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Bayes’ theorem provides us with a way to extract information from 
data with rigorously quantified uncertainties
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Prior: AKA the stuff we 
already know 
(e.g. pressure and 
temperature must be 
positive.)

Likelihood: How well does a set 
of model parameters match the 
available data?

Posterior (AKA the answer)



The posterior distribution is much more than a point estimate of the 
parameters of interest

The full distribution provides 
estimates of the mean/median of 
various model parameters

Credible intervals

Correlations between parameters

Assess the information content 
contained in the posterior to 

• Evaluate addition of new 
information

• Determine sensitivity to noise, 
calibration, model uncertainty, 
etc.
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S. Ali et al. J. Appl. Phys. 
130, 055901 (2021)

There are a wide variety of efforts in HED and ICF to exploit the 
power of Bayesian methods to better understand our data and 
models
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Bayesian methods can be applied to a variety of tasks in the 
physical sciences to greatly improve how well we use the available 
information
• Automated feature extraction

• reduce raw data to useful quantities with quantified uncertainties

• Data Assimilation
• Combine experimental data from disparate sources for a self-consistent description of the 

processes under study
• Mathematically rigorous uncertainties propagated from all sources (model, experiment, 

surrogate, etc.)

• Experiment design and optimization
• Utilize the full posterior to guide the design of instruments and experiments to maximize 

information gain
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Bayesian fits to experimental data provide a means to extract 
features with rigorous uncertainties
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In this application the width and asymmetry of 
the neutron time of flight signal is sensitive to 
magnetization in MagLIF experiments

Bayesian Background fits

Posterior CDF’s

Posterior feature 
distribution

W.E. Lewis et al., Physics of Plasmas  28, 092701 (2021)
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Bayesian data assimilation provides a means to self-consistently 
integrate multiple sources of diagnostic information through a 
physical model
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Synthetic Data

Experimental Data

Prior

Posterior

Bayesian Performance Metrics

BI01.00004 : P.F. Knapp Mon. Morning



A well constructed posterior provides us with rigorous metrics we 
can use to find optimal experiment designs

We want to use synthetic data to find the best set of radiation detectors and filters to 
optimally constrain the source spectrum over a range of possible outcomes
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HFM Output:
Full space & 
time varying 

spectrum from J 
different 

instances

Filter materials
Filter thicknesses
PCD sensitivity 

Posterior of Model 
Parameters

Posterior Output Spectrum

Bayesian Optimization



These examples provide a model for an end-to-end fully Bayesian 
design, analysis, and integration loop14

Surrogate modeling for fast 
forward models with adjoints

Optimize 
Diagnostic and 
experimental 
configurations to 
maximize 
information gain 

Observation

Physics 
Model

Diagnostic 
Configuration

Model Parameters
This Bayesian inference network 
graphically depicts how we infer 
important quantities from experimental 
data

Automated data 
reduction and feature 
extraction with 
uncertainties

Deep learning has the potential to 
dramatically accelerate this process 
and improve the fidelity of our work
• High fidelity surrogate models with 

uncertainties for inference
• High fidelity surrogates for sampling 

experiment configurations
• Automated data reduction pipelines


