of
various model parameters

Credible intervals
Correlations between parameters

Assess the information content
contained in the posterior to l

 Evaluate addition of new
information

* Determine sensitivity to noise,
calibration, model uncertainty,
etc.
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There are a wide variety of efforts in HED and ICF to exploit the
power of Bayesian methods to better understand our data and

I\de(c)aﬂleah%ration

E Loy 1.5 20 25

Gaffney et al. Nucl. Fusion 53
(2013)

Mises Stress and Line Tension {GPa)

'

a F0.20
A e F0.15
o Ao
N |
l"‘\__ "::\\'? "\-:_::"-r_‘:

LT 0,05
|__I b \-u- - 1
N ._‘E__’_;_____
_________ . h o T _[]lUU
2.0 2.2

Time (us)
S. Ali et al. J. Appl. Phys.
130, 055901 (2021)




s | There are a wide variety of efforts in HED and ICF to exploit the
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power of Bayesian methods to better understand our data and
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Bayesian Surrogate Modeling
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predicted vs attual values for output features
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Bayesian Surrogate Modeling
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physical sciences to greatly improve how well we use the available
information

* Automated feature extraction
* reduce raw data to useful quantities with quantified uncertainties

« PData Assimilation

« Combine experimental data from disparate sources for a self-consistent description of the
processes under study

* Mathematically rigorous uncertainties propagated from all sources (model, experiment,
surrogate, etc.)

* Experiment design and optimization

« Utilize the full posterior to guide the design of instruments and experiments to maximize
information gain

|
Bayesian methods can be applied to a variety of tasks in the m
|



features with rigorous uncertainties

In this application the width and asymmetry of
the neutron time of flight signal is sensitive to
magnetlzatlon in MagLIF experlments
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Bayesian Background fits

Bayesian fits to experimental data provide a means to extract

/

0.02
g /
=
£ 0.01
o
£
<
'5 0.00
L
C005.00002
—-20 0 20 40
t (ns)

Posterior feature

1.00+

a
S 0.75

£ 0.50
£
£ 0.25
['H)
0.00 | -

time (ns)

20

Posterior CDF’s

40

distribution
/
P4
9 10 11
5At(ﬂ5)

C005.00002 : W.E. Lewis Mon. Afternoon

o



» | Bayesian data assimilation provides a means to self-consistently m

Integrate multiple sources of diagnostic information through a
physical model

Experimental Data

Bayesian Performance Metrics
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. A well constructed posterior provides us with rigorous metrics we m

can use to find optimal experiment designs

We want to use synthetic data to find the best set of radiation detectors and filters to
optimally constrain the source spectrum over a range of possible outcomes
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design, analysis, and integration loop

Model Pe:rameters

I
These examples provide a model for an end-to-end fully Bayesian @!
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dramatically accelerate this process
\iTTfoTnTaTrcm—gaTn—/ and improve the fidelity of our work I
f \ » High fidelity surrogate models with
@servatD uncertainties for inference |
« High fidelity surrogates for sampling

Autom.ated data experiment configurations
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